Research article Special Issues

Lyapunov approach to manifolds stability for impulsive Cohen–Grossberg-type conformable neural network models

  • Received: 16 May 2023 Revised: 05 July 2023 Accepted: 18 July 2023 Published: 24 July 2023
  • In this paper, motivated by the advantages of the generalized conformable derivatives, an impulsive conformable Cohen–Grossberg-type neural network model is introduced. The impulses, which can be also considered as a control strategy, are at fixed instants of time. We define the notion of practical stability with respect to manifolds. A Lyapunov-based analysis is conducted, and new criteria are proposed. The case of bidirectional associative memory (BAM) network model is also investigated. Examples are given to demonstrate the effectiveness of the established results.

    Citation: Trayan Stamov, Gani Stamov, Ivanka Stamova, Ekaterina Gospodinova. Lyapunov approach to manifolds stability for impulsive Cohen–Grossberg-type conformable neural network models[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 15431-15455. doi: 10.3934/mbe.2023689

    Related Papers:

  • In this paper, motivated by the advantages of the generalized conformable derivatives, an impulsive conformable Cohen–Grossberg-type neural network model is introduced. The impulses, which can be also considered as a control strategy, are at fixed instants of time. We define the notion of practical stability with respect to manifolds. A Lyapunov-based analysis is conducted, and new criteria are proposed. The case of bidirectional associative memory (BAM) network model is also investigated. Examples are given to demonstrate the effectiveness of the established results.



    加载中


    [1] M. A. Arbib, Brains, Machines, and Mathematics, 2nd edition, Springer-Verlag, New York, 1987.
    [2] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd edition, Prentice-Hall, Englewood Cliffs, 1998.
    [3] M. A. Cohen, S. M. A. Grossberg, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Syst. Man Cyber., 13 (1983), 815–826. https://doi.org/10.1109/TSMC.1983.6313075 doi: 10.1109/TSMC.1983.6313075
    [4] C. Aouiti, E. A. Assali, Nonlinear Lipschitz measure and adaptive control for stability and synchronization in delayed inertial Cohen–Grossberg-type neural networks, Int. J. Adapt. Control Signal Process., 33 (2019), 1457–1477. https://doi.org/10.1002/acs.3042 doi: 10.1002/acs.3042
    [5] W. Lu, T. Chen, Dynamical behaviors of Cohen–Grossberg neural networks with discontinuous activation functions, Neural Networks, 18 (2015), 231–242. https://doi.org/10.1016/j.neunet.2004.09.004 doi: 10.1016/j.neunet.2004.09.004
    [6] N. Ozcan, Stability analysis of Cohen–Grossberg neural networks of neutral-type: Multiple delays case, Neural Networks, 113 (2019), 20–27. https://doi.org/10.1016/j.neunet.2019.01.017 doi: 10.1016/j.neunet.2019.01.017
    [7] S. Han, C. Hu, J. Yu, H. Jiang, S. Wen, Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: A direct analysis approach, Chaos Solitons Fractals, 142 (2021), 110432. https://doi.org/10.1016/j.chaos.2020.110432 doi: 10.1016/j.chaos.2020.110432
    [8] D. Peng, J. Li, W. Xu, X. Li, Finite-time synchronization of coupled Cohen-Grossberg neural networks with mixed time delays, J. Franklin Inst., 357 (2020), 11349–11367. https://doi.org/10.1016/j.jfranklin.2019.06.025 doi: 10.1016/j.jfranklin.2019.06.025
    [9] J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci., 79 (1982), 2554–2558. https://www.pnas.org/doi/10.1073/pnas.79.8.2554
    [10] L. O. Chua, L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35 (1988), 1257–1272. https://doi.org/10.1109/31.7600 doi: 10.1109/31.7600
    [11] L. O. Chua, L. Yang, Cellular neural networks: Applications, IIEEE Trans. Circuits Syst., 35 (1988), 1273–1290. https://doi.org/10.1109/31.7601 doi: 10.1109/31.7601
    [12] W. M. Haddad, V. S. Chellaboina, S. G. Nersesov, Impulsive and Hybrid Dynamical Systems, Stability, Dissipativity, and Control, 1st edition, Princeton University Press, Princeton, 2006.
    [13] X. Li, S. Song, Impulsive Systems with Delays: Stability and Control, 1st edition, Science Press & Springer, Singapore, 2022.
    [14] I. Stamova, G. Stamov, Applied Impulsive Mathematical Models, 1st edition, Springer, Cham, 2016.
    [15] C. Aouiti, F. Dridi, New results on impulsive Cohen–Grossberg neural networks, Neural Process. Lett., 49 (2019), 1459–1483. https://doi.org/10.1007/s11063-018-9880-y doi: 10.1007/s11063-018-9880-y
    [16] B. Lisena, Dynamical behavior of impulsive and periodic Cohen–Grossberg neural networks, Nonlinear Anal., 74 (2011), 4511–4519. https://doi.org/10.1016/j.na.2011.04.015 doi: 10.1016/j.na.2011.04.015
    [17] C. Xu, Q. Zhang, On anti–periodic solutions for Cohen–Grossberg shunting inhibitory neural networks with time–varying delays and impulses, Neural Comput., 26 (2014), 2328–2349. https://dl.acm.org/doi/10.1162/NECO_a_00642 doi: 10.1162/NECO_a_00642
    [18] T. Yang, Impulsive Control Theory, 1st edition, Springer, Berlin, 2001.
    [19] X. Yang, D. Peng, X. Lv, X. Li, Recent progress in impulsive control systems, Math. Comput. Simul., 155 (2019), 244–268. https://doi.org/10.1016/j.matcom.2018.05.003 doi: 10.1016/j.matcom.2018.05.003
    [20] J. Cao, T. Stamov, S. Sotirov, E. Sotirova, I. Stamova, Impulsive control via variable impulsive perturbations on a generalized robust stability for Cohen–Grossberg neural networks with mixed delays, IEEE Access, 8 (2020), 222890–222899. https://doi.org/10.1109/ACCESS.2020.3044191 doi: 10.1109/ACCESS.2020.3044191
    [21] X. Li, Exponential stability of Cohen–Grossberg-type BAM neural networks with time-varying delays via impulsive control, Neurocomputing, 73 (2009), 525–530. https://doi.org/10.1016/j.neucom.2009.04.022 doi: 10.1016/j.neucom.2009.04.022
    [22] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, 1st edition, World Scientific, Singapore, 2012. https://doi.org/10.1100/2012/738423
    [23] R. Magin, Fractional Calculus in Bioengineering, 1st edition, Begell House, Redding, 2006.
    [24] I. Podlubny, Fractional Differential Equations, 1st edition, Academic Press, San Diego, 1999.
    [25] I. M. Stamova, G. T. Stamov, Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications, 1st edition, CRC Press, 2017.
    [26] P. Anbalagan, E. Hincal, R. Ramachandran, D. Baleanu, J. Cao, C. Huang, et al., Delay-coupled fractional order complex Cohen–Grossberg neural networks under parameter uncertainty: Synchronization stability criteria, AIMS Math., 6 (2021), 2844–2873. https://doi.org/10.3934/math.2021172 doi: 10.3934/math.2021172
    [27] A. Pratap, R. Raja, J. Cao, C. P. Lim, O. Bagdasar, Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations, Appl. Math. Comput., 359 (2019), 241–260. https://doi.org/10.1016/j.amc.2019.04.062 doi: 10.1016/j.amc.2019.04.062
    [28] C. Rajivganthi, F. A. Rihan, S. Lakshmanan, P. Muthukumar, Finite-time stability analysis for fractional-order Cohen–Grossberg BAM neural networks with time delays, Neural Comput. Appl., 29 (2018), 1309–1320. https://doi.org/10.1007/s00521-016-2641-9 doi: 10.1007/s00521-016-2641-9
    [29] I. Stamova, S. Sotirov, E. Sotirova, G. Stamov, Impulsive fractional Cohen–Grossberg neural networks: Almost periodicity analysis, Fractal Fractional, 5 (2021), 78. https://doi.org/10.3390/fractalfract5030078 doi: 10.3390/fractalfract5030078
    [30] F. Zhang, Z. Zeng, Multiple Mittag-Leffler stability of delayed fractional-order Cohen–Grossberg neural networks via mixed monotone operator pair, IEEE Trans. Cyber., 51 (2021), 6333–6344. https://doi.org/10.1109/TCYB.2019.2963034 doi: 10.1109/TCYB.2019.2963034
    [31] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fractional Differ. Appl., 1 (2015), 1–13. https://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [32] C. Derbazi, H. Hammouche, Caputo–Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory, AIMS Math., 5 (2020), 2694–2709. https://doi.org/10.3934/math.2020174 doi: 10.3934/math.2020174
    [33] R. Almeida, Caputo–Hadamard fractional derivatives of variable order, Numer. Functional Anal. Optim., 38 (2017), 1–19. https://doi.org/10.1080/01630563.2016.1217880 doi: 10.1080/01630563.2016.1217880
    [34] A. Benkerrouche, M. S. Souid, G. Stamov, I. Stamova, Multiterm impulsive Caputo–Hadamard type differential equations of fractional variable order, Axioms, 11 (2022), 634. https://doi.org/10.3390/axioms11110634 doi: 10.3390/axioms11110634
    [35] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [36] R. Khalil, M. Al-Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [37] H. Kiskinov, M. Petkova, A. Zahariev, M. Veselinova, Some results about conformable derivatives in Banach spaces and an application to the partial differential equations, AIP Conf. Proc., 2333 (2021), 120002. https://doi.org/10.1063/5.0041758 doi: 10.1063/5.0041758
    [38] A. A. Martynyuk, I. M. Stamova, Fractional-like derivative of Lyapunov-type functions and applications to the stability analysis of motion, Electron. J. Differ. Equations, 2018 (2018), 1–12.
    [39] M. Posp${\rm \acute i}$${\rm \breve s}$il, L. Posp${\rm \acute i}$${\rm \breve s}$ilova ${\rm \breve S}$kripkova, Sturm's theorems for conformable fractional differential equation, Math. Commun., 21 (2016), 273–281.
    [40] A. Souahi, A. B. Makhlouf, M. A. Hammami, Stability analysis of conformable fractional-order nonlinear systems, Indagationes Math., 28 (2017), 1265–1274. https://doi.org/10.1016/j.indag.2017.09.009 doi: 10.1016/j.indag.2017.09.009
    [41] A. A. Martynyuk, G. Stamov, I. Stamova, Integral estimates of the solutions of fractional-like equations of perturbed motion, Nonlinear Anal. Modell. Control, 24 (2019), 138–149. https://doi.org/10.15388/NA.2019.1.8 doi: 10.15388/NA.2019.1.8
    [42] D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 903–917. https://doi.org/110.1007/s10092-017-0213-8
    [43] M. Bohner, V. F. Hatipoğlu, Cobweb model with conformable fractional derivatives, Math. Methods Appl. Sci., 41 (2018), 9010–9017. https://doi.org/10.1002/mma.4846 doi: 10.1002/mma.4846
    [44] A. Harir, S. Malliani, L. S. Chandli, Solutions of conformable fractional-order SIR epidemic model, Int. J. Differ. Equations, 2021 (2021), 6636686. https://doi.org/10.1155/2021/6636686 doi: 10.1155/2021/6636686
    [45] W. Xie, C. Liu, W. Z. Wu, W. Li, C. Liu, Continuous grey model with conformable fractional derivative, Chaos Solitons Fractals, 139 (2020), 110285. https://doi.org/10.1016/j.chaos.2020.110285 doi: 10.1016/j.chaos.2020.110285
    [46] S. Sitho, S. K. Ntouyas, P. Agarwal, J. Tariboon, Noninstantaneous impulsive inequalities via conformable fractional calculus, J. Inequalities Appl., 2018 (2018), 261. https://doi.org/10.1186/s13660-018-1855-z doi: 10.1186/s13660-018-1855-z
    [47] G. Stamov, A. Martynyuk, I. Stamova, Impulsive fractional-like differential equations: Practical stability and boundedness with respect to $h-$manifolds, Fractal Fractional, 3 (2019), 50. https://doi.org/10.3390/fractalfract3040050 doi: 10.3390/fractalfract3040050
    [48] J. Tariboon, S. K. Ntouyas, Oscillation of impulsive conformable fractional differential equations, Open Math., 14 (2016), 497–508. https://doi.org/10.1515/math-2016-0044 doi: 10.1515/math-2016-0044
    [49] X. Li, D. Peng, J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
    [50] X. Li, S. Song, J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034. https://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271
    [51] T. Stamov, I. Stamova, Design of impulsive controllers and impulsive control strategy for the Mittag–Leffler stability behavior of fractional gene regulatory networks, Neurocomputing, 424 (2021), 54–62. https://doi.org/10.1016/j.neucom.2020.10.112 doi: 10.1016/j.neucom.2020.10.112
    [52] I. Stamova, G. Stamov, Impulsive control strategy for the Mittag–Leffler synchronization of fractional-order neural networks with mixed bounded and unbounded delays, AIMS Math., 6 (2021), 2287–2303. https://doi.org/10.3934/math.2021138 doi: 10.3934/math.2021138
    [53] G. Stamov, I. Stamova, Extended stability and control strategies for impulsive and fractional neural networks: A review of the recent results, Fractal Fractional, 7 (2023), 289. https://doi.org/10.3390/fractalfract7040289 doi: 10.3390/fractalfract7040289
    [54] G. Ballinger, X Liu, Practical stability of impulsive delay differential equations and applications to control problems, in Optimization Methods and Applications. Applied Optimization (eds. X. Yang, K. L. Teo and L. Caccetta), Springer, (2001), 3–21.
    [55] V. Lakshmikantham, S. Leela, A. A. Martynyuk, Pract. Stab. Nonlinear Syst., 1st edition, World Scientific, Teaneck, 1990. https://doi.org/10.1142/1192
    [56] T. Stamov, Neural networks in engineering design: Robust practical stability analysis, Cybern. Inf. Technol., 21 (2021), 3–14. https://doi.org/10.2478/cait-2021-0039 doi: 10.2478/cait-2021-0039
    [57] Y. Tian, Y. Sun, Practical stability and stabilisation of switched delay systems with non-vanishing perturbations, IET Control Theory Appl., 13 (2019), 1329–1335. https://doi.org/10.1049/iet-cta.2018.5332 doi: 10.1049/iet-cta.2018.5332
    [58] G. Stamov, I. M. Stamova, X. Li, E. Gospodinova, Practical stability with respect to $h$-manifolds for impulsive control functional differential equations with variable impulsive perturbations, Mathematics, 7 (2019), 656. https://doi.org/10.3390/math7070656 doi: 10.3390/math7070656
    [59] G. Stamov, E. Gospodinova, I. Stamova, Practical exponential stability with respect to $h-$manifolds of discontinuous delayed Cohen–Grossberg neural networks with variable impulsive perturbations, Math. Modell. Control, 1 (2021), 26–34. https://doi.org/10.3934/mmc.2021003 doi: 10.3934/mmc.2021003
    [60] A. A. Martynyuk, G. Stamov, I. Stamova, Practical stability analysis with respect to manifolds and boundedness of differential equations with fractional-like derivatives, Rocky Mt. J. Math., 49 (2019), 211–233. https://doi.org/10.1216/RMJ-2019-49-1-211 doi: 10.1216/RMJ-2019-49-1-211
    [61] B. Kosko, Bidirectional associative memories, IEEE Trans. Syst. Cybern., 18 (1988), 49–60. https://doi.org/10.1109/21.87054 doi: 10.1109/21.87054
    [62] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical System Approach to Machine Intelligence, 1st edition, Prentice-Hall, Englewood Cliffs, 1992.
    [63] M. Syed Ali, S. Saravanan, M. E. Rani, S. Elakkia, J. Cao, A. Alsaedi, et al., Asymptotic stability of Cohen–Grossberg BAM neutral type neural networks with distributed time varying delays, Neural Process. Lett., 46 (2017), 991–1007. https://doi.org/10.1007/s11063-017-9622-6 doi: 10.1007/s11063-017-9622-6
    [64] H. Jiang, J. Cao, BAM-type Cohen–Grossberg neural networks with time delays, Math. Comput. Modell., 47 (2008), 92–103. https://doi.org/10.1016/j.mcm.2007.02.020 doi: 10.1016/j.mcm.2007.02.020
    [65] X. Li, Existence and global exponential stability of periodic solution for impulsive Cohen–Grossberg-type BAM neural networks with continuously distributed delays, Appl. Math. Comput., 215 (2009), 292–307. https://doi.org/10.1016/j.amc.2009.05.005 doi: 10.1016/j.amc.2009.05.005
    [66] C. Maharajan, R. Raja, J. Cao, G. Rajchakit, A. Alsaedi, Impulsive Cohen–Grossberg BAM neural networks with mixed time-delays: An exponential stability analysis issue, Neurocomputing, 275 (2018), 2588–2602. https://doi.org/10.1016/j.neucom.2017.11.028 doi: 10.1016/j.neucom.2017.11.028
    [67] T. Stamov, Discrete bidirectional associative memory neural networks of the Cohen–Grossberg type for engineering design symmetry related problems: Practical stability of sets analysis, Symmetry, 14 (2022), 216. https://doi.org/10.3390/sym14020216 doi: 10.3390/sym14020216
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1120) PDF downloads(54) Cited by(3)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog