Research article Special Issues

Securing image-based document transmission in logistics and supply chain management through cheating-resistant visual cryptographic protocols


  • Received: 02 September 2023 Revised: 14 October 2023 Accepted: 24 October 2023 Published: 02 November 2023
  • In today's digital landscape, securing multimedia visual information—specifically color images—is of critical importance across a range of sectors, including the burgeoning fields of logistics and supply chain management. Traditional Visual Cryptography (VC) schemes lay the groundwork for encrypting visual data by fragmenting a secret image into multiple shares, thereby ensuring no single share divulges the secret. Nevertheless, VC faces challenges in ascertaining the integrity of reconstructed images, especially when shares are manipulated maliciously. Existing solutions often necessitate additional shares or a trusted third party for integrity verification, thereby adding complexity and potential security risks. This paper introduces a novel Cheating-Resistant Visual Cryptographic Protocol (CRVC) for Color Images that aims to address these limitations. Utilizing self-computational models, this enhanced protocol simplifies the integrated integrity verification process, eliminating the need for extra shares. A standout feature is its capability to securely transmit meaningful shares for color images without compromising the quality of the reconstructed image as the PSNR maintains to be ∞. Experimental findings substantiate the protocol's resilience against quality degradation and its effectiveness in verifying the authenticity of the reconstructed image. This innovative approach holds promise for a wide array of applications, notably in sectors requiring secure document transmission, such as Logistics and Supply Chain Management, E-Governance, Medical and Military Applications.

    Citation: Qi Wang, John Blesswin A, T Manoranjitham, P Akilandeswari, Selva Mary G, Shubhangi Suryawanshi, Catherine Esther Karunya A. Securing image-based document transmission in logistics and supply chain management through cheating-resistant visual cryptographic protocols[J]. Mathematical Biosciences and Engineering, 2023, 20(11): 19983-20001. doi: 10.3934/mbe.2023885

    Related Papers:

  • In today's digital landscape, securing multimedia visual information—specifically color images—is of critical importance across a range of sectors, including the burgeoning fields of logistics and supply chain management. Traditional Visual Cryptography (VC) schemes lay the groundwork for encrypting visual data by fragmenting a secret image into multiple shares, thereby ensuring no single share divulges the secret. Nevertheless, VC faces challenges in ascertaining the integrity of reconstructed images, especially when shares are manipulated maliciously. Existing solutions often necessitate additional shares or a trusted third party for integrity verification, thereby adding complexity and potential security risks. This paper introduces a novel Cheating-Resistant Visual Cryptographic Protocol (CRVC) for Color Images that aims to address these limitations. Utilizing self-computational models, this enhanced protocol simplifies the integrated integrity verification process, eliminating the need for extra shares. A standout feature is its capability to securely transmit meaningful shares for color images without compromising the quality of the reconstructed image as the PSNR maintains to be ∞. Experimental findings substantiate the protocol's resilience against quality degradation and its effectiveness in verifying the authenticity of the reconstructed image. This innovative approach holds promise for a wide array of applications, notably in sectors requiring secure document transmission, such as Logistics and Supply Chain Management, E-Governance, Medical and Military Applications.



    加载中


    [1] A. Akanksha, H. Garg, S. Shivani, Privacy protection of digital images using watermarking and QR code-based visual cryptography, Adv. Multimedia, 2023 (2023), 6945340. https://doi.org/10.1155/2023/6945340 doi: 10.1155/2023/6945340
    [2] M. Naor, A. Shamir, Visual cryptography, Adv. Cryptol. EUROCRYPT, 94 (1995), 1–12.
    [3] F.Aswad, I. Salman, S. Mostafa, An optimization of color halftone visual cryptography scheme based on bat algorithm, J. Intell. Syst., 30 (2021), 816–835.https://doi.org/10.1515/jisys-2021-0042 doi: 10.1515/jisys-2021-0042
    [4] A. J. Blesswin, G. S. Mary, S. M. Kumar, Secured communication method using visual secret sharing scheme for color images, J. Int. Technol., 22 (2021), 803–810. https://jit.ndhu.edu.tw/article/viewFile/2544/2562
    [5] E. Çiftci, E. Sümer, A novel steganography method for binary and color halftone images, Peer J. Comput. Sci., 8 (2022), 1062. https://doi.org/10.7717/peerj-cs.1062 doi: 10.7717/peerj-cs.1062
    [6] G. S. Mary, A. J. Blesswin, S. M. Kumar, Self-authentication model to prevent cheating issues in grayscale visual secret sharing schemes, Wirel. Pers. Commun., 125 (2022), 1695–1714. https://doi.org/10.1007/s11277-022-09628-8 doi: 10.1007/s11277-022-09628-8
    [7] G. Ateniese, C. Blundo, A. De Santis, D. R. Stinson, Extended capabilities for visual cryptography, Theor. Comput. Sci., 250 (2001), 143–161. https://doi.org/10.1016/S0304-3975(99)00127-9 doi: 10.1016/S0304-3975(99)00127-9
    [8] I. F. Elashry, O. S. Faragallah, A. M. Abbas, S. El-Rabaie, F. E. A. El-Samie, A new method for encrypting images with few details using Rijndael and RC6 block ciphers in the electronic code book mode, Inf. Secur. J., 21 (2012), 193–205. https://doi.org/10.1080/19393555.2011.654319 doi: 10.1080/19393555.2011.654319
    [9] J. L. Sian, H. C. Wei, A probabilistic model of visual cryptography scheme with dynamic group, IEEE Trans. Inf. Forensics Secur., 7 (2012), 197–207. https://doi.org/10.1109/TIFS.2011.2167229 doi: 10.1109/TIFS.2011.2167229
    [10] C. C. Lin, W. H. Tsai, Visual cryptography for gray-level images by dithering techniques, Pattern Recognit. Lett., 24 (2003), 349–358. https://doi.org/10.1016/S0167-8655(02)00259-3 doi: 10.1016/S0167-8655(02)00259-3
    [11] A. J. Blesswin, P. Visalakshi, Optimal visual secret sharing on electrocardiography images for medical secret communications, Int. J. Control Theory Appl., 9 (2016), 1055–1062.
    [12] A. J. Blesswin, G. S. Mary, Optimal grayscale visual cryptography using error diffusion to secure image communication, Int. J. Control Theory Appl., 8 (2015), 1511–1519. https://api.semanticscholar.org/CorpusID: 212442311
    [13] A. J. Blesswin, G. S. Mary, S. M. M. Kumar, Multiple secret image communication using visual cryptography, Wirel. Pers. Commun., 122 (2022), 3085–3103. https://doi.org/10.1007/s11277-021-09041-7 doi: 10.1007/s11277-021-09041-7
    [14] Z. Wang, G. R. Arce, Halftone visual cryptography via error diffusion, IEEE Trans. Inf. Forensics Secur., 4 (2009), 383–396. https://doi.org/10.1109/TIFS.2009.2024721 doi: 10.1109/TIFS.2009.2024721
    [15] G. S. Mary, S. M. M. Kumar, Secure grayscale image communication using significant visual cryptography scheme in real-time applications, Multimed. Tools Appl., 79 (2020), 10363–10382. https://doi.org/10.1007/s11042-019-7202-7 doi: 10.1007/s11042-019-7202-7
    [16] A. J. Blesswin, P. Visalakshi, A novel visual image confirmation (VIC) protocol using visual cryptography for securing ubiquitous bluetooth mobile communications, Res. J. Appl. Sci., 9 (2014), 503–510. https://dx.doi.org/10.36478/rjasci.2014.503.510 doi: 10.36478/rjasci.2014.503.510
    [17] J. S. Pan, T. Liu, H. M. Yang, B. Yan, Visual cryptography scheme for secret color images with color QR codes, J. Vis. Commun. Image Represent., 82 (2021), 103405. https://doi.org/10.1016/j.jvcir.2021.103405 doi: 10.1016/j.jvcir.2021.103405
    [18] R. Wu, S. Gao, X. Wang, S. Liu, Q. Li, U. Erkan et al. AEA-NCS: An audio encryption algorithm based on a nested chaotic system, Chaos Solitons Fractals, 165 (2022), 112770. https://doi.org/10.1016/j.chaos.2022.112770 doi: 10.1016/j.chaos.2022.112770
    [19] Y. Guo, X. Jia, Q. Chu, D. A. Wang, Novel XOR-based threshold visual cryptography with adjustable pixel expansion, Appl. Sci., 10 (2020), 1321. https://doi.org/10.3390/app10041321 doi: 10.3390/app10041321
    [20] S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, X. Tang, EFR-CSTP: Encryption for face recognition based on the chaos and semi-tensor product theory, Inf. Sci., 621 (2023), 766–781. https://doi.org/10.1016/j.ins.2022.11.121 doi: 10.1016/j.ins.2022.11.121
    [21] G. S. Mary, S. M. Kumar, A self-verifiable computational visual cryptographic protocol for secure two-dimensional image communication, Meas. Sci. Technol., 30 (2019), 125404. https://doi.org/10.1088/1361-6501/ab2faa doi: 10.1088/1361-6501/ab2faa
    [22] D. Zhang, L. Ren, M. M. Shafiq, Z. Gu, A privacy protection framework for medical image security without key dependency based on visual cryptography and trusted computing, Comput. Intell. Neurosci., 2023 (2023), 6758406. https://doi.org/10.1155/2023/6758406 doi: 10.1155/2023/6758406
    [23] A. J. Blesswin, P. Visalakshi, A new semantic visual cryptographic protocol (SVCP) for securing multimedia communications, Int. J. Soft Comput., 10 (2015), 175–182. https://dx.doi.org/10.36478/ijscomp.2015.175.182 doi: 10.36478/ijscomp.2015.175.182
    [24] S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, C. Wang, et al., Asynchronous updating Boolean network encryption algorithm, IEEE Trans. Circuits Syst. Video Technol., 33 (2023), 4388–4400. https://doi.org/10.1109/TCSVT.2023.3237136 doi: 10.1109/TCSVT.2023.3237136
    [25] N. Rani, S. R. Sharma, V. Mishra, Grayscale and colored image encryption model using a novel fused magic cube, Nonlinear Dyn., 108 (2022), 1773–1796. https://doi.org/10.1007/s11071-022-07276-y doi: 10.1007/s11071-022-07276-y
    [26] S. Gao, R. Wu, X. Wang, J. Wang, Q. Li, C. Wang, et al., A 3D model encryption scheme based on a cascaded chaotic system, Signal Process., 202 (2023), 108745. https://doi.org/10.1016/j.sigpro.2022.108745 doi: 10.1016/j.sigpro.2022.108745
    [27] Q. Lai, L. Yang, G. Chen, Design and performance analysis of discrete memristive hyperchaotic systems with stuffed cube attractors and ultraboosting behaviors, IEEE Trans. Ind. Electron., 2023 (2023), 1–10. https://doi.org/10.1109/TIE.2023.3299016. doi: 10.1109/TIE.2023.3299016
    [28] D. R. Somwanshi, V. T. Humbe, A secure and verifiable color visual cryptography scheme with LSB based image steganography, Int. J. Adv. Trends Comput. Sci. Eng., 10 (2021), 2669–2677. https://doi.org/10.30534/ijatcse/2021/031042021 doi: 10.30534/ijatcse/2021/031042021
    [29] Q. Lai, Z. Wan, H. Zhang, G. Chen, Design and analysis of multiscroll memristive hopfield neural network with adjustable memductance and application to image encryption, IEEE Trans. Neural Networks Learn. Syst., 34 (2023), 7824–7837. https://doi.org/10.1109/TNNLS.2022.3146570 doi: 10.1109/TNNLS.2022.3146570
    [30] X. Wu, C. N. Yang, Probabilistic color visual cryptography schemes for black and white secret images, J. Vis. Commun. Image Represent., 70 (2020), 102793. https://doi.org/10.1016/j.jvcir.2020.102793 doi: 10.1016/j.jvcir.2020.102793
    [31] C. N. Yang, L. Z. Sun, S. R. Cai, Extended color visual cryptography for black and white secret image, Theor. Comput. Sci., 609 (2016), 143–161. https://doi.org/10.1016/j.tcs.2015.09.016 doi: 10.1016/j.tcs.2015.09.016
    [32] Q. Lai, Z. Wan, P. D. K. Kuate, Generating grid multi-scroll attractors in memristive neural networks, IEEE Trans. Circuits Syst., 70 (2023), 1324–1336. https://doi.org/10.1109/TCSI.2022.3228566 doi: 10.1109/TCSI.2022.3228566
    [33] Q. Lai, Z. Chen, Grid-scroll memristive chaotic system with application to image encryption, Chaos Solitons Fractals, 170 (2023), 113341. https://doi.org/10.1016/j.chaos.2023.113341 doi: 10.1016/j.chaos.2023.113341
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1476) PDF downloads(59) Cited by(4)

Article outline

Figures and Tables

Figures(9)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog