Research article Special Issues

Multi-stable and spatiotemporal staggered patterns in a predator-prey model with predator-taxis and delay


  • Received: 30 August 2023 Revised: 21 September 2023 Accepted: 21 September 2023 Published: 25 September 2023
  • The effects of predator-taxis and conversion time delay on formations of spatiotemporal patterns in a predator-prey model are explored. First, the well-posedness, which implies global existence of classical solutions, is proved. Then, we establish critical conditions for the destabilization of the coexistence equilibrium via Turing/Turing-Turing bifurcations by describing the first Turing bifurcation curve; we also theoretically predict possible bistable/multi-stable spatially heterogeneous patterns. Next, we demonstrate that the coexistence equilibrium can also be destabilized via Hopf, Hopf-Hopf and Turing-Hopf bifurcations; also possible stable/bistable spatially inhomogeneous staggered periodic patterns and bistable spatially inhomogeneous synchronous periodic patterns are theoretically predicted. Finally, numerical experiments also support theoretical predictions and partially extend them. In a word, theoretical analyses indicate that, on the one hand, strong predator-taxis can eliminate spatial patterns caused by self-diffusion; on the other hand, the joint effects of predator-taxis and conversion time delay can induce complex survival patterns, e.g., bistable spatially heterogeneous staggered/synchronous periodic patterns, thus diversifying populations' survival patterns.

    Citation: Yue Xing, Weihua Jiang, Xun Cao. Multi-stable and spatiotemporal staggered patterns in a predator-prey model with predator-taxis and delay[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18413-18444. doi: 10.3934/mbe.2023818

    Related Papers:

  • The effects of predator-taxis and conversion time delay on formations of spatiotemporal patterns in a predator-prey model are explored. First, the well-posedness, which implies global existence of classical solutions, is proved. Then, we establish critical conditions for the destabilization of the coexistence equilibrium via Turing/Turing-Turing bifurcations by describing the first Turing bifurcation curve; we also theoretically predict possible bistable/multi-stable spatially heterogeneous patterns. Next, we demonstrate that the coexistence equilibrium can also be destabilized via Hopf, Hopf-Hopf and Turing-Hopf bifurcations; also possible stable/bistable spatially inhomogeneous staggered periodic patterns and bistable spatially inhomogeneous synchronous periodic patterns are theoretically predicted. Finally, numerical experiments also support theoretical predictions and partially extend them. In a word, theoretical analyses indicate that, on the one hand, strong predator-taxis can eliminate spatial patterns caused by self-diffusion; on the other hand, the joint effects of predator-taxis and conversion time delay can induce complex survival patterns, e.g., bistable spatially heterogeneous staggered/synchronous periodic patterns, thus diversifying populations' survival patterns.



    加载中


    [1] S. Guo, Bifurcation and spatio-temporal patterns in a diffusive predator-prey system, Nonlinear Anal. Real World Appl., 42 (2018), 448–477. https://doi.org/10.1016/j.nonrwa.2018.01.011 doi: 10.1016/j.nonrwa.2018.01.011
    [2] M. Kuwamura, Turing instabilities in prey–predator systems with dormancy of predators, J. Math. Biol., 71 (2015), 125–149. https://doi.org/10.1007/s00285-014-0816-5 doi: 10.1007/s00285-014-0816-5
    [3] R. Yang, Y. Ding, Spatiotemporal dynamics in a predator-prey model with a functional response increasing in both predator and prey densities, J. Appl. Anal. Comput., 10 (2020), 1962–1979. https://doi.org/10.11948/20190295 doi: 10.11948/20190295
    [4] J. Huang, S. Ruan, J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Differ. Equations, 257 (2014), 1721–1752. https://doi.org/10.1016/j.jde.2014.04.024 doi: 10.1016/j.jde.2014.04.024
    [5] P. Kareiva, A. Mullen, R. Southwood, Population dynamics in spatially complex environments: theory and data, Phil. Trans. R. Soc. Lond. B, 330 (1990), 175–190. https://doi.org/10.1098/rstb.1990.0191 doi: 10.1098/rstb.1990.0191
    [6] Y. Wang, X. Zhou, W. Jiang, Bifurcations in a diffusive predator-prey system with linear harvesting, Chaos Solitons Fractals, 169 (2023), 1–16. https://doi.org/10.1016/j.chaos.2023.113286 doi: 10.1016/j.chaos.2023.113286
    [7] W. Xu, H. Shu, Z. Tang, H. Wang, Complex dynamics in a general diffusive predator–prey model with predator maturation delay, J. Dyn. Differ. Equations, 2022 (2022). https://doi.org/10.1007/s10884-022-10176-9 doi: 10.1007/s10884-022-10176-9
    [8] F. S. Berezovskaya, G. P. Karev, Traveling waves in polynomial population models, Dokl. Akad. Nauk, 368 (1999), 318–322.
    [9] E. Keller, L. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234. https://doi.org/10.1016/0022-5193(71)90050-6 doi: 10.1016/0022-5193(71)90050-6
    [10] A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow, B. L. Li, Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev., 44 (2002), 311–370. https://doi.org/10.1137/S0036144502404442 doi: 10.1137/S0036144502404442
    [11] J. A. Sherratt, Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 2365–2386. https://doi.org/10.1098/rspa.2000.0616 doi: 10.1098/rspa.2000.0616
    [12] E. Curio, The Ethology of Predation, Springer-Verlag, New York, 1976. https://doi.org/10.1007/978-3-642-81028-2
    [13] M. Hassell, D. Rogers, Insect parasite responses in the development of population models, J. Anim. Ecol., 41 (1972), 661–676. https://doi.org/10.2307/3201 doi: 10.2307/3201
    [14] M. Hassell, R. May, Stability in insect host-parasitoid models, J. Anim. Ecol., 42 (1973), 693–726. https://doi.org/10.2307/3133 doi: 10.2307/3133
    [15] W. Murdoch, A. Oaten, Predation and population stability, Adv. Ecol. Res., 9 (1974), 1–131. https://doi.org/10.1016/S0065-2504(08)60288-3 doi: 10.1016/S0065-2504(08)60288-3
    [16] T. Royama, A comparative study of models for predation and parasitism, Res. Popul. Ecol., 1 (1971), 1–91. https://doi.org/10.1007/BF02511547 doi: 10.1007/BF02511547
    [17] M. Hassell, R. May, Aggregation in predators and insect parasites and its effect on stability, J. Anim. Ecol., 43 (1974), 567–594. https://doi.org/10.2307/3384 doi: 10.2307/3384
    [18] P. Kareiva, G. Odell, Swarms of predators exhibit prey taxis if individual predators use area-restricted search, Am. Nat., 130 (1987), 233–270. https://doi.org/10.2307/2461857 doi: 10.2307/2461857
    [19] C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701–1745. https://doi.org/10.3934/dcds.2014.34.1701 doi: 10.3934/dcds.2014.34.1701
    [20] H. Jin, Z. Wang, Global stability of prey-taxis systems, J. Differ. Equations, 262 (2017), 1257–1290. https://doi.org/10.1016/j.jde.2016.10.010 doi: 10.1016/j.jde.2016.10.010
    [21] C. Liu, S. Guo, Dynamics of a predator–prey system with nonlinear prey-taxis, Nonlinearity, 35 (2022), 4283. https://doi.org/10.1088/1361-6544/ac78bc doi: 10.1088/1361-6544/ac78bc
    [22] X. Wang, X. Zou, Pattern formation of a predator-prey model with the cost of anti-predator behaviors, Math. Biosci. Eng., 15 (2018), 775–805. https://doi.org/10.3934/mbe.2018035 doi: 10.3934/mbe.2018035
    [23] S. Wu, J. Wang, J. Shi, Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci., 28 (2018), 1–36. https://doi.org/10.1142/S0218202518400158 doi: 10.1142/S0218202518400158
    [24] E. Beretta, Y. Kuang, Global analyses in some delayed ratio-dependent predator-prey systems, Nonlinear Anal., 32 (1998), 381–408. https://doi.org/10.1016/S0362-546X(97)00491-4 doi: 10.1016/S0362-546X(97)00491-4
    [25] J. Xia, Z. Liu, R. Yuan, S. Ruan, The effects of harvesting and time delay on predator-prey systems with Holling type Ⅱ functional response, SIAM J. Appl. Math., 70 (2009), 1178–1200. https://doi.org/10.1137/080728512 doi: 10.1137/080728512
    [26] Y. Kuang, Delay differential equations with applications in population dynamics, Academic Press, New York, 1993. Available from: https://www.researchgate.net/publication/243764052.
    [27] S. Ruan, On nonlinear dynamics of predator-prey models with discrete delay, Math. Model. Nat. Phenom., 4 (2009), 140–188. https://doi.org/10.1051/mmnp/20094207 doi: 10.1051/mmnp/20094207
    [28] S. Wu, J. Shi, B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differ. Equations, 260 (2016), 5847–5874. https://doi.org/10.1016/j.jde.2015.12.024 doi: 10.1016/j.jde.2015.12.024
    [29] J. Wang, S. Wu, J. Shi, Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 1273. https://doi.org/10.3934/dcdsb.2020162 doi: 10.3934/dcdsb.2020162
    [30] Q. Cao, J. Wu, Pattern formation of reaction-diffusion system with chemotaxis terms, Chaos, 31 (2021), 113118. https://doi.org/10.1063/5.0054708 doi: 10.1063/5.0054708
    [31] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equations, 35 (2010), 1516–1537. https://doi.org/10.1080/03605300903473426 doi: 10.1080/03605300903473426
    [32] T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 39 (2018), 278–299. https://doi.org/10.1016/j.nonrwa.2017.07.001 doi: 10.1016/j.nonrwa.2017.07.001
    [33] J. M. Lee, T. Hillen, M. A. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551–573. https://doi.org/10.1080/17513750802716112 doi: 10.1080/17513750802716112
    [34] J. Gao, S. Guo, Effect of prey-taxis and diffusion on positive steady states for a predator-prey system, Math. Methods. Appl. Sci., 41 (2018), 3570–3587. https://doi.org/10.1002/mma.4847 doi: 10.1002/mma.4847
    [35] H. Qiu, S. Guo, S. Li, Stability and bifurcation in a predator–prey system with prey-taxis, Int. J. Bifurcation Chaos, 30 (2020), 2050022. https://doi.org/10.1142/S0218127420500224 doi: 10.1142/S0218127420500224
    [36] X. Gao, Global solution and spatial patterns for a ratio-dependent predator-prey model with predator-taxis, Results Math., 77 (2022), 66. https://doi.org/10.1007/s00025-021-01595-z doi: 10.1007/s00025-021-01595-z
    [37] Y. Song, Y. Peng, X. Zou, Persistence, stability and Hopf bifurcation in a diffusive ratio-dependent predator-prey model with delay, Int. J. Bifurcation Chaos, 24 (2014), 1450093. https://doi.org/10.1142/S021812741450093X doi: 10.1142/S021812741450093X
    [38] D. Geng, W. Jiang, Y. Lou, H. Wang, Spatiotemporal patterns in a diffusive predator-prey system with nonlocal intraspecific prey competition, Stud. Appl. Math., 148 (2021), 396–432. https://doi.org/10.1111/sapm.12444 doi: 10.1111/sapm.12444
    [39] W. Jiang, Q. An, J. Shi, Formulation of the normal form of Turing-Hopf bifurcation in partial functional differential equations, J. Differ. Equations, 268 (2020), 6067–6102. https://doi.org/10.1016/j.jde.2019.11.039 doi: 10.1016/j.jde.2019.11.039
    [40] J. Shi, C. Wang, H. Wang, Spatial movement with diffusion and memory-based self-diffusion and cross-diffusion, J. Differ. Equations, 305 (2021), 242–269. https://doi.org/10.1016/j.jde.2021.10.021 doi: 10.1016/j.jde.2021.10.021
    [41] M. Wang, Second Order Nonlinear Parabolic Equations, CRC Press, 2021. https://doi.org/10.1201/9781003150169
    [42] H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅱ. Reaction-diffusion systems, Differ. Integr. Equations, 3 (1990), 13–75. https://doi.org/10.57262/die/1371586185 doi: 10.57262/die/1371586185
    [43] W. Jiang, H. Wang, X. Cao, Turing instability and Turing-Hopf bifurcation in diffusive Schnakenberg systems with gene expression time delay, J. Dyn. Differ. Equations, 31 (2019), 2223–2247. https://doi.org/10.1007/s10884-018-9702-y doi: 10.1007/s10884-018-9702-y
    [44] Y. Song, X. Zou, Bifurcation analysis of a diffusive ratio-dependent predator–prey model, Nonlinear Dyn., 78 (2014), 49–70. https://doi.org/10.1007/s11071-014-1421-2 doi: 10.1007/s11071-014-1421-2
    [45] E. Beretta, Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144–1165. https://doi.org/10.1137/S0036141000376086 doi: 10.1137/S0036141000376086
    [46] F. Yi, E. A. Gaffney, S. S. Lee, The bifurcation analysis of Turing pattern formation induced by delay and diffusion in the Schnakenberg system, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 647–668. https://doi.org/10.3934/dcdsb.2017031 doi: 10.3934/dcdsb.2017031
    [47] X. Jiang, R. Zhang, Z. She, Dynamics of a diffusive predator–prey system with ratio-dependent functional response and time delay, Int. J. Biomath., 13 (2020), 2050036. https://doi.org/10.1142/S1793524520500369 doi: 10.1142/S1793524520500369
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1332) PDF downloads(84) Cited by(2)

Article outline

Figures and Tables

Figures(14)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog