Review Special Issues

Artificial intelligence techniques for ground fault line selection in power systems: State-of-the-art and research challenges

  • Received: 28 April 2023 Revised: 23 June 2023 Accepted: 26 June 2023 Published: 04 July 2023
  • In modern power systems, efficient ground fault line selection is crucial for maintaining stability and reliability within distribution networks, especially given the increasing demand for energy and integration of renewable energy sources. This systematic review aims to examine various artificial intelligence (AI) techniques employed in ground fault line selection, encompassing artificial neural networks, support vector machines, decision trees, fuzzy logic, genetic algorithms, and other emerging methods. This review separately discusses the application, strengths, limitations, and successful case studies of each technique, providing valuable insights for researchers and professionals in the field. Furthermore, this review investigates challenges faced by current AI approaches, such as data collection, algorithm performance, and real-time requirements. Lastly, the review highlights future trends and potential avenues for further research in the field, focusing on the promising potential of deep learning, big data analytics, and edge computing to further improve ground fault line selection in distribution networks, ultimately enhancing their overall efficiency, resilience, and adaptability to evolving demands.

    Citation: Fuhua Wang, Zongdong Zhang, Kai Wu, Dongxiang Jian, Qiang Chen, Chao Zhang, Yanling Dong, Xiaotong He, Lin Dong. Artificial intelligence techniques for ground fault line selection in power systems: State-of-the-art and research challenges[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 14518-14549. doi: 10.3934/mbe.2023650

    Related Papers:

  • In modern power systems, efficient ground fault line selection is crucial for maintaining stability and reliability within distribution networks, especially given the increasing demand for energy and integration of renewable energy sources. This systematic review aims to examine various artificial intelligence (AI) techniques employed in ground fault line selection, encompassing artificial neural networks, support vector machines, decision trees, fuzzy logic, genetic algorithms, and other emerging methods. This review separately discusses the application, strengths, limitations, and successful case studies of each technique, providing valuable insights for researchers and professionals in the field. Furthermore, this review investigates challenges faced by current AI approaches, such as data collection, algorithm performance, and real-time requirements. Lastly, the review highlights future trends and potential avenues for further research in the field, focusing on the promising potential of deep learning, big data analytics, and edge computing to further improve ground fault line selection in distribution networks, ultimately enhancing their overall efficiency, resilience, and adaptability to evolving demands.



    加载中


    [1] R. Usman, P. Mirzania, S. W. Alnaser, P. Hart, C. Long, Systematic review of demand-side management strategies in power systems of developed and developing countries, Energies, 15 (2022), 7858. https://doi.org/10.3390/en15217858 doi: 10.3390/en15217858
    [2] Y. Shi, H. Li, X. Fu, R. Luan, Y. Wang, N. Wang, et al., Self-powered difunctional sensors based on sliding contact-electrification and tribovoltaic effects for pneumatic monitoring and controlling, Nano Energy, 110 (2023), 108339. https://doi.org/10.1016/j.nanoen.2023.108339 doi: 10.1016/j.nanoen.2023.108339
    [3] Y. Shi, L. Li, J. Yang, Y. Wang, S. Hao, Center-based transfer feature learning with classifier adaptation for surface defect recognition, Mech. Syst. Signal Process., 188 (2023), 110001. https://doi.org/10.1016/j.ymssp.2022.110001 doi: 10.1016/j.ymssp.2022.110001
    [4] J. P. Lopes, N. Hatziargyriou, J. Mutale, P. Djapic, N. Jenkins, Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities, Electr. Power Syst. Res., 77 (2007), 1189–1203. https://doi.org/10.1016/j.epsr.2006.08.016 doi: 10.1016/j.epsr.2006.08.016
    [5] P. Dondi, D. Bayoumi, C. Haederli, D. Julian, M. Suter, Network integration of distributed power generation, J. Power Sources, 106 (2002), 1–9. https://doi.org/10.1016/S0378-7753(01)01031-X doi: 10.1016/S0378-7753(01)01031-X
    [6] B. G. De Soto, B. T. Adey, Preliminary resource-based estimates combining artificial intelligence approaches and traditional techniques, Procedia Eng., 164 (2016), 261–268. https://doi.org/10.1016/j.proeng.2016.11.618 doi: 10.1016/j.proeng.2016.11.618
    [7] A. E. L. Rivas, T. Abrao, Faults in smart grid systems: Monitoring, detection and classification, Electr. Power Syst. Res., 189 (2020), 106602. https://doi.org/10.1016/j.epsr.2020.106602 doi: 10.1016/j.epsr.2020.106602
    [8] D. Wang, X. Wang, Y. Zhang, L. Jin, Detection of power grid disturbances and cyber-attacks based on machine learning, J. Inf. Secur. Appl., 46 (2019), 42–52. https://doi.org/10.1016/j.jisa.2019.02.008 doi: 10.1016/j.jisa.2019.02.008
    [9] A. K. Jain, J. Mao, K. M. Mohiuddin, Artificial neural networks: A tutorial, Comput., 29 (1996), 31–44. https://doi.org/10.1109/2.485891 doi: 10.1109/2.485891
    [10] J. Xie, L. Zhang, L. Duan, J. Wang, On cross-domain feature fusion in gearbox fault diagnosis under various operating conditions based on transfer component analysis, in Proc. IEEE Int. Conf. Prognost. Health Manage., IEEE, 2016, 1–6. https://doi.org/10.1109/ICPHM.2016.7542845
    [11] R. Janarthanan, R. U. Maheshwari, P. K. Shukla, P. K. Shukla, S. Mirjalili, M. Kumar, Intelligent detection of the pv faults based on artificial neural network and type 2 fuzzy systems, Energies, 14 (2021), 6584. https://doi.org/10.3390/en14206584 doi: 10.3390/en14206584
    [12] A. Mellit, S. Kalogirou, Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions, Renew. Sust. Energy Rev., 143 (2021), 110889. https://doi.org/10.1016/j.rser.2021.110889 doi: 10.1016/j.rser.2021.110889
    [13] P. Dehghanian, S. Aslan, P. Dehghanian, Maintaining electric system safety through an enhanced network resilience, IEEE Trans. Ind. Appl., 54 (2018), 4927–4937. https://doi.org/10.1109/TIA.2018.2828389 doi: 10.1109/TIA.2018.2828389
    [14] M. Mitolo, R. Musca, G. Zizzo, A cost-effective solution for clearing high-impedance ground faults in overhead low-voltage lines, IEEE Trans. Ind. Appl., 55 (2018), 1208–1213. https://doi.org/10.1109/TIA.2018.2884927 doi: 10.1109/TIA.2018.2884927
    [15] P. Velmurugan, A. B. Chattopadhayay, Sensitivity analysis of a single phase to ground fault system in connection with high impedance faults: A case study, Cogent Eng., 7 (2020), 1770916. https://doi.org/10.1080/23311916.2020.1770916 doi: 10.1080/23311916.2020.1770916
    [16] J. M. Guerrero, G. Navarro, K. Mahtani, C. A. Platero, Double line-to-ground faults detection method in dc-ac converters, IEEE Trans. Ind. Appl.. https://doi.org/10.1109/TIA.2022.3212348 doi: 10.1109/TIA.2022.3212348
    [17] M.-S. Choi, S.-J. Lee, S.-I. Lim, D.-S. Lee, X. Yang, A direct three-phase circuit analysis-based fault location for line-to-line fault, IEEE Trans. Power Deliv., 22 (2007), 2541–2547. https://doi.org/10.1109/TPWRD.2007.905535 doi: 10.1109/TPWRD.2007.905535
    [18] S. Bakanagari, A. M. Kumar, M. Cheenya, Three phase fault analysis with auto reset for temporary fault and trip for permanent fault, Int. J. Eng. Res. Appl., 3 (2013), 1082–1086.
    [19] J. P. Nelson, System grounding and ground fault protection in the petrochemical industry: A need for a better understanding, in Record of Conference Papers. IEEE Trans. Ind. Appl. Soc. Forty-Eighth Annual Conference. 2001 Petroleum and Chemical Industry Technical Conference (Cat. No. 01CH37265), IEEE, 2001, 1–9. https://doi.org/10.1109/PCICON.2001.960500
    [20] J. Yang, J. E. Fletcher, J. O'Reilly, Short-circuit and ground fault analyses and location in vsc-based dc network cables, IEEE Trans. Ind. Electron., 59 (2011), 3827–3837. https://doi.org/10.1109/TIE.2011.2162712 doi: 10.1109/TIE.2011.2162712
    [21] G. D. Gregory, G. W. Scott, The arc-fault circuit interrupter, an emerging product, in 1998 IEEE Ind. Commer. Power Syst. Tech. Conf. Conference Record. Papers Presented at the 1998 Annual Meeting (Cat. No. 98CH36202), IEEE, 1998, 48–55. https://doi.org/10.1109/ICPS.1998.692533
    [22] D. K. Neitzel, T. L. Gauthier, Ground fault protection-gfci or gfpe-there is a difference, in 2013 IEEE IAS Electr. Saf. Workshop, IEEE, 2013,207–210. https://doi.org/10.1109/ESW.2013.6509025
    [23] F. Amiel, C. Clavier, M. Tunstall, Fault analysis of dpa-resistant algorithms, in Fault Diagn. Toler. Cryptogr.: Third International Workshop, FDTC 2006, Yokohama, Japan, October 10, 2006. Proceedings, Springer, 2006,223–236. https://doi.org/10.1007/11889700_20
    [24] S. Visacro, R. Alipio, M. H. M. Vale, C. Pereira, The response of grounding electrodes to lightning currents: The effect of frequency-dependent soil resistivity and permittivity, IEEE Trans. Electromagn. Compat., 53 (2011), 401–406. https://doi.org/10.1109/TEMC.2011.2106790 doi: 10.1109/TEMC.2011.2106790
    [25] V. P. Androvitsaneas, K. D. Damianaki, C. A. Christodoulou, I. F. Gonos, Effect of soil resistivity measurement on the safe design of grounding systems, Energies, 13 (2020), 3170. https://doi.org/10.3390/en13123170 doi: 10.3390/en13123170
    [26] N. Hayakawa, Y. Maeno, H. Kojima, Fault current limitation coordination in electric power grid with superconducting fault current limiters, IEEE Trans. Appl. Supercond., 28 (2018), 1–4. https://doi.org/10.1109/TASC.2018.2818279 doi: 10.1109/TASC.2018.2818279
    [27] L. Hewitson, M. Brown, R. Balakrishnan, Practical power system protection, Elsevier, 2004.
    [28] N. Permal, M. Osman, M. Z. A. A. Kadir, A. M. Ariffin, Review of substation grounding system behavior under high frequency and transient faults in uniform soil, IEEE Access, 8 (2020), 142468–142482. https://doi.org/10.1109/ACCESS.2020.3013657 doi: 10.1109/ACCESS.2020.3013657
    [29] S. Beheshtaein, R. Cuzner, M. Savaghebi, J. M. Guerrero, Review on microgrids protection, IET Gener. Transm. Distrib., 13 (2019), 743–759. https://doi.org/10.1049/iet-gtd.2018.5212 doi: 10.1049/iet-gtd.2018.5212
    [30] D. Greene, A. L. Hoffmann, L. Stark, Better, nicer, clearer, fairer: A critical assessment of the movement for ethical artificial intelligence and machine learning.
    [31] P. P. Barker, R. W. De Mello, Determining the impact of distributed generation on power systems. i. radial distribution systems, in 2000 Power Eng. Soc. Summer Meet. (Cat. No. 00CH37134), vol. 3, IEEE, 2000, 1645–1656. https://doi.org/10.1109/PESS.2000.868775
    [32] H. Su, A. Mariani, S. E. Ovur, A. Menciassi, G. Ferrigno, E. De Momi, Toward teaching by demonstration for robot-assisted minimally invasive surgery, IEEE Trans. Autom. Sci. Eng., 18 (2021), 484–494. https://doi.org/10.1109/TASE.2020.3045655 doi: 10.1109/TASE.2020.3045655
    [33] Z. Liu, D. Yang, Y. Wang, M. Lu, R. Li, Egnn: Graph structure learning based on evolutionary computation helps more in graph neural networks, Appl. Soft Comput., 110040. https://doi.org/10.1016/j.asoc.2023.110040 doi: 10.1016/j.asoc.2023.110040
    [34] Y. Wang, Z. Liu, J. Xu, W. Yan, Heterogeneous network representation learning approach for ethereum identity identification, IEEE Trans. Comput. Soc. Syst.. https://doi.org/10.1109/TCSS.2022.3164719 doi: 10.1109/TCSS.2022.3164719
    [35] W. Qi, H. Fan, H. R. Karimi, H. Su, An adaptive reinforcement learning-based multimodal data fusion framework for human–robot confrontation gaming, Neural Netw., 164 (2023), 489–496. https://doi.org/10.1016/j.neunet.2023.04.043 doi: 10.1016/j.neunet.2023.04.043
    [36] C. Tian, Z. Xu, L. Wang, Y. Liu, Arc fault detection using artificial intelligence: Challenges and benefits, Math. Biosci. Eng., 20 (2023), 12404–12432. https://doi.org/10.3934/mbe.2023552 doi: 10.3934/mbe.2023552
    [37] H. Salehi, R. Burgueño, Emerging artificial intelligence methods in structural engineering, Eng. Struct., 171 (2018), 170–189. https://doi.org/10.1016/j.engstruct.2018.05.084 doi: 10.1016/j.engstruct.2018.05.084
    [38] P. Boza, T. Evgeniou, Artificial intelligence to support the integration of variable renewable energy sources to the power system, Appl. Energy, 290 (2021), 116754. https://doi.org/10.1016/j.apenergy.2021.116754 doi: 10.1016/j.apenergy.2021.116754
    [39] M. S. Saeed, M. W. Mustafa, N. N. Hamadneh, N. A. Alshammari, U. U. Sheikh, T. A. Jumani, et al., Detection of non-technical losses in power utilities—a comprehensive systematic review, Energies, 13 (2020), 4727. https://doi.org/10.3390/en13184727 doi: 10.3390/en13184727
    [40] W. Qi, S. E. Ovur, Z. Li, A. Marzullo, R. Song, Multi-sensor guided hand gesture recognition for a teleoperated robot using a recurrent neural network, IEEE Robot. Autom. Lett., 6 (2021), 6039–6045. https://doi.org/10.1109/LRA.2021.3089999 doi: 10.1109/LRA.2021.3089999
    [41] S.-Y. Park, J. Ahn, Deep neural network approach for fault detection and diagnosis during startup transient of liquid-propellant rocket engine, Acta Astronaut., 177 (2020), 714–730. https://doi.org/10.1016/j.actaastro.2020.08.019 doi: 10.1016/j.actaastro.2020.08.019
    [42] W. Qi, H. Su, A cybertwin based multimodal network for ecg patterns monitoring using deep learning, IEEE Trans. Ind. Inform., 18 (2022), 6663–6670. https://doi.org/10.1109/TII.2022.3159583 doi: 10.1109/TII.2022.3159583
    [43] A. Eskandari, M. Aghaei, J. Milimonfared, A. Nedaei, A weighted ensemble learning-based autonomous fault diagnosis method for photovoltaic systems using genetic algorithm, Int. J. Electr. Power Energy Syst., 144 (2023), 108591. https://doi.org/10.1016/j.ijepes.2022.108591 doi: 10.1016/j.ijepes.2022.108591
    [44] H. Su, W. Qi, J. Chen, D. Zhang, Fuzzy approximation-based task-space control of robot manipulators with remote center of motion constraint, IEEE Trans. Fuzzy Syst., 30 (2022), 1564–1573. https://doi.org/10.1109/TFUZZ.2022.3157075 doi: 10.1109/TFUZZ.2022.3157075
    [45] A. A. Selçuk, A guide for systematic reviews: Prisma, Turk. Arch. Otorhinolaryngol., 57 (2019), 57. https://doi.org/10.5152/tao.2019.4058 doi: 10.5152/tao.2019.4058
    [46] N. Diaz, A. Luna, O. Duarte, Improved mppt short-circuit current method by a fuzzy short-circuit current estimator, in 2011 IEEE Energy Convers. Congr. Expo., IEEE, 2011,211–218. https://doi.org/10.1109/ECCE.2011.6063771
    [47] H. A. Sher, A. F. Murtaza, A. Noman, K. E. Addoweesh, K. Al-Haddad, M. Chiaberge, A new sensorless hybrid mppt algorithm based on fractional short-circuit current measurement and p & o mppt, IEEE Trans. Sustain. Energy, 6 (2015), 1426–1434. https://doi.org/10.1109/TSTE.2015.2438781 doi: 10.1109/TSTE.2015.2438781
    [48] R. K. Varma, S. A. Rahman, V. Atodaria, S. Mohan, T. Vanderheide, Technique for fast detection of short circuit current in pv distributed generator, IEEE Power Energy Technol. Syst. J., 3 (2016), 155–165. https://doi.org/10.1109/JPETS.2016.2592465 doi: 10.1109/JPETS.2016.2592465
    [49] C. Li, C. Zhao, J. Xu, Y. Ji, F. Zhang, T. An, A pole-to-pole short-circuit fault current calculation method for dc grids, IEEE Trans. Power Syst., 32 (2017), 4943–4953. https://doi.org/10.1109/TPWRS.2017.2682110 doi: 10.1109/TPWRS.2017.2682110
    [50] L. M. Castro, D. Guillen, F. Trillaud, On short-circuit current calculations including superconducting fault current limiters (scfcls), IEEE Trans. Power Deliv., 33 (2018), 2513–2523. https://doi.org/10.1109/TPWRD.2018.2800732 doi: 10.1109/TPWRD.2018.2800732
    [51] S. Mohsenzade, J. Naghibi, K. Mehran, Reliability enhancement of power igbts under short-circuit fault condition using short-circuit current limiting-based technique, Energies, 14 (2021), 7397. https://doi.org/10.3390/en14217397 doi: 10.3390/en14217397
    [52] B. Gustavsen, Study of transformer resonant overvoltages caused by cable-transformer high-frequency interaction, IEEE Trans. Power Deliv., 25 (2010), 770–779. https://doi.org/10.1109/TPWRD.2010.2040292 doi: 10.1109/TPWRD.2010.2040292
    [53] Y. Choi, T. Alkhalifah, Source-independent time-domain waveform inversion using convolved wavefields: Application to the encoded multisource waveform inversion, Geophysics, 76 (2011), R125–R134. https://doi.org/10.1190/geo2010-0210.1 doi: 10.1190/geo2010-0210.1
    [54] G. Vignoli, G. Fiandaca, A. V. Christiansen, C. Kirkegaard, E. Auken, Sharp spatially constrained inversion with applications to transient electromagnetic data, Geophys. Prospect., 63 (2015), 243–255. https://doi.org/10.1111/1365-2478.12185 doi: 10.1111/1365-2478.12185
    [55] D. Stoller, S. Ewert, S. Dixon, Wave-u-net: A multi-scale neural network for end-to-end audio source separation, arXiv preprint arXiv: 1806.03185. https://doi.org/10.48550/arXiv.1806.03185
    [56] N. Zhi, H. Zhang, N. Li, J. Yang, System-level design and stability analysis of dc microgrid, in 2014 IEEE Int. Power Electron. Appl. Conf. Expo., IEEE, 2014, 1134–1137. https://doi.org/10.1109/PEAC.2014.7038020
    [57] P.-J. Kim, H.-G. Kim, B.-H. Cho, Evaluation of electrical impedance ratio measurements in accuracy of electronic apex locators, Restor. Dent. Endod., 40 (2015), 113–122. https://doi.org/10.5395/rde.2015.40.2.113 doi: 10.5395/rde.2015.40.2.113
    [58] J. Liu, N. Tai, C. Fan, Y. Yang, Transient measured impedance-based protection scheme for dc line faults in ultra high-voltage direct-current system, IET Gener. Transm. Distrib., 10 (2016), 3597–3609. https://doi.org/10.1049/iet-gtd.2016.0408 doi: 10.1049/iet-gtd.2016.0408
    [59] T. P. S. Bains, T. S. Sidhu, Z. Xu, I. Voloh, M. R. D. Zadeh, Impedance-based fault location algorithm for ground faults in series-capacitor-compensated transmission lines, IEEE Trans. Power Deliv., 33 (2017), 189–199. https://doi.org/10.1109/TPWRD.2017.2711358 doi: 10.1109/TPWRD.2017.2711358
    [60] X. Wang, H. Zhang, F. Shi, Q. Wu, V. Terzija, W. Xie, et al., Location of single phase to ground faults in distribution networks based on synchronous transients energy analysis, IEEE Trans. Smart Grid, 11 (2019), 774–785. https://doi.org/10.1109/TSG.2019.2938667 doi: 10.1109/TSG.2019.2938667
    [61] R. A. F. Pereira, L. G. W. da Silva, M. Kezunovic, J. R. S. Mantovani, Improved fault location on distribution feeders based on matching during-fault voltage sags, IEEE Trans. Power Deliv., 24 (2009), 852–862. https://doi.org/10.1109/TPWRD.2009.2014480 doi: 10.1109/TPWRD.2009.2014480
    [62] A. H. A. Bakar, M. Ali, C. Tan, H. Mokhlis, H. Arof, H. Illias, High impedance fault location in 11 kv underground distribution systems using wavelet transforms, Int. J. Electr. Power Energy Syst., 55 (2014), 723–730. https://doi.org/10.1016/j.ijepes.2013.10.003 doi: 10.1016/j.ijepes.2013.10.003
    [63] L. J. Awalin, H. Mokhlis, M. Rahmat, S. Shilpa, F. Albatsh, et al., Fault distance identification using impedance and matching approaches on distribution network, Indones. J. Electr. Eng. Comput. Sci., 8 (2017), 770–778. https://doi.org/10.11591/ijeecs.v8.i3.pp770-778 doi: 10.11591/ijeecs.v8.i3.pp770-778
    [64] C. Zhang, X. Yuan, M. Shi, J. Yang, H. Miao, Fault location method based on svm and similarity model matching, Math. Probl. Eng., 2020 (2020), 1–9. https://doi.org/10.1155/2020/2898479 doi: 10.1155/2020/2898479
    [65] N. Song, C. Zhang, Z. Wang, Fault line selection of distribution networks based on feature matching of power disturbance data, in 2020 Chinese Automation Congress (CAC), IEEE, 2020, 2058–2062. https://doi.org/10.1109/CAC51589.2020.9327430
    [66] K. Li, L. Lai, A. David, Application of artificial neural network in fault location technique, in DRPT2000. International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Proceedings (Cat. No. 00EX382), IEEE, 2000,226–231. https://doi.org/10.1109/DRPT.2000.855668
    [67] S. Singh, K. Mamatha, S. Thejaswini, Intelligent fault identification system for transmission lines using artificial neural network, IOSR J. Comput. Eng., 16 (2014), 23–31.
    [68] M. Jamil, S. K. Sharma, R. Singh, Fault detection and classification in electrical power transmission system using artificial neural network, SpringerPlus, 4 (2015), 1–13. https://doi.org/10.1186/s40064-015-1080-x doi: 10.1186/s40064-015-1080-x
    [69] J. James, Y. Hou, A. Y. Lam, V. O. Li, Intelligent fault detection scheme for microgrids with wavelet-based deep neural networks, IEEE Trans. Smart Grid, 10 (2017), 1694–1703. https://doi.org/10.1109/TSG.2017.2776310 doi: 10.1109/TSG.2017.2776310
    [70] M. Dashtdar et al., Fault location in distribution network based on fault current analysis using artificial neural network, Mapta Journal of Electrical and Computer Engineering (MJECE), 1 (2018), 18–32.
    [71] A. Yadav, S. Goad, Fault detection on transmission lines using artificial neural network, (2021).
    [72] V. N. OGAR, S. Hussain, K. A. Gamage, The use of artificial neural network for low latency of fault detection and localisation in transmission line, Available at SSRN 4178882. https://doi.org/10.1016/j.heliyon.2023.e13376
    [73] B. K. Sangeeth, V. Vinod, High impedance fault detection using multi-domain feature with artificial neural network, Electr. Power Compon. Syst., 51 (2023), 366–379. https://doi.org/10.1080/15325008.2023.2172091 doi: 10.1080/15325008.2023.2172091
    [74] A. Quawi, Y. M. Shuaib, M. Manikandan, Power quality improvement using ann controller for hybrid power distribution systems., Intell. Autom. Soft Comput., 36. https://doi.org/10.32604/iasc.2023.035001 doi: 10.32604/iasc.2023.035001
    [75] Z. Wang, P. Zhao, Fault location recognition in transmission lines based on support vector machines, in 2009 2nd IEEE international conference on computer science and information technology, IEEE, 2009,401–404. https://doi.org/10.1109/ICCSIT.2009.5234528
    [76] U. B. Parikh, B. Das, R. Maheshwari, Fault classification technique for series compensated transmission line using support vector machine, Int. J. Electr. Power Energy Syst., 32 (2010), 629–636. https://doi.org/10.1016/j.ijepes.2009.11.020 doi: 10.1016/j.ijepes.2009.11.020
    [77] S. Ekici, Support vector machines for classification and locating faults on transmission lines, Appl. Soft Comput., 12 (2012), 1650–1658. https://doi.org/10.1016/j.asoc.2012.02.011 doi: 10.1016/j.asoc.2012.02.011
    [78] P. Ray, D. P. Mishra, Support vector machine based fault classification and location of a long transmission line, Eng. Sci. Technol., Int. J., 19 (2016), 1368–1380. https://doi.org/10.1016/j.jestch.2016.04.001 doi: 10.1016/j.jestch.2016.04.001
    [79] Z. Yi, A. H. Etemadi, A novel detection algorithm for line-to-line faults in photovoltaic (pv) arrays based on support vector machine (svm), in 2016 IEEE Power and Energy Society General Meeting (PESGM), IEEE, 2016, 1–4. https://doi.org/10.1109/PESGM.2016.7742026
    [80] Z. Yi, A. H. Etemadi, Line-to-line fault detection for photovoltaic arrays based on multiresolution signal decomposition and two-stage support vector machine, IEEE Trans. Ind. Electron., 64 (2017), 8546–8556. https://doi.org/10.1109/TIE.2017.2703681 doi: 10.1109/TIE.2017.2703681
    [81] M. Shafiullah, M. Ijaz, M. Abido, Z. Al-Hamouz, Optimized support vector machine & wavelet transform for distribution grid fault location, in 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), IEEE, 2017, 77–82. https://doi.org/10.1109/CPE.2017.7915148
    [82] L. J. Awalin, K. Naidu, H. Suyono, Fault types classification using support vector machine (svm), in AIP Conf. Proc., vol. 2129, AIP Publishing LLC, 2019, 020132. https://doi.org/10.1063/1.5118140
    [83] M. Sarwar, F. Mehmood, M. Abid, A. Q. Khan, S. T. Gul, A. S. Khan, High impedance fault detection and isolation in power distribution networks using support vector machines, J. King Saud Univ.-Eng. Sci., 32 (2020), 524–535. https://doi.org/10.1016/j.jksues.2019.07.001 doi: 10.1016/j.jksues.2019.07.001
    [84] A. Said, M. H. Saad, S. M. Eladl, Z. S. Elbarbary, A. I. Omar, M. A. Saad, Support vector machine parameters optimization for 500 kv long ohtl fault diagnosis, IEEE Access. https://doi.org/10.1109/ACCESS.2023.3235592 doi: 10.1109/ACCESS.2023.3235592
    [85] G. Sharma, O. P. Mahela, M. Kumar, N. Kumar, Detection and classification of transmission line faults using stockwell transform and rule based decision tree, in 2018 International Conference on Smart Electric Drives and Power System (ICSEDPS), IEEE, 2018, 1–5. https://doi.org/10.1109/ICSEDPS.2018.8536006
    [86] A. Malhotra, O. P. Mahela, H. Doraya, Detection and classification of power system faults using discrete wavelet transform and rule based decision tree, in 2018 International Conference on Computing, Power and Communication Technologies (GUCON), IEEE, 2018,142–147. https://doi.org/10.1109/GUCON.2018.8674922
    [87] S. K. Mohanty, A. Karn, S. Banerjee, Decision tree supported distance relay for fault detection and classification in a series compensated line, in 2020 IEEE international conference on power electronics, smart grid and renewable energy (PESGRE2020), IEEE, 2020, 1–6. https://doi.org/10.1109/PESGRE45664.2020.9070724
    [88] S. H. Asman, N. F. Ab Aziz, U. A. Ungku Amirulddin, M. Z. A. Ab Kadir, Decision tree method for fault causes classification based on rms-dwt analysis in 275 kv transmission lines network, Appl. Sci., 11 (2021), 4031. https://doi.org/10.3390/app11094031 doi: 10.3390/app11094031
    [89] S. K. Mohanty, A. Swetapadma, P. K. Nayak, O. P. Malik, Decision tree approach for fault detection in a tcsc compensated line during power swing, Int. J. Electr. Power Energy Syst., 146 (2023), 108758. https://doi.org/10.1016/j.ijepes.2022.108758 doi: 10.1016/j.ijepes.2022.108758
    [90] S. Adhikari, N. Sinha, T. Dorendrajit, Fuzzy logic based on-line fault detection and classification in transmission line, SpringerPlus, 5 (2016), 1–14. https://doi.org/10.1186/s40064-016-2669-4 doi: 10.1186/s40064-016-2669-4
    [91] P. Ray, D. P. Mishra, S. Mohaptra, Fault classification of a transmission line using wavelet transform & fuzzy logic, in 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), IEEE, 2016, 1–6. https://doi.org/10.1109/ICPEICES.2016.7853293
    [92] M. Dehghani, M. H. Khooban, T. Niknam, Fast fault detection and classification based on a combination of wavelet singular entropy theory and fuzzy logic in distribution lines in the presence of distributed generations, Int. J. Electr. Power Energy Syst., 78 (2016), 455–462. https://doi.org/10.1016/j.ijepes.2015.11.048 doi: 10.1016/j.ijepes.2015.11.048
    [93] A. J. Lekie, D. Idoniboyeobu, S. Braide, Fault detection on distribution line using fuzzy logic, Int. J. Sci. Eng. Res., 9 (2018), 490–503.
    [94] A. U. Q. Bhat, A. Prakash, V. K. Tayal, P. Choudekar, Three-phase fault analysis of distributed power system using fuzzy logic system (fls), in Advances in Smart Communication and Imaging Systems: Select Proceedings of MedCom 2020, Springer, 2021,615–624. https://doi.org/10.1007/978-981-15-9938-5_57
    [95] H. M. Hasanien, S. Muyeen, Design optimization of controller parameters used in variable speed wind energy conversion system by genetic algorithms, IEEE Trans. Sustain. Energy, 3 (2012), 200–208. https://doi.org/10.1109/TSTE.2012.2182784 doi: 10.1109/TSTE.2012.2182784
    [96] A. S. Ahmed, M. A. Attia, N. M. Hamed, A. Y. Abdelaziz, Comparison between genetic algorithm and whale optimization algorithm in fault location estimation in power systems, in 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), IEEE, 2017,631–637. https://doi.org/10.1109/MEPCON.2017.8301247
    [97] Y. Song, H. Huang, Y. Chen, The method of bp algorithm for genetic simulated annealing algorithm in fault line selection, in J. Phys.: Conf. Ser., vol. 1650, IOP Publishing, 2020, 032187. https://doi.org/10.1088/1742-6596/1650/3/032187
    [98] K. Moloi, A. Yusuff, Power distribution system fault diagnostic using genetic algorithm and neural network, in 2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), IEEE, 2021, 1–5. https://doi.org/10.1109/SAUPEC/RobMech/PRASA52254.2021.9377241
    [99] A. Hichri, M. Hajji, M. Mansouri, K. Abodayeh, K. Bouzrara, H. Nounou, et al., Genetic-algorithm-based neural network for fault detection and diagnosis: Application to grid-connected photovoltaic systems, Sustainability, 14 (2022), 10518. https://doi.org/10.3390/su141710518 doi: 10.3390/su141710518
    [100] Q. Wan, S. Zheng, C. Shi, A rapid diagnosis technology of short circuit fault in dc microgrid, Int. J. Electr. Power Energy Syst., 147 (2023), 108878. https://doi.org/10.1016/j.ijepes.2022.108878 doi: 10.1016/j.ijepes.2022.108878
    [101] H.-H. Chang, R. Zhang, Machine learning techniques for single-line-to-ground fault classification in nonintrusive fault detection of extra high-voltage transmission network systems, in Proceedings of the Fifth Euro-China Conference on Intelligent Data Analysis and Applications 5, Springer, 2019,109–116. https://doi.org/10.1007/978-3-030-03766-6_12
    [102] A. Aljohani, T. Sheikhoon, A. Fataa, M. Shafiullah, M. Abido, Design and implementation of an intelligent single line to ground fault locator for distribution feeders, in 2019 International Conference on Control, Automation and Diagnosis (ICCAD), IEEE, 2019, 1–6. https://doi.org/10.1109/ICCAD46983.2019.9037950
    [103] F. I. Jabbar, D. M. Soomro, A. H. Tawafan, M. N. B. Abdullah, N. H. B. M. Radzi, M. H. Baloch, Optimization of detection of single line to ground fault by controlling peterson coil through anfis, IAES Int. J. Artif. Intell., 9 (2020), 409. https://doi.org/10.11591/ijai.v9.i3.pp409-416 doi: 10.11591/ijai.v9.i3.pp409-416
    [104] M.-F. Guo, J.-H. Gao, X. Shao, D.-Y. Chen, Location of single-line-to-ground fault using 1-d convolutional neural network and waveform concatenation in resonant grounding distribution systems, IEEE Trans. Instrum. Meas., 70 (2020), 1–9. https://doi.org/10.1109/TIM.2020.3014006 doi: 10.1109/TIM.2020.3014006
    [105] P. Liu, S. Du, K. Sun, J. Zhu, D. Xie, Y. Liu, Single-line-to-ground fault feeder selection considering device polarity reverse installation in resonant grounding system, IEEE Trans. Power Del., 36 (2020), 2204–2212. https://doi.org/10.1109/TPWRD.2020.3022422 doi: 10.1109/TPWRD.2020.3022422
    [106] L. Zhengyi, D. Changhong, Y. Huamei, F. Hu, A lstm line selection method of single-phase ground fault based on big-data platform, in 2021 3rd Asia Energy and Electrical Engineering Symposium (AEEES), IEEE, 2021,776–780. https://doi.org/10.1109/AEEES51875.2021.9402971
    [107] J. B. Awotunde, C. Chakraborty, A. E. Adeniyi, Intrusion detection in industrial internet of things network-based on deep learning model with rule-based feature selection, Wirel. Commun. Mob. Comput., 2021 (2021), 1–17. https://doi.org/10.1155/2021/7154587 doi: 10.1155/2021/7154587
    [108] B. T. Jijo, A. M. Abdulazeez, Classification based on decision tree algorithm for machine learning, evaluation, 6. https://doi.org/10.38094/jastt20165 doi: 10.38094/jastt20165
    [109] T. Han, L. Zhang, Z. Yin, A. C. Tan, Rolling bearing fault diagnosis with combined convolutional neural networks and support vector machine, Meas., 177 (2021), 109022. https://doi.org/10.1016/j.measurement.2021.109022 doi: 10.1016/j.measurement.2021.109022
    [110] X. Guo, L. Chen, C. Shen, Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis, Meas., 93 (2016), 490–502. https://doi.org/10.1016/j.measurement.2016.07.054 doi: 10.1016/j.measurement.2016.07.054
    [111] G. Baldini, R. Giuliani, F. Geib, On the application of time frequency convolutional neural networks to road anomalies' identification with accelerometers and gyroscopes, Sensors, 20 (2020), 6425. https://doi.org/10.3390/s20226425 doi: 10.3390/s20226425
    [112] S. Lan, M.-J. Chen, D.-Y. Chen, A novel hvdc double-terminal non-synchronous fault location method based on convolutional neural network, IEEE Trans. Power Del., 34 (2019), 848–857. https://doi.org/10.1109/TPWRD.2019.2901594 doi: 10.1109/TPWRD.2019.2901594
    [113] S. Phoemphon, C. So-In, D. T. Niyato, A hybrid model using fuzzy logic and an extreme learning machine with vector particle swarm optimization for wireless sensor network localization, Appl. Soft Comput., 65 (2018), 101–120. https://doi.org/10.1016/j.asoc.2018.01.004 doi: 10.1016/j.asoc.2018.01.004
    [114] S. R. K. Joga, P. Sinha, M. K. Maharana, A novel graph search and machine learning method to detect and locate high impedance fault zone in distribution system, Eng. Rep., 5 (2023), e12556. https://doi.org/10.1002/eng2.12556 doi: 10.1002/eng2.12556
    [115] L. Shilong, T. Yufei, L. Xiaopeng, Z. Huajie, F. Shilin, Fault line selection of single phase grounding fault in small-current ground system based on reactive current, in 2019 IEEE Innov. Smart Grid Technol. - Asia (ISGT Asia), IEEE, 2019,138–143. https://doi.org/10.1109/ISGT-Asia.2019.8881442
    [116] C. Huang, B. Zhang, Y. Ma, F. Zhou, J. He, Analysis of short-circuit current characteristics and its distribution of artificial grounding faults on dc transmission lines, IEEE Trans. Power Del., 33 (2017), 520–528. https://doi.org/10.1109/TPWRD.2017.2732483 doi: 10.1109/TPWRD.2017.2732483
    [117] F. Liao, H. Li, J. Chen, High-impedance ground fault detection based on phase current increment ratio, in 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP), IEEE, 2019,841–845. https://doi.org/10.1109/APAP47170.2019.9224929
    [118] H. Su, W. Qi, Y. Hu, H. R. Karimi, G. Ferrigno, E. De Momi, An incremental learning framework for human-like redundancy optimization of anthropomorphic manipulators, IEEE Trans. Ind. Inform., 18 (2020), 1864–1872. https://doi.org/10.1109/TII.2020.3036693 doi: 10.1109/TII.2020.3036693
    [119] Y. Zhao, T. Li, X. Zhang, C. Zhang, Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future, Renew. Sustain. Energy Rev., 109 (2019), 85–101. https://doi.org/10.1016/j.rser.2019.04.021 doi: 10.1016/j.rser.2019.04.021
    [120] A. A. Ayokunle, O. M. Peter, A. S. Isaac, Artificial neural networks for intelligent fault location on the 33-kv nigeria transmission line, Artificial Neural Networks for Intelligent, 54 (2017), 147–155.
    [121] D. Jayamaha, N. Lidula, A. Rajapakse, Wavelet based artificial neural networks for detection and classification of dc microgrid faults, in 2019 IEEE Power & Energy Society General Meeting (PESGM), IEEE, 2019, 1–5. https://doi.org/10.1109/PESGM40551.2019.8974108
    [122] S. Cheng, Z. Fu, Single-phase ground fault line selection for distribution network based on frequency domain parameter identification method, in IOP Conf. Ser. Earth Environ. Sci., vol. 267, 2019, 042130. https://doi.org/10.1088/1755-1315/267/4/042130
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2357) PDF downloads(183) Cited by(7)

Article outline

Figures and Tables

Figures(13)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog