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Abstract: In this paper, motivated by the advantages of the generalized conformable derivatives,
an impulsive conformable Cohen–Grossberg-type neural network model is introduced. The impulses,
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1. Introduction

The neural network modeling approach in the form of differential equations has been intensively
applied by numerous researchers in different areas of science, engineering and medicine. The
construction of a neuronal network model and its analysis are key goals in many practical
applications. Indeed, the applications of such models include a variety of problems, such as
optimization problems, associative memory, parallel processing, linear and nonlinear programming,
including algorithms, computer vision, pattern recognition and many others [1, 2].

The Cohen–Grossberg-type of neural networks [3] are an important class of neural network models
that are widely used as a framework in the study of partial memory storage and global pattern formation
phenomena [4–6]. Due to its important applications, the properties of different Cohen–Grossberg
neural network models have been intensively studied, including some very recent results [7, 8]. This
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class of neural networks also generalizes some of the essential neural network models, such as Hopfield
neural networks [9] and cellular neural networks [10, 11].

In order to create more adequate neural network models, researchers have generalized and
extended the classical Cohen–Grossberg-type of neural networks in different directions. One line of
generalization relates to the consideration of the affects of impulsive disturbances on their qualitative
behavior. In fact, short-term perturbations are natural for most applications of such neural networks,
and their presence may affect the dynamic properties of the models. The apparatus of impulsive
differential equations [12–14] has been widely applied to develop and investigate impulsive neural
network models. Using the impulsive modeling approach, different classes of impulsive
Cohen–Grossberg neural networks have been proposed [15–17]. The closely related impulsive control
approach [18, 19] has also been examined effectively [20, 21].

The fractional calculus approach has also been applied in the neural network modeling. Indeed,
models with fractional order dynamics generalize the integer-order models and have numerous
advantages, including universality, more flexibility and hereditary properties [22–25]. Numerous
researchers contributed to the development of fractional-order Cohen–Grossberg neural network
models and the study of their properties [26–30].

In the development of the fractional calculus fruitful direction of generalization, the most used
fractional order derivatives are these of the Grunwald–Letnikov, Caputo and Riemann–Liouville types.
Note that there are some restrictions when the above notions are applied to real-world models. Some
of the restrictions are related to their properties and mainly to the nonexistence of a straightforward
rule for the derivatives of compositions of functions. To overcome such difficulties, several researchers
proposed new approaches, such as Caputo–Fabrizio [31], Caputo–Hadamard [32], including variable
fractional order derivatives [33, 34] without singular kernels, and generated new fractional models.

One of the recently applied extended fractional calculus approaches is based on the use of the
conformable or fractional-like derivatives [35, 36] which offer some computational simplifications
related to derivatives of compositions of functions. Some interesting and important results for systems
with conformable derivatives are proposed in [37–40]. Physical interpretations of the conformable
derivatives have been given in [41, 42]. Due to the advantages of such derivatives that are limit based
and follow a very simple chain rule, the conformable calculus begins to be used in the modeling of
several phenomena studied in economics [43], medicine [44] and forecasting [45].

The impulsive generalization is also applied to the conformable calculus approach. However, the
results in this direction are very few and the theory of impulsive conformable systems is still not
completed [46–48]. Also, to our best knowledge, the combined impulsive conformable modeling
approach has not been applied to Cohen–Grossberg neural network models, and this is the main goal of
this article. In fact, the proposed conformable technique seems to be very suitable for neural networks
because of the simplifications in calculations offered.

In practical implementations, the global exponential stability for integer-order models [49, 50] and
Mittag–Leffler stability for models with fractional dynamics [51, 52] are ones of the most important
neural network’s behaviors. Hence, there are numerous results that provided efficient asymptotic
stability, exponential stability and Mittag–Leffler stability criteria for Cohen–Grossberg neural
networks [3, 5–7, 15, 21, 26, 27, 30]. However, there are also cases when the classical asymptotic and
Mittag–Leffler stability strategies cannot be applied [53]. In some of these cases, when the trajectories
of a neural network model are not mathematically stable, but the system behavior is admissible from
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the practical point of view, the concept of practical stability is more relevant [54, 55].
In the past decade, the practical stability concept has been rapidly developed [56, 57], and has been

extended to the practical stability with respect to manifolds notion [58]. Indeed, the practical stability
is useful in many applied systems when the dynamic of the model is contained within particular bounds
during a fixed time interval. In such cases, the global asymptotic notion is not applicable. The practical
stability strategy is also very efficient when a neuronal state is unstable in the classical sense and yet,
state trajectories may oscillate sufficiently near the desired state such that its performance is admissible,
which does not imply stability or convergence of trajectories. In addition, there are many applied
systems that are stable or asymptotically stable in the classical sense, but actually useless in practice
because of the small or inappropriate stability domain or attraction domain. The stability with respect
to manifolds concepts are generalizations of the stability notions for single trajectories and are related
to the study of stability properties of a manifold of states. Such concepts are of considerable interest
to networks capable of approaching not only one steady state. The extended practical stability with
respect to manifolds concept has been applied to integer-order Cohen–Grossberg models in [59] and
to some conformable models [60]. However, there is no one existing result on practical stability with
respect to manifolds for impulsive conformable Cohen–Grossberg neural networks. It is clear that this
task is attractive and important in the analysis of such neural network models.

The main goal of this research is to propose an impulsive conformable Cohen–Grossberg-type
neural network model. Also, the adoption of the practical stability with respect to manifolds notion is
an essential motivation for our study.

The innovations of this article can be described as follows:
(1) We propose a new impulsive conformable Cohen–Grossberg neural network model. The

advantages of the conformable modelling approach can be used in the analysis of the properties of the
introduced model. The impulsive perturbations can also be used to stabilize and control the proposed
model.

(2) We introduce the practical stability with respect to manifolds notion. Using modifications of
the Lyapunov technique, new criteria are proposed, which guarantee the practical stability behavior of
manifolds related to the newly suggested model.

(3) The BAM generalization of the introduced model is analysed, and the corresponding sufficient
conditions for practical stability with respect to manifolds are established.

(4) We verify the efficiency of the established criteria by examples.
The structuring of the rest of the paper pursue the following scheme. In Section 2 some definitions

and lemmas from conformable calculus are given. The conformable impulsive Cohen–Grossberg
neural network model is introduced and the practical stability with respect to manifolds concept is
adopted to it. Some preliminaries related to the Lyapunov functions method are also given. Section 3
is devoted to the main practical stability results established on the basis of a Lyapunov-type analysis.
The case of BAM impulsive conformable Cohen–Grossberg-type neural networks is studied, and
sufficient conditions for the practical exponential stability of the trajectories are proposed in Section 4.
Illustrative examples are elaborated in Section 5. Some concluding comments are stated in Section 6.

Notations: R is the set of all real numbers, the set of all nonnegative real numbers will be denoted
by R+ = [0,∞), Rn denotes the n-dimensional real space with the norm ||y|| =

∑n
ι=1 |yι| of an y ∈ Rn,

y = (y1, y2, . . . , yn)T .
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2. Basic definitions, problem formulation and preliminary results

2.1. Conformable calculus definitions and lemmas

Here, we will present some basic definitions and lemmas related to the conformable calculus. Let
τ0 ∈ R+.

Definition 1. [47, 48] The generalized conformable derivative of order α, 0 < α ≤ 1 for a function
y(t) : [t̃,∞)→ Rn, t̃ ≥ τ0 is defined by

Dαt̃ y(t) = lim
{

y(t + ϕ(t − t̃)1−α) − y(t)
ϕ

, ϕ→ 0
}
.

Let the time instants τ1, τ2, . . . , are such that

τ0 < τ1 < τ2 · · · < τk < τk+1 < . . . , lim
k→∞
τk = ∞

and y(τ+k ) = lim {y(τk + ϕ), ϕ→ 0+}, y(τ−k ) = lim {y(τk − ϕ), ϕ→ 0+}.
For k = 1, 2, . . . , we have [47, 48]

Dατky(τ+k ) = lim
t→τ+k
Dατky(t),

Dατk−1
y(τ−k ) = lim

{
y(τ−k + ϕ(τ

−
k − τk−1)1−α) − y(τ−k )
ϕ

, ϕ→ 0
}
.

Any function that has an α-generalized conformable derivatives for any t ∈ (t̃,∞) is called α-
generalized conformable differentiable on (t̃,∞), and we will denote the set of all such functions by
Cα[(t̃,∞),Rn] [48].

Definition 2. [47] Let y : [t̃,∞) → Rn. The generalized conformable integral of order 0 < α ≤ 1 of y
is given by

Iαt̃ y(t) =

t∫
t̃

(o − t̃)α−1y(o)do.

The following properties of the generalized conformable derivatives and integrals will be applied in
our future analysis [46–48].

Lemma 3. [48] If the function y ∈ Cα[(t̃,∞),R] for 0 < α ≤ 1, then

Iαt̃ (Dαt̃ y(t)) = y(t) − y(t̃), t > t̃.

Lemma 4. [48] Assume that X(y(t)) : (t̃,∞)→ R and 0 < α ≤ 1. If X(·) is differentiable with respect
to y and y ∈ Cα[(t̃,∞),R], then for t ∈ [t̃,∞) and y(t) , 0, we have

Dαt̃ X(y(t)) = X′(y(t))Dαt̃ (y(t)),

where X′ is the derivative of X(·)
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Remark 5. The result represented in Lemma 5 is a simple chain rule which is not applicable for the
classical fractional-order derivatives. More results on the conformable derivatives can be found in
[35–40, 46–48].

Remark 6. To emphasize more advantages of the application of fractional derivatives, we note the
following properties for α ∈ (0, 1] and x, y ∈ Cα[(t̃,∞),R] which follow directly by Definition 1
[35, 36, 41, 48]:

(a) Dαt̃ (ax(t) + by(t)) = aDαt̃ (x(t)) + bDαt̃ (y(t)) for all a, b ∈ R;
(b) Dαt̃ (tp) = ptp−1(t − t̃)1−α for any p ∈ R;
(c) Dαt̃ (x(t)y(t)) = x(t)Dαt̃ (y(t)) + y(t)Dαt̃ (x(t));

(d) Dαt̃

(
x(t)
y(t)

)
=

y(t)Dαt̃ (x(t)) − x(t)Dαt̃ (y(t))
y2(t)

;

(e) Dαt̃ (x(t)) = 0 for any x(t) = λ, where λ is an arbitrary constant.

For the classical fractional derivatives [22–25], including the Riemann-Liouville fractional
derivative

DRL
t̃ x(t) =

d
dt

 1
Γ(1 − α)

t∫
t̃

x(s)
(t − s)α

ds

 ,
where 0 < α < 1 and Γ(z) =

∞∫
0

e−ttz−1dt is the Gamma function, and Caputo fractional derivative

DC
t̃ x(t) =

1
Γ(1 − α)

t∫
t̃

x′(s)
(t − s)α

ds

the properties (b)–(e) do not hold, except for the statement (e) for a fractional derivative of Caputo.
The reason for this is the application of the integral in the known definitions of fractional derivatives.

2.2. The Gohen–Grossberg impulsive conformable neural network model

In this section we propose an impulsive Cohen–Grossberg-type neural network model with
generalized conformable derivatives as follows

Dατkyι(t) = −aι(yι(t))
[
bι(yι(t)) −

n∑
j=1

cι j f j(y j(t)) − Uι(t)
]
, t , τk, k = 0, 1, 2 . . . ,

yι(τ+k ) = yι(τk) + Pιk(yι(τk)), k = 1, 2, . . . ,

(1)

where ι = 1, 2, . . . , n, n ≥ 2 represents the number of the units, yι(t) is the state of the ι-th node at
time t, the functions aι, bι, f j,Uι ∈ C[R,R+] and cι j ∈ R+, ι, j = 1, 2, . . . , n are the system’s parameters
in the continuous part, aι denote the amplification functions, bι are appropriate behaved functions, f j

represent the activation functions, Uι denotes the external bias on the ιth node at time t, cι j represent
the connection weights, yι(τk) = yι(τ−k ) and yι(τ+k ) in the impulsive condition are, respectively, the
neuronal states of the ι-th node before and after an impulsive perturbation at τk and the impulsive
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functions Pιk ∈ C[R,R] represent the effects of the impulse controls on the node yι at τk, ι = 1, 2, . . . , n,
k = 1, 2, . . . .

For τ0 ∈ R+ we define the initial condition corresponding to the model (1) as

y(τ+0 ) = y(τ0) = y0, (2)

where y0 ∈ R
n.

A function φ ∈ Rn that satisfies the system (1) and the initial condition (2) will be called a solution
of the initial value problem (1), (2), and will be denoted by φ(t) = φ(t; τ0, y0), where
φ(t) = (φ1(t), φ2(t), . . . , φn(t))T .

According to the theory of impulsive conformable systems [46–48], the solution φ(t) of the initial
value problem (1), (2) is an α-generalized conformable differentiable function, which is piecewise
continuous with points of discontinuity of the first kind τk, k = 1, 2, . . . , at which it is left continuous.
At the impulsive moments, the functions φ(t) is such that

φι(τ−k ) = φι(τk), φι(τ+k ) = φι(τk) + Pιk(φι(τk)), ι = 1, 2, . . . , n, k = 1, 2, . . . . (3)

The set of all such functions will be denoted by PCα[R+,Rn].
For example, for the solution of an impulsive scalar generalized conformable neural network of the

type 
Dατku(t) = a(t)u(t) − a(t)b(t), t , tk, k = 0, 1, . . . ,

u(τ+k ) = u(τk) + pku(τk), k = 1, 2, . . . ,
(4)

where u ∈ R, a, b ∈ C[R+,R+], pk ∈ R, k = 1, 2, . . . , we obtain

u(t) = u(τ+0 )
k∏

j=1

(1 + p j) exp
{∫ t

τk

a(o)
(o − τk)1−αdo +

k∑
l=1

∫ τl

τl−1

a(o)
(o − τl−1)1−αdo

}

−

∫ t

τk

exp
{∫ t

τk

a(o)
(o − τk)1−αdo −

∫ s

τk

a(s)
(s − τk)1−αds

}
a(o)b(o)

(o − τk)1−αd0

−

k∑
l=1

k∏
j=l

(1 + p j)
∫ τl

τl−1

exp
{∫ t

τk

a(o)
(o − τk)1−αdo −

∫ o

τl−1

a(s)
(s − τl−1)1−αds

+

k∑
m=l

∫ τm

τm−1

a(o)
(o − τm−1)1−αdo

}
a(o)b(o)

(o − τl−1)1−αdo.

We will study some stability properties of the introduced model (1) under the following hypotheses:
H1. The continuous functions aι ∈ R+, ι = 1, 2, . . . , n are such that there exist positive constants aι

and aι for which 1 < aι ≤ aι(χ) ≤ aι for χ ∈ R, and a = min1≤ι≤n aι, a = max1≤ι≤n aι.
H2. The continuous functions bι ∈ R+ are such that there exist constants βι > 0 with

bι(χ) ≥ βι|χ|,

for any χ ∈ R and ι = 1, 2, . . . , n.
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H3. There exist Lipschitz constants L f
j > 0 such that

| f j(χ1) − f j(χ2)| ≤ L f
j |χ1 − χ2|, f j(0) = 0

for all χ1, χ2 ∈ R, j = 1, 2, . . . , n.

Remark 7. The developed Cohen–Grossberg type model (1) with generalized conformable derivatives
is an extension of the existing integer-order neural network models studied in [3, 5]. It also extends
some impulsive models investigated in [15–17, 20, 21] to the conformable setting. Since the concept
of the conformable derivative overcomes some limitations related to the classical fractional-order
derivatives, the introduced model is more suitable for applications than the models considered
in [26, 27, 29, 30]. In addition, considering impulsive perturbations will allow for the application of
efficient impulsive control strategies [18–21, 58, 59].

2.3. Practical stability with respect to manifolds formalism

In order to apply the practical stability with respect to manifolds method [55, 58, 59] to the model
(1), we consider a continuous function H : [τ0,∞) × Rn → Rm, H = (H1,H2, . . . ,Hm)T , m ≤ n which
defines the following (n − m)-dimensional manifold:

MH
t = {y ∈ R

n : H1(t, y) = H2(t, y) = · · · = Hm(t, y) = 0, t ∈ [τ0,∞)}. (5)

The defined above manifold, will be called a H-manifold.
Consider, also

MH
t (ε) = {y ∈ Rn : ||H(t, y)|| < ε, t ∈ [τ0,∞)}, ε > 0,

and adopt the following notions [55–59].

Definition 8. If for given (λ, A) with 0 < λ < A, y0 ∈ M
H
τ0

(λ) implies y(t; τ0, y0) ∈ MH
t (A), t ≥ τ0 for

some τ0 ∈ R+, then the manifoldMH
t is said to be practically stable for the model (1).

Definition 9. If for given (λ, A) with 0 < λ < A, y0 ∈ M
H
τ0

(λ) implies

y(t; τ0, y0) ∈ MH
t (A + µ||H(τ0, y0)||Eα(−δ, t − τ0)), t ≥ τ0, for some τ0 ∈ R+,

where 0 < α < 1, µ, δ > 0, and Eα(ν, o) is the conformable exponential function given as [47]

Eα(ν, o) = exp
(
ν

oα

α

)
, ν ∈ R, o ∈ R+.

then the manifoldMH
t is said to be practically exponentially stable for the model (1).

Remark 10. Definitions 8 and 9 generalize and extend the classical stability notions to the combined
practical stability with respect to manifolds case. The combined setting increases the benefits of both
approaches. In some particular cases, the defined concept can be reduced to simple practical stability
notions that are used widely in the applied problems [60–63]. For example, if the function that defines
the manifold H(t, y) = 0 only for y = 0, then definitions 8 and 9 are the classical definitions of practical
stability and exponential practical stability of the zero solution of the model (1), respectively. Similarly,
if the manifoldMH

t includes only an equilibrium state y∗, i.e., H(t, y∗) = 0, then the above definitions
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are reduced to the practical stability and exponential practical stability definitions of y∗, respectively.
Other particular cases, such as practical stability and exponential practical stability of periodic and
almost periodic solutions can be considered analogously. Thus, the proposed practical stability with
respect to manifolds technique offers a high-powered mechanism which can be applied not only for
single solutions, but also in the cases when manifolds of solutions are attractors for the models. This
technique is also appropriate to investigate such manifolds that are not stable in the classical Lyapunov
sense, but their dynamic is acceptable from the practical point of view [55, 58].

We will also need the following additional hypothesis related to the specifics of the stability with
respect to manifolds concepts.

H4. Each solution y(t; τ0, y0) of the initial value problem (1), (2) such that

||H(t, y(t; τ0, y0))|| ≤ Ω < ∞,

where Ω > 0 is a constant, is defined on [τ0,∞).

2.4. Conformable Lyapunov functions method

Consider the sets Gk = (τk−1, τk) × Rn, k = 1, 2, . . . , G =
⋃∞

k=1Gk.
In the further study, we apply a modified conformable Lyapunov function approach. A class of

Lyapunov-like functions Lατk is defined as [47] a set of functions L(t, y) : G → R+ that are continuous
on G, α-generalized conformable differentiable in t, locally Lipschitz continuous with respect to y on
each of the sets Gk, L(t, 0) = 0 for t ≥ τ0, and for each k = 1, 2, . . . and y ∈ Rn, there exist the finite
limits

L(τ−k , y) = lim
t→τk
t<τk

L(t, y), L(τ+k , y) = lim
t→τk
t>τk

L(t, y),

with L(τ−k , y) = L(τk, y).
For a function L ∈ Lατk , the upper right conformable derivative is defined by [47]

+Dατk L(t, y) = lim sup
{

L(t + ϕ(t − τk)1−α, y(t + ϕ(t − τk)1−α)) − L(t, y)
ϕ

, ϕ→ 0+
}
. (6)

Denote by F(t, y) = (F1(t, y), F2(t, y), . . . , Fn(t, y))T , where y = (y1, y2, . . . , yn)T and

Fι(t, y) = −aι(yι)
[
bι(yι) −

n∑
j=1

cι j f j(y j) − Uι(t)
]

for ι = 1, 2, . . . , n.
Then, the generalized conformable derivative of the function L(t, y) with respect to system (1), (2)

is [47]

+Dατk L(t, y) |(1)= lim sup
{

L(t + ϕ(t − τk)1−α, y + ϕ(t − τk)1−αF(t, y)) − L(t, y)
ϕ

, ϕ→ 0+
}
. (7)

If L(t, y(t)) = L(y(t)), 0 < α ≤ 1, the function L is differentiable on y, and the function y(t) is
α-generalized conformable differentiable on [τ0,∞), then Lemma 4 can applied componentwise.
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It follows from (6) and (7) that

+Dατk L(t, y(t; τk, yk)) =+Dατk L(t, y) |(1),

where yk = y(τ+k ), k = 0, 1, 2, . . . .
For more information about the conformable modifications of the Lyapunov functions approach for

impulsive control models, we refer to [46–48].
The next Lemma from [47] will be also necessary.

Lemma 11. If for the function L ∈ Lατk and for t ∈ [τ0,∞), y ∈ Rn, we have:
(i)

L(τ+k , y) ≤ L(τk, y), k = 1, 2, . . . ,

(ii)
+Dατk L(t, y) ≤ −δL(t, y) + ϱ(t), t , τk, k = 0, 1, . . .

for δ = const > 0, ϱ ∈ Cα[R,R+], then

L(t, y(t)) ≤ L(τ+0 , y0)Eα(−δ, t − τ0) +
∫ t

τk

Wα(t − τk, o − τk)ϱ(o)
(o − τk)1−α do

+

k∑
j=1

k∏
l=k− j+1

Eα(−δ, τl − τl−1)
∫ τk− j+1

τk− j

Wα(t − τk, o − τk− j)ϱ(o)
(o − τk j)1−α do, t ≥ τ0,

where Wα(t − τk, o − τk) = Eα(−δ, t − τk)Eα(δ, o − τk), 0 < α < 1, k = 0, 1, 2, . . . .

3. Main practical stability with respect to manifolds criteria

In this Section, we will apply the modified conformable Lyapunov-function approach to establish
our main practical stability with respect to the manifold MH

t criteria for the conformable impulsive
Cohen–Grossberg neural network model (1).

Theorem 12. Assume that 0 < λ < A, hypotheses H1–H4 hold and:
(i) there exists a function H : [τ0,∞) × Rn → Rm, m ≤ n, such that

||H(t, y)|| ≤ ||y|| ≤ Γ(Ω)||H(t, y)||, (t, y) ∈ [τ0,∞) × Rn, (8)

where Γ = Γ(Ω) is a constant, Γ(Ω) ≥ 1, Γ(Ω)λ < A for any 0 < Ω < ∞;
(ii) the parameters and the impulsive control functions of the impulsive conformable

Cohen–Grossberg neural network model (1) satisfy:

min
1≤ι≤n

(
aιβι − aιL f

ι

n∑
j=1

c jι

)
> 0, (9)

Uι(t) = 0, t ∈ [τ0,∞), ι = 1, 2, . . . , n, (10)

Pιk(yι(τk)) = −γιkyι(τk), 0 ≤ γιk ≤ 2, ι = 1, 2, . . . , n, k = 1, 2, . . . . (11)

Then, the manifoldMH
t is practically stable for the model (1).
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Proof. For the given 0 < λ < A and y0 ∈ R
n let suppose that y0 ∈ M

H
τ0

(λ) and consider the solution
y(t; τ0, y0) of the impulsive conformable Cohen–Grossberg model (1) corresponding to the initial
condition (2).

We construct a Lyapunov-type function as

L1(t, y) = ||y(t)|| =
n∑
ι=1

|yι(t)|. (12)

From condition (11) of Theorem 12, at the impulsive control instants t = τk, k = 1, 2, . . . , we have:

L1(τ+k , y(τ+k )) =
n∑
ι=1

|yι(τk) + Pιk(yι(τk))| =
n∑
ι=1

|1 − γιk||yι(τk)|

≤

n∑
ι=1

|yι(τk)| = L1(τk, y(τk)), (13)

for k = 1, 2, . . . .
From H1-H3 and conditions (9) and (10) of Theorem 12, for t , τk, k = 0, 1, 2, . . . , we obtain:

+Dατk L1(t, y(t)) ≤
n∑
ι=1

[
− aιβι|yι(t)| + aι

n∑
j=1

ci jL
f
j |yι(t)|

]

≤ − min
1≤ι≤n

(
aιβι − aιL f

ι

n∑
j=1

c jι

)
L1(t, y(t)) ≤ 0. (14)

Now, from (13) and (14), according to Lemma 11 for δ = ϱ(t) = 0, t ∈ [τ0,∞), we have

L1(t, y(t; τ0, y0)) ≤ L1(τ+0 , y0), t ≥ τ0.

Hence, from condition (8) of Theorem 12, we obtain

||H(t, y(t; τ0, y0))|| ≤ ||y(t; τ0, y0)|| ≤ ||y0|| ≤ Γ(Ω)||H(t, y0)|| < Γ(Ω)λ < A, (15)

and, therefore, the manifoldMH
t is practically stable for the model (1). □

Next, criteria for the practical exponential stability of the manifoldMH
t for the model (1) will be

presented.

Theorem 13. Assume that 0 < λ < A, hypotheses H1–H4 hold and:
(i) there exists a function H : [τ0,∞) × Rn → Rm, m ≤ n, which satisfies (8) for Γ(Ω) ≥ 1 any

0 < Ω < ∞;
(ii) condition (11) of Theorem 12 holds and there exists a positive δ1 such that

min
1≤ι≤n

(
aιβι − aιL f

ι

n∑
j=1

c jι

)
≥ δ1 > 0, (16)
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and

V1(t) =
∫ ∞

τ0

Wα(t − τk, o − τk)
(o − τ0)1−α

n∑
ι=1

aιUι(o)do

+

k∑
j=1

k∏
l=k− j+1

Eα(−δ, τl − τl−1)
∫ τk− j+1

τk− j

Wα(t − τk, o − τk− j)
(o − τk j)1−α

n∑
ι=1

aιUι(o)do < ∞. (17)

Then the manifoldMH
t is practically exponentially stable for the model (1).

Proof. For the given 0 < λ < A and y0 ∈ R
n let again suppose that y0 ∈ M

H
τ0

(λ) and consider the
solution y(t; τ0, y0) of the impulsive conformable Cohen–Grossberg model (1) corresponding to the
initial condition (2). Without loss generality, we can consider 1 < λ < V1(t) < A, t ∈ [τ0,∞).

Consider again the Lyapunov-type function (12).
Following the same reasoning as in the proof of Theorem 12, at the impulsive control instants t = τk,

k = 1, 2, . . . , we obtain (13).
Using H1–H3 and conditions (16) of Theorem 13, for t , τk, k = 0, 1, 2, . . . , we have

+Dατk L1(t, y(t)) ≤
n∑
ι=1

[
− aιβι|yι(t)| + aι

n∑
j=1

ci jL
f
j |yι(t)| + aιUι(t)

]

≤ − min
1≤ι≤n

(
aιβι − aιL f

ι

n∑
j=1

c jι

)
L1(t, y(t)) +

n∑
ι=1

aιUι(t) ≤ −δ1L1(t, y(t)) + ϱ1(t), (18)

where ϱ1(t) =
∑n
ι=1 aιUι(t).

Now, from (13) and (18), using again Lemma 11, we have

L1(t, y(t; τ0, y0)) ≤ L1(τ+0 , y0)Eα(−δ1, t − τ0) + V1(t), t ≥ τ0.

Hence, from condition (i) of Theorem 13 and (17), and from the choice of the function L1 ∈ L
α
k
, we

have
||H(t, y(t; τ0, y0))|| ≤ L1(t, y(t; τ0, y0))

< A + Γ(Ω)||H(τ+0 , y0)||Eα(−δ1, t − τ0), t ≥ τ0.

Therefore,

y(t; τ0, y0) ∈ MH
t (A + Γ(Ω)||H(τ0, y0)||Eα(−δ1, t − τ0), t ≥ τ0, for some τ0 ∈ R+,

which implies that the manifoldMH
t is practically exponentially stable for the model (1). □

In the next result, we will use a different Lyapunov function in order to establish more relaxed
sufficient conditions for the parameters in the continuous part of model (1). The price is, more
restrictive conditions for the jump functions.

Theorem 14. Assume that 0 < λ < A, hypotheses H1–H4 hold and:
(i) there exists a function H : [τ0,∞) × Rn → Rm, m ≤ n, such that

||H(t, y)|| ≤
n∑
ι=1

∫ yι(t)

0

sgn(o)
aι(o)

do ≤ Γ(Ω)||H(t, y)||, (t, y) ∈ [τ0,∞) × Rn, (19)
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where Γ(Ω) ≥ 1 for any 0 < Ω < ∞;
(ii) there exists a positive δ such that the parameters and the impulsive control functions of the

impulsive conformable Cohen–Grossberg neural network model (1) satisfy:

a min
1≤ι≤n

(
βι − L f

ι

n∑
j=1

c jι

)
≥ δ > 0, (20)

Pιk(yι(τk)) = −ηιkyι(τk), |1 − ηιk| ≤
a
a
, ι = 1, 2, . . . , n, k = 1, 2, . . . , (21)

and

V(t) =
∫ ∞

τ0

Wα(t − τk, o − τk)
(o − τ0)1−α

n∑
ι=1

Uι(o)do

+

k∑
j=1

k∏
l=k− j+1

Eα(−δ, τl − τl−1)
∫ τk− j+1

τk− j

Wα(t − τk, o − τk− j)
(o − τk j)1−α

n∑
ι=1

Uι(o)do < ∞. (22)

Then the manifoldMH
t is practically exponentially stable for the model (1).

Proof. Let 0 < λ < A. No generality is lost by making the assumption 1 < λ < U(t) < A, t ∈ [τ0,∞).
We construct a new Lyapunov-type function as

L(t, y) =
n∑
ι=1

∫ yι(t)

0

sgn(o)
aι(o)

do, (23)

for which, we have
1
a
||y(t)|| ≤ L(t, y(t)) ≤

1
a
||y(t)||, t ∈ [τ0,∞) (24)

for any solution y(t) = y(t; τ0, y0) of the impulsive conformable Cohen–Grossberg model (1)
corresponding to the initial condition (2) with y0 ∈ M

H
τ0

(λ).
From (21) and (24), at the impulsive control instants t = τk, k = 1, 2, . . . , we have:

L(τ+k , y(τ+k )) ≤
1
a
||y(τ+k )|| =

1
a

n∑
ι=1

|yι(τk) + Pιk(yι(τk))|

=
1
a

n∑
ι=1

|1 − ηιk||yι(τk)| ≤
1
a

n∑
ι=1

|yι(τk)| =
1
a
||y(τk)|| ≤ L(τk, y(τk)), (25)

for k = 1, 2, . . . .
Using H1–H3, (20) and (24) from the choice of the function L ∈ Lα

k
for t , τk, k = 0, 1, 2, . . . , we

have
+Dατk L(t, y(t)) ≤

n∑
ι=1

[
− βι|yι(t)| +

n∑
j=1

ci jL
f
j |yι(t)| + Uι(t)

]
≤ − min

1≤ι≤n

(
βι − L f

ι

n∑
j=1

c jι

)
||y(t)|| +

n∑
ι=1

Uι(t)
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≤ −a min
1≤ι≤n

(
βι − L f

ι

n∑
j=1

c jι

)
L(t, y(t)) +

n∑
ι=1

Uι(t) ≤ −δL(t, y(t)) + ϱ(t), (26)

where ϱ(t) =
∑n
ι=1 Uι(t).

Now, from (25) and (26), using again Lemma 11, we have

L(t, y(t; τ0, y0)) ≤ L(τ+0 , y0)Eα(−δ, t − τ0) + V(t), t ≥ τ0.

Hence, from condition (i) of Theorem 14 and (22), we have

||H(t, y(t; τ0, y0))|| ≤ L(t, y(t; τ0, y0))

< A + Γ(Ω)||H(τ+0 , y0)||Eα(−δ, t − τ0), t ≥ τ0.

Therefore,

y(t; τ0, y0) ∈ MH
t (A + Γ(Ω)||H(τ0, y0)||Eα(−δ, t − τ0), t ≥ τ0, for some τ0 ∈ R+,

which implies that the manifoldMH
t is practically exponentially stable for the model (1). □

Following the same steps as in the proof of Theorem 14, we can establish the following practical
stability criteria.

Corollary 15. If in Theorem 14 condition (20) is replaced by

a min
1≤ι≤n

(
βι − L f

ι

n∑
j=1

c jι

)
> 0 (27)

and condition (22) is replaced by condition (10) of Theorem 12, then the manifoldMH
t is practically

stable for the model (1).

Remark 16. The results in this section generalize and extend many existing stability results for integer-
order Cohen–Grossberg neural network models [3–8], impulsive Cohen–Grossberg neural network
models [15–17], as well as, Cohen–Grossberg neural network models with classical fractional-order
derivatives [26,27,29,30] to the generalized impulsive conformable setting. Also, since the concept of
practical stability with respect to manifolds is more general, results on practical stability, stability with
respect to manifolds, stability and practical stability of a single solution can be obtained as corollaries.
Thus, the proposed results are very general and include many particular stability notions. For example,
if in Definition 9, A = 0 and the manifoldMH

t consists only of a single solution y∗, Theorems 13 and
14 offered criteria for exponential stability of the solution y∗ of the impulsive conformable Cohen–
Grossberg neural network model (1).

Remark 17. The proposed stability of manifold results are also consistent with the results in the
pioneering work of Cohen and Grossberg [3], where models capable of approaching infinitely many
equilibrium points in response to arbitrary initial data, have been considered.
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Remark 18. The impulsive functions Pιk, ι = 1, 2, . . . , n, k = 1, 2, . . . are the impulsive control
functions in the introduced model (1). The suitable choice of these functions is crucial for the
elaboration of effective impulsive control strategies that can be applied to the trajectories of the model
to control their stability properties. Hence, our results contribute to the development of this direction
of research. Indeed, the impulsive conformable Cohen–Grossberg neural network model (1) can be
considered as a closed-loop control system represented as

Dατkyι(t) = −aι(yι(t))
[
bι(yι(t)) −

n∑
j=1

cι j f j(y j(t)) − Uι(t)
]
+ uι(t), t > τ0,

where

uι(t) =
∞∑

k=1

Pιk(yι(t))δ(t − τk), ι = 1, 2, ..., n

is the control input, δ(t) is the Dirac impulsive function. The controller u(t) = (u1(t), ..., un(t))T has an
effect on sudden change of the states of (1) at the time instants τk where each state yι(t) changes from
the position yι(τk) into the position yι(τ+k ), Pιk are the functions that characterize the magnitudes of the
impulse effects on the units yι at the moments τk, i.e., u(t) is an impulsive control of the conformable
model without impulses

Dατkyι(t) = −aι(yι(t))
[
bι(yι(t)) −

n∑
j=1

cι j f j(y j(t)) − Uι(t)
]
, t > τ0.

Therefore, our stability results also presents a general design method of impulsive control law u(t) for
the impulse free conformable Cohen–Grossberg neural network model. The constants γιk in condition
(ii) of Theorem 12 characterize the control gains of synchronizing impulses. Hence, our results can
be used to design impulsive control law under which the controlled neural networks of type (1) are
practically (practically exponentially) synchronized onto systems without impulses.

4. Impulsive conformable BAM Cohen–Grossberg neural networks

BAM neural networks have attracted an increased interest of numerous researchers since their
introduction by Kosko [61, 62], due mainly to their important applications in many areas. Some
typical applications are related to associative phenomena in two-layer hetero-associative circuits
existing in biology, medicine, engineering and computer sciences.

Significant progress has been made in the theory and applications of different classes of
integer-order BAM Cohen–Grossberg neural networks [63, 64], including impulsive
models [21, 65, 66]. A practical stability analysis has also been proposed for some integer-order BAM
Cohen–Grossberg neural network models [67].

Correspondingly, there are not reported results in the existing literature on BAM Cohen–Grossberg
neural networks with conformable derivatives. In this Section, we will propose results on practical
stability of such models with respect to manifolds as corollaries of the results offered in Section 3.

We consider the following BAM Cohen–Grossberg neural network model with conformable
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derivatives

Dατkyι(t) = −aι(yι(t))
[
bι(yι(t)) −

N∑
j=1

c∗jι f
∗
j (z j(t)) − Uι(t)

]
, t , τk, k = 0, 1, 2 . . . ,

Dατkz j(t) = −a∗j(z j(t))
[
b∗j(z j(t)) −

n∑
ι=1

cι j fι(yι(t)) − U∗j (t)
]
, t , τk, k = 0, 1, 2 . . . ,

yι(τ+k ) = yι(τk) + Pιk(yι(τk)), k = 1, 2, . . . ,

z j(τ+k ) = z j(τk) + P∗jk(z j(τk)), k = 1, 2, . . . ,

(28)

where t ≥ τ0, yι(t) and z j(t) represent the states of the ιth neuron in the first Y layer and jth neuron in
the second Z-layer, respectively, at time t, f j, f ∗ι are the activation functions, aι, a∗j represent the
amplification functions, bι, b∗j denote well behaved functions, c jι, c∗ι j are the connection weights, the
continuous functions Uι, U∗j are external inputs, ι = 1, 2, . . . , n, j = 1, 2, . . . ,N. The impulsive
functions Pιk, P∗jk ∈ C[R,R] represent the effects of the impulse controls on the nodes yι and z j,
respectively, at τk, ι = 1, 2, . . . , n, j = 1, 2, . . . ,N, k = 1, 2, . . . .

Following the definitions of solutions of the one layer Cohen–Grossber model (1) will denote by
u(t), u(t) = (y(t), z(t)), where y(t) = y(t; τ0, y0), z(t) = z(t; τ0, z0) the solution of the BAM neural
network model (28) that satisfies the initial conditions:

y(τ+0 ) = y(τ0) = y0, z(τ+0 ) = z(τ0) = z0, (29)

where y0 ∈ R
n, z0 ∈ R

N and u0 = (y0, z0) ∈ Rn+N .
We will apply the practical stability notion with respect to a H∗-manifold

MH∗
t = {u ∈ R

n+N : H∗1(t, u) = H∗2(t, u) = · · · = H∗m(t, u) = 0, t ∈ [τ0,∞)} (30)

defined by a function H∗ = H∗(t, u), H∗ : [τ0,∞) × Rn+N → Rm, using the following definition.

Definition 19. The manifoldMH∗
t is called practically exponentially stable for the model (28) if given

(λ, A) with 0 < λ < A, u0 ∈ M
H∗
τ0

(λ) implies

u(t; τ0, u0) ∈ MH∗
t (A + µ||H∗(τ0, u0)||Eα(−δ, t − τ0)), t ≥ τ0, for some τ0 ∈ R+,

where 0 < α < 1, µ, δ > 0.

For the BAM neural network model (28) we can use the demonstrated Lyapunov function approach
in Section 3, and obtain similar results. For example, as a corollary of Theorem 14, we can establish
the following practical exponential stability criteria for the manifoldMH∗

t of the system (28).

Theorem 20. Assume that 0 < λ < A, hypotheses H1–H4 and conditions (20), (21) of Theorem 14
hold and:

(i) the continuous functions a∗j ∈ R+, j = 1, 2, . . . ,N are such that there exist positive constants a∗j
and a∗j for which 1 < a∗j ≤ a∗j(χ) ≤ a∗j for χ ∈ R, and a∗ = min1≤ j≤N a∗j, a∗ = max1≤ j≤N a∗j;
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(ii) the continuous functions b∗j ∈ R+ are such that there exist constants β∗j > 0 with

b∗j(χ) ≥ β
∗
j |χ|,

for any χ ∈ R and j = 1, 2, . . . ,N;
(iii) there exist Lipschitz constants L f ∗

j > 0 such that

| f ∗j (χ1) − f ∗j (χ2)| ≤ L f ∗

j |χ1 − χ2|, f ∗j (0) = 0

for all χ1, χ2 ∈ R, j = 1, 2, . . . ,N;
(iv) there exists a function H∗ : [τ0,∞) × Rn+N → Rm, m ≤ n, such that

||H∗(t, u)|| ≤
n∑
ι=1

∫ yι(t)

0

sgn(o)
aι(o)

do +
N∑

j=1

∫ z j(t)

0

sgn(o)
a∗j(o)

do

≤ Γ(Ω)||H∗(t, u)||, (t, u) ∈ [τ0,∞) × Rn+N ,

where Γ(Ω) ≥ 1 for any 0 < Ω < ∞;
(v) each solution u(t) = (y(t), z(t)), y(t) = y(t; τ0, y0), z(t) = z(t; τ0, z0), of the initial value problem

(28), (29) such that
||H∗(t, u(t))|| ≤ Ω < ∞

is defined on [τ0,∞);
(vi) there exists a positive δ∗ such that the parameters and the impulsive control functions of the

impulsive conformable Cohen–Grossberg neural network model (28) satisfy:

a∗ min
1≤ j≤N

(
β∗j − L f ∗

j

n∑
ι=1

c∗ι j
)
≥ δ∗ > 0, (31)

P∗jk(z j(τk)) = −η∗jkz j(τk), |1 − η∗jk| ≤
a∗

a∗
, j = 1, 2, . . . ,N, k = 1, 2, . . . , (32)

and

S (t) =
∫ ∞

τ0

Wα(t − τk, o − τk)
(o − τ0)1−α

 n∑
ι=1

Uι(o) +
N∑

j=1

U∗j (o)

 do

+

k∑
j=1

k∏
l=k− j+1

Eα(−δ, τl − τl−1)
∫ τk− j+1

τk− j

Wα(t − τk, o − τk− j)
(o − τk j)1−α

 n∑
ι=1

Uι(o) +
N∑

j=1

U∗j (o)

 do < ∞. (33)

Then the manifoldMH∗
t is practically exponentially stable for the model (28).

Remark 21. As a Corollary of Theorem 14, Theorem 20 proposes criteria for practical exponential
stability of a manifold for the BAM impulsive conformable Cohen–Grossberg model (28). Similarly,
criteria for practical stability of the manifoldMH∗

t can be established as a Corollary of Theorem 12.
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5. Illustrative examples

In this section, examples are constructed to illustrate the usefulness of the proposed results.

Example 22. We consider the 2-dimensional impulsive Cohen–Grossberg-type neural network model
with generalized conformable derivatives

Dαtky1(t) = −a1(y1(t))
[
b1(y1(t)) −

2∑
j=1

c1 j f j(y j(t)) − U1(t)
]
, t , τk, k = 0, 1, 2 . . . ,

Dαtky2(t) = −a2(y2(t))
[
b2(y2(t)) −

2∑
j=1

c2 j f j(y j(t)) − U2(t)
]
, t , τk, k = 0, 1, 2 . . . ,

y1(τ+k ) =
y1(tk)

8
, k = 1, 2, . . . , y2(τ+k ) =

y2(tk)
6
, k = 1, 2, . . . ,

(34)

where α = 0.98, t > 0, 0 = τ0 < τ1 < τ2 < . . . , k = 1, 2, . . . , lim
k→∞
τk = ∞, f j(y j) =

1
2

(
|y j + 1| − |y j − 1|

)
,

U1(t) = sin t, U2(t) = 1, b1(y1) = 3y1, b2(y2) = 2y2,

(ci j) =
(

c11 c12

c21 c22

)
=

(
1.5 1.1
1.3 0.1

)
.

(A) If in the model (34), we have a1(y1) = 2 − 0.5 sin(y1), a2(y2) = 2 − 0.6 cos(y2), then hypotheses
H1–H3 are satisfied for

a1 = 1.5, a1 = 2.5, a2 = 1.4, a2 = 2.6, a = 1.4, a = 2.6,

β1 = 3, β2 = 2, L f
1 = L f

2 = 1.

Also, conditions (20), (21) and (22) of Theorem 14 are satisfied for

a min
1≤ι≤2

(
βι − L f

ι

2∑
j=1

c jι

)
= 0.56 ≥ δ > 0,

|1 − η1k| =
1
8
= 0.125 ≤

a
a
= 0.538, |1 − η12k| =

1
6
= 0.167 ≤

a
a
= 0.538, k = 1, 2, . . . ,

and ϱ(t) = 1 + sin t.
If we consider a manifold

MH
t = {y ∈ R

2 : H1 = H2 = 0}, (35)

containing the zero solution y∗ = (0, 0)T of the model (34), defined by a function H : R2 → R2,
H = (H1,H2)T , then according to Theorem 14 the manifold (35) is practically exponentially stable for
the model (34). The graphs of the trajectories of the model (34) with corresponding fixed τk are shown
in Figure 1.
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Note that for the particular choice of the parameters, condition (16) of Theorem 13 is not satisfied,
since

min
1≤ι≤2

(
aιβι − aιL f

ι

2∑
j=1

c jι

)
= −2 < 0.

Hence, the criteria provided by Theorem 13 for the parameters in the continuous part are more
restrictive.

(B) If in the model (34), we have a1(y1) = a2(y2) = 1.4, then, hypotheses H1–H3 are satisfied for

a1 = a1 = a2 = a2 = a = a = 1.4,

β1 = 3, β2 = 2, L f
1 = L f

2 = 1.

In this case, conditions of Theorem 13 and Theorem 14 are satisfied for δ = δ1 = 0.56 > 0.
Therefore, the practical exponential stability of the manifold (35) can be provided by either one of the
results.

(C) If in the model (34), we have
η1k = 0.3,

then condition (21) of Theorem 14 is not satisfied, however, condition (11) of Theorem 12 holds.
Hence, in this case we can make some conclusions about the practical exponential behavior of the
manifold (35) only by means of Theorem 12.

In addition, if
ηιk = −1, ι = 1, 2, k = 1, 2, . . . ,

then no one of the conditions about the impulsive functions in theorems 13 and 14 are not true, and we
cannot make any conclusion about the practical exponential behavior of the manifold (35).

 

Figure 1. The graphs of the practically exponentially stable trajectories of the model (34)
for y0 = (y01, y02)T = (12, 12)T and corresponding fixed τk: (a) the trajectory of y1(t); (b) the
trajectory of y2(t).
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Remark 23. The demonstrated Example 22 illustrates the validity of theorems 13 and 14 for practical
exponential stability of a manifold with respect to an impulsive conformable Cohen–Grossberg neural
network model of the type (1). Similar demonstration for the practical stability behavior can be
provided for a particular choice of the model’s parameters. We show that the conditions for the
parameters in the continuous part in Theorem 14 are more relaxed than these in Theorem 13. Also,
we demonstrate that the choice of the impulsive functions is very important to control the practical
stability behavior of manifolds related to models of type (1).

Example 24. Consider the BAM Cohen–Grossberg impulsive conformable neural network model (28)
with n = N = 2, α = 0.93, where t > 0,

y(t) =


y1(t)

y2(t)

 , z(t) =


z1(t)

z2(t)

 , U1 = U2 = U∗1 = U∗2 = 1,

a1(y1) = a2(y2) = a∗1(z1) = a∗2(z2) = 1.1, bι(yι) = 4yι, b∗j(z j) = 4z j,

fι(yι) =
|yι + 1| − |yι − 1|

2
, f ∗j (z j) =

|z j + 1| − |z j − 1|
2

, ι = 1, 2, j = 1, 2,

(cι j)2×2 =

(
c11 c12

c21 c22

)
=

(
1.3 1.5
1.1 1.4

)
, (c∗jι)2×2 =

(
c∗11 c∗12
c∗21 c∗22

)
=

(
1.4 1.3
1.2 1.1

)
,

with impulsive perturbations of the type

y(τ+k ) − y(τk) =
(
−1 + 1

3k 0
0 −1 + 1

3k

)
y(τk), k = 1, 2, . . . ,

z(τ+k ) − z(τk) =
(
−1 + 1

4k 0
0 −1 + 1

4k

)
z(τk), k = 1, 2, . . . ,

(36)

0 = τ0 < τ1 < τ2 < . . . , k = 1, 2, . . . , lim
k→∞
τk = ∞.

We can verify that all assumptions of Theorem 20 are satisfied for

L f
1 = L f

2 = 1, L f ∗

1 = L f ∗

2 = 1, β1 = β2 = β
∗
1 = β

∗
2 = 4,

a1 = a1 = a2 = a2 = a = a = 1.1
a∗1 = a∗1 = a∗2 = a∗2 = a∗ = a∗ = 1.1,

δ = 1.32, δ∗ = 1.43, ηιk = 1 −
1
3k
, η∗jk = 1 −

1
4k
, ι, j = 1, 2, k = 1, 2, . . . .

Therefore, according to Theorem 20, we conclude that the manifold

MH∗
t = {u ∈ R

4 : H1 = H2 = H3 = H4 = 0}, (37)

defined by a function H∗ : R4 → R4, H∗ = (H∗1,H
∗
2,H

∗
3,H

∗
4)T = (y1 − y∗1, y2 − y∗2, z1 − z∗1, z2 − z∗2)T , where

u∗ = (y∗1, y
∗
2, z
∗
1, z
∗
2)T is a solution of the model (28), is practically exponentially stable for the model

(28).
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6. Concluding comments

In this paper, using the impulsive generalization of the conformable calculus approach, an
impulsive conformable Cohen–Grossberg neural network model is proposed. The introduced model
extends and complements numerous existing integer-order Cohen–Grossberg neural network
models [3–8], impulsive Cohen–Grossberg neural network models [15–17] as well as
Cohen–Grossberg neural network models with classical fractional-order derivatives [26, 27, 29, 30] to
the generalized impulsive conformable setting. The proposed model possesses the flexibility of the
fractional-order models. Moreover, since the conformable derivatives simplify the computational
procedures, it overcomes some limitations existing in the applications of the classical fractional-order
problems. We adopt the combined concept of practical stability with respect to manifolds to the
introduced model. Using a Lyapunov-based analysis, sufficient conditions are derived to ensure the
practical stability and practical exponential stability with respect to manifolds. The case of BAM
impulsive conformable Cohen–Grossberg neural network models is also studied to contribute to the
development of the stability and control theories. Two illustrative examples are given to demonstrate
the effectiveness of the contributed results. The application of the proposed conformable calculus
approach to more neural network models is an interesting and challenging topic for future research.
Also, it is possible to extend the proposed results to the delayed case and study the delay effects on the
qualitative behavior of the neuronal states. In fact, delay effects are unavoidable in most of the
neuronal network models. In addition, time delays, also known as transmission delays, may affect the
dynamical properties of neural networks.
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