It is a fundamental question in mathematical epidemiology whether deadly infectious diseases only lead to a mere decline of their host populations or whether they can cause their complete disappearance. Upper density-dependent incidences do not lead to host extinction in simple, deterministic SI or SIS (susceptible-infectious) epidemic models. Infection-age structure is introduced into SIS models because of the biological accuracy offered by considering arbitrarily distributed infectious periods. In an SIS model with infection-age structure, survival of the susceptible host population is established for incidences that depend on the infection-age density in a general way. This confirms previous host persistence results without infection-age for incidence functions that are not generalizations of frequency-dependent transmission. For certain power incidences, hosts persist if some infected individuals leave the infected class and become susceptible again and the return rate dominates the infection-age dependent infectivity in a sufficient way. The hosts may be driven into extinction by the infectious disease if there is no return into the susceptible class at all.
Citation: Joan Ponce, Horst R. Thieme. Can infectious diseases eradicate host species? The effect of infection-age structure[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18717-18760. doi: 10.3934/mbe.2023830
It is a fundamental question in mathematical epidemiology whether deadly infectious diseases only lead to a mere decline of their host populations or whether they can cause their complete disappearance. Upper density-dependent incidences do not lead to host extinction in simple, deterministic SI or SIS (susceptible-infectious) epidemic models. Infection-age structure is introduced into SIS models because of the biological accuracy offered by considering arbitrarily distributed infectious periods. In an SIS model with infection-age structure, survival of the susceptible host population is established for incidences that depend on the infection-age density in a general way. This confirms previous host persistence results without infection-age for incidence functions that are not generalizations of frequency-dependent transmission. For certain power incidences, hosts persist if some infected individuals leave the infected class and become susceptible again and the return rate dominates the infection-age dependent infectivity in a sufficient way. The hosts may be driven into extinction by the infectious disease if there is no return into the susceptible class at all.
[1] | A. P. Farrell, J. P. Collins, A. L. Greer, H. R. Thieme, Do fatal infectious diseases eradicate host species?, J. Math. Biol., 77 (2018), 2103–2164. https://doi.org/10.1007/s00285-018-1249-3 doi: 10.1007/s00285-018-1249-3 |
[2] | A. P. Farrell, J. P. Collins, A. L. Greer, H. R. Thieme, Times from infection to disease-induced death and their influence on final population sizes after epidemic outbreaks, Bull. Math. Biol., 80 (2018), 1937–1961. https://doi.org/10.1007/s11538-018-0446-y doi: 10.1007/s11538-018-0446-y |
[3] | W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, in Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 |
[4] | H. R. Thieme, Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations, Math. Biosci., 111 (1992), 99–130. https://doi.org/10.1016/0025-5564(92)90081-7 doi: 10.1016/0025-5564(92)90081-7 |
[5] | L. Han, A. Pugliese, Epidemics in two competing species, Nonlinear Anal. Real World Appl., 10 (2009), 723–744. https://doi.org/10.1016/j.nonrwa.2007.11.005 doi: 10.1016/j.nonrwa.2007.11.005 |
[6] | H. W. Hethcote, W. Wang, Y. Li, Species coexistence and periodicity in host-host-pathogen models, J. Math. Biol., 51 (2005), 629–660. https://doi.org/10.1007/s00285-005-0335-5 doi: 10.1007/s00285-005-0335-5 |
[7] | R. D. Holt, J. Pickering, Infectious disease and species coexistence: A model of Lotka-Volterra form, Am. Natur., 126 (1985), 196–211. https://doi.org/10.1086/284409 doi: 10.1086/284409 |
[8] | A. Friedman, A. A. Yakubu, Host demographic Allee effect, fatal disease, and migration: Persistence or extinction, SIAM J. Appl. Math., 72 (2012), 1644–1666. https://doi.org/10.1137/120861382 doi: 10.1137/120861382 |
[9] | F. M. Hilker, Population collapse to extinction: The catastrophic combination of parasitism and Allee effect, J. Biol. Dynam., 4 (2010), 86–101. https://doi.org/10.1080/17513750903026429 doi: 10.1080/17513750903026429 |
[10] | H. R. Thieme, T. Dhirasakdanon, Z. Han, R. Trevino, Species decline and extinction: Synergy of infectious disease and Allee effect?, J. Biol. Dynam., 3 (2009), 305–323. https://doi.org/10.1080/17513750802376313 doi: 10.1080/17513750802376313 |
[11] | S. Busenberg, K. Cooke, H. R. Thieme, Demographic change and persistence of HIV/AIDS in a heterogeneous population, SIAM J. Appl. Math., 51 (1991), 1030–1052. https://doi.org/10.1137/0151052 doi: 10.1137/0151052 |
[12] | S. Busenberg, P. van den Driessche, Analysis of a disease transmission model in a population with varying size, J. Math. Biol., 28 (1990), 257–270. https://doi.org/10.1007/BF00178776 doi: 10.1007/BF00178776 |
[13] | L. Q. Gao, H. W. Hethcote, Disease transmission models with density-dependent demographics, J. Math. Biol., 30 (1992), 717–731. https://doi.org/10.1007/BF00173265 doi: 10.1007/BF00173265 |
[14] | W. M. Getz, J. Pickering, Epidemic models: Thresholds and population regulation, Am. Natur., 121 (1983), 892–898. https://doi.org/10.1086/284112 doi: 10.1086/284112 |
[15] | D. Greenhalgh, R. Das, An SIR epidemic model with a contact rate depending on population density, Math. Popul. Dynam. Anal. Heterog., 1 (1995), 79–101. |
[16] | K. P. Hadeler, K. Dietz, M. Safan, Case fatality models for epidemics in growing populations, Math. Biosci., 281 (2016), 120–127. https://doi.org/10.1016/j.mbs.2016.09.007 doi: 10.1016/j.mbs.2016.09.007 |
[17] | T.-W. Hwang, Y. Kuang, Deterministic extinction effect of parasites on host populations, J. Math. Biol., 46 (2003), 17–30. https://doi.org/10.1007/s00285-002-0165-7 doi: 10.1007/s00285-002-0165-7 |
[18] | T.-W. Hwang, Y. Kuang, Host extinction dynamics in a simple parasite-host interaction model, Math. Biosci. Eng., 2 (2005), 743–751. https://doi.org/10.3934/mbe.2005.2.743 doi: 10.3934/mbe.2005.2.743 |
[19] | R. M. May, R. M. Anderson, A. R. McLean, Possible demographic consequences of HIV/AIDS epidemics: ii, assuming HIV infection does not necessarily lead to AIDS, in Mathematical Approaches to Problems in Resource Management and Epidemiology, Springer, 1989,220–248. https://doi.org/10.1007/978-3-642-46693-9_16 |
[20] | J. Mena-Lorca, H. W. Hethcote, Dynamic models of infectious diseases as regulators of population sizes, J. Math. Biol., 30 (1992), 693–716. https://doi.org/10.1007/BF00173264 doi: 10.1007/BF00173264 |
[21] | J. Zhou, H. W. Hethcote, Population size dependent incidence in models for diseases without immunity, J. Math. Biol., 32 (1994), 809–834. https://doi.org/10.1007/BF00168799 doi: 10.1007/BF00168799 |
[22] | O. Diekmann, H. Heesterbeek, T. Britton, Mathematical Tools for Understanding Infectious Disease Dynamics, Princeton University Press, Princeton, 2013. https://doi.org/10.23943/princeton/9780691155395.001.0001 |
[23] | F. De Castro, B. Bolker, Mechanisms of disease-induced extinction, Ecol. Letters, 8 (2005), 117–126. https://doi.org/10.1111/j.1461-0248.2004.00693.x doi: 10.1111/j.1461-0248.2004.00693.x |
[24] | K. F. Smith, D. F. Sax, K. D. Lafferty, Evidence for the role of infectious disease in species extinction and endangerment, Conserv. Biol., 20 (2006), 1349–1357. https://doi.org/10.1111/j.1523-1739.2006.00524.x doi: 10.1111/j.1523-1739.2006.00524.x |
[25] | A. L. Greer, C. J. Briggs, J. P. Collins, Testing a key assumption of host-pathogen theory: density and disease transmission, Oikos, 117 (2008), 1667–1673. https://doi.org/10.1111/j.1600-0706.2008.16783.x doi: 10.1111/j.1600-0706.2008.16783.x |
[26] | B. H. Carlson, H. R. Thieme, Can infectious diseases that do not confer immunity eradicate host species?, J. Biol. Syst. (to appear). https://doi.org/10.1142/S0218339023400016 |
[27] | A. Taylor, W. Mann, Advanced Calculus, Sec. ed., Xerox College Publishing, Lexington, 1972. |
[28] | P. E. Sartwell, The distribution of incubation periods of infectious disease, Am. J. Hyg., 51 (1950), 310–318. https://doi.org/10.1093/oxfordjournals.aje.a119397 doi: 10.1093/oxfordjournals.aje.a119397 |
[29] | P. E. Sartwell, The incubation period and the dynamics of infectious disease, Am. J. Epidemiol., 83 (1966), 204–216. https://doi.org/10.1093/oxfordjournals.aje.a120576 doi: 10.1093/oxfordjournals.aje.a120576 |
[30] | Z. Feng, Applications of Epidemiological Models to Public Health Policymaking: The Role of Heterogeneity in Model Predictions, World Scientific, Singapore, 2014. https://doi.org/10.1142/8884 |
[31] | W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics. ii. The problem of endemicity, in Proceedings of the Royal Society of London. Series A, containing papers of a mathematical and physical character, 138 (1932), 55–83. https://doi.org/10.1098/rspa.1932.0171 |
[32] | W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics. iii. Further studies of the problem of endemicity, in Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 141 (1933), 94–122. https://doi.org/10.1098/rspa.1933.0106 |
[33] | H. R. Thieme, C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53 (1993), 1447–1479. https://doi.org/10.1137/0153068 doi: 10.1137/0153068 |
[34] | H. Inaba, Age-structured Population Dynamics in Demography and Epidemiology, Springer, Singapore, 2017. https://doi.org/10.1007/978-981-10-0188-8 |
[35] | M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, New York, 2015. https://doi.org/10.1007/978-1-4899-7612-3 |
[36] | H. R. Thieme, J. Yang, An endemic model with variable re-infection rate and applications to influenza, Math. Biosci., 180 (2002), 207–235. https://doi.org/10.1016/S0025-5564(02)00102-5 doi: 10.1016/S0025-5564(02)00102-5 |
[37] | F. Hoppensteadt, Mathematical Theories of Populations: Demographics Genetics and Epidemics, Society for Industrial and Applied Mathematics, Philadelphia, 1975. https://doi.org/10.1137/1.9781611970487 |
[38] | S. Luckhaus, A. Stevens, A free boundary problem-in time-for the spread of Covid-19, J. Math. Biol., 86 (2023), 17. https://doi.org/10.1007/s00285-023-01881-0 doi: 10.1007/s00285-023-01881-0 |
[39] | S. Luckhaus, A. Stevens, Kermack and McKendrick models on a two-scale network and connections to the Boltzmann equations, in Mathematics Going Forward: Collected Mathematical Brushstrokes, Springer, 2022,417–427. https://doi.org/10.1007/978-3-031-12244-6_29 |
[40] | Z. Ma, J. Li, Dynamical Modeling and Analysis of Epidemics, World Scientific, Singapore, 2009. |
[41] | F. Abbona, E. Venturino, An eco-epidemic model for infectious keratoconjunctivitis caused by Mycoplasma conjunctivae in domestic and wild herbivores, with possible vaccination strategies, Math. Methods Appl. Sci., 41 (2018), 2269–2280. https://doi.org/10.1002/mma.4209 doi: 10.1002/mma.4209 |
[42] | T. Dhiraksakdanon, A model of infectious diseases in amphibian populations with ephemeral larval habitat, Dissertation, Arizona State University, 2010. |
[43] | O. Diekmann, Thresholds and traveling waves for the geographical spread of infection, J. Math. Biol., 6 (1978), 109–130. https://doi.org/10.1007/BF02450783 doi: 10.1007/BF02450783 |
[44] | H. R. Thieme, A model for the spatial spread of an epidemic, J. Math. Biol., 4 (1977), 337–351. https://doi.org/10.1007/BF00275082 doi: 10.1007/BF00275082 |
[45] | H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, NJ, USA, 2003. |
[46] | H. L. Smith, H. R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Soc., 2011. https://doi.org/10.1090/gsm/118 |
[47] | A. Farrell, Prey-predator-parasite: An ecosystem model with fragile persistence, Arizona State University, 2017. |
[48] | J. A. P. Heesterbeek, J. A. Metz, The saturating contact rate in marriage-and epidemic models, J. Math. Biol., 31 (1993), 529–539. https://doi.org/10.1007/BF00173891 doi: 10.1007/BF00173891 |
[49] | P. Magal, X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251–275. https://doi.org/10.1137/S0036141003439173 doi: 10.1137/S0036141003439173 |
[50] | X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003. |
[51] | C. K. Busenberg S, Vertically Transmitted Diseases. Models and Dynamics, Springer, Berlin Heidelberg, 1993. https://doi.org/10.1007/978-3-642-75301-5 |
[52] | V. Capasso, Mathematical Structures of Epidemic Systems, Springer, Berlin Heidelberg, 1993. https://doi.org/10.1007/978-3-540-70514-7 |
[53] | D. Breda, O. Diekmann, W. De Graaf, A. Pugliese, R. Vermiglio, On the formulation of epidemic models (an appraisal of Kermack and McKendrick), J. Biol. Dynam., 6 (2012), 103–117. https://doi.org/10.1080/17513758.2012.716454 doi: 10.1080/17513758.2012.716454 |
[54] | O. Diekmann, The 1927 epidemic model of Kermack and Mckendrick: A success story or a tragicomedy?, SMB Newsletter, 92, 1–4. |
[55] | H. R.Thieme, Disease extinction and disease persistence in age-structured epidemic models, Nonlinear Anal. Theory Methods Appl., 47 (2001), 6181–6194. https://doi.org/10.1016/S0362-546X(01)00677-0 doi: 10.1016/S0362-546X(01)00677-0 |
[56] | E. Venturino, Ecoepidemiology: A more comprehensive view of population interactions, Math. Model. Nat. Phenom., 11 (2016), 49–90. https://doi.org/10.1051/mmnp/201611104 doi: 10.1051/mmnp/201611104 |
[57] | L. Han, Z. Ma, H. W. Hethcote, Four predator-prey models with infectious diseases, Math. Computer Model., 34 (2001), 849–858. https://doi.org/10.1016/S0895-7177(01)00104-2 doi: 10.1016/S0895-7177(01)00104-2 |
[58] | O. Diekmann, M. Kretzschmar, Patterns in the effects of infectious diseases on population growth, J. Math. Biol., 29 (1991), 539–570. https://doi.org/10.1007/BF00164051 doi: 10.1007/BF00164051 |
[59] | T. Dhirasakdanon, H. R. Thieme, Stability of the endemic coexistence equilibrium for one host and two parasites, Math. Model. Nat. Phenom., 5 (2010), 109–138. https://doi.org/10.1051/mmnp/20105606 doi: 10.1051/mmnp/20105606 |
[60] | L. J. S. Allen, E. J. Allen, Deterministic and stochastic SIR epidemic models with power function transmission and recovery rates, Math. Contin. Discrete Dyn. Syst., 618 (2014), 1–15. https://doi.org/10.1090/conm/618/12329 doi: 10.1090/conm/618/12329 |
[61] | O. Diekmann, H. Inaba, A systematic procedure for incorporating separable static hetero- geneity into compartmental epidemic models, J. Math. Biol., 86 (2023), 29. https://doi.org/10.1007/s00285-023-01865-0 doi: 10.1007/s00285-023-01865-0 |
[62] | A. S. Novozhilov, On the spread of epidemics in a closed heterogeneous population, Math. Biosci., 215 (2008), 177–185. https://doi.org/10.1016/j.mbs.2008.07.010 doi: 10.1016/j.mbs.2008.07.010 |
[63] | N. T. Bailey, The Mathematical Theory of Infectious Diseases and its Applications, Charles Griffin & Company Ltd, 5a Crendon Street, High Wycombe, 1975. |
[64] | F. Brauer, C. Castillo-Chavez, Z. Feng, Mathematical Models in Epidemiology, Springer, New York, 2019. https://doi.org/10.1007/978-1-4939-9828-9 |
[65] | A. Ducrot, Q. Griette, Z. Liu, P. Magal, Differential Equations and Population Dynamics I, Springer, Cham, 2022. https://doi.org/10.1007/978-3-030-98136-5 |
[66] | X.-Z. Li, J. Yang, d M. Martcheva, Age Structured Epidemic Modeling, vol. 52 makes no sense unless the series is mentioned as well, Springer Nature, Cham, 2020. |
[67] | L. Rass, J. Radcliffe, Spatial Deterministic Epidemics, American Mathematical Soc., Providence, 2003. https://doi.org/10.1090/surv/102 |
[68] | K. P. Hadeler, Topics in Mathematical Biology, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-65621-2 |
[69] | M. Iannelli, F. Milner, The Basic Approach to Age-Structured Population Dynamics. Models, Methods and Numerics, Springer, Dordrecht, 2017. https://doi.org/10.1007/978-94-024-1146-1 |
[70] | J. McDonald, N. Weiss, A Course in Real Analysis, Academic Press, San Diego, 1999. |
[71] | A. G. McKendrick, Applications of mathematics to medical problems, Proceed. Edinburgh Math. Soc., 14 (1926), 98–130. https://doi.org/10.1017/S0013091500034428 doi: 10.1017/S0013091500034428 |
[72] | A. J. Lotka, Relation between birth rates and death rates, Science, 26 (1907), 21–22. https://doi.org/10.1126/science.26.653.21.b doi: 10.1126/science.26.653.21.b |
[73] | E. Hewitt and K. Stromberg, Real and Abstract analysis, Springer, Berlin Heidelberg, 1956. |
[74] | G. Gripenberg, S.-O. Londen, O. Staffans, Volterra Integral and Functional Equations, Cambridge University Press, Cambridge, 1990. https://doi.org/10.1017/CBO9780511662805 |
[75] | W. M. Hirsch, H. Hanisch, J.-P. Gabriel, Differential equation models of some parasitic infections: methods for the study of asymptotic behavior, Commun. Pure Appl. Math., 38 (1985), 733–753. https://doi.org/10.1002/cpa.3160380607 doi: 10.1002/cpa.3160380607 |
[76] | K. Yosida, Functional Analysis, Sec. edition, Springer, Berlin Heidelberg, 1965–1968. https://doi.org/10.1007/978-3-662-25762-3 |
[77] | H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. fur die Reine und Angewandte Mathematik, 1979 (1979), 94–121. https://doi.org/10.1515/crll.1979.306.94 doi: 10.1515/crll.1979.306.94 |
[78] | H. Amann, Gewöhnliche Differentialgleichungen, De Gruyter, Berlin, 1983. |
[79] | K. Deimling, Nonlinear Functional Analysis, Springer, Berlin Heidelberg, 1985. https://doi.org/10.1007/978-3-662-00547-7 |
[80] | C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, Springer, Berlin Heidelberg, 1999, 2006. https://doi.org/10.1007/978-3-662-03961-8 |
[81] | P. Gwiazda, A. Marciniak-Czochra and H. R. Thieme, Measures under the flat norm as ordered normed vector space, Positivity, 22 (2018), 105–138. https://doi.org/10.1007/s11117-017-0503-z doi: 10.1007/s11117-017-0503-z |
[82] | C. Düll, P. Gwiazda, A. Marciniak-Czochra, J. Skrzeczkowski, Spaces of Measures and their Applications to Structured Population Models, Cambridge University Press, Cambridge, 2021. https://doi.org/10.1017/9781009004770 |
[83] | P. Magal, S. Ruan, Theory and applications of abstract semilinear Cauchy problems, Springer, Cham, 2018. https://doi.org/10.1007/978-3-030-01506-0 |
[84] | H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differ. Integral Equat., 3 (1990), 1035–1066. https://doi.org/10.57262/die/1379101977 doi: 10.57262/die/1379101977 |