Research article Special Issues

Fixed-deviation stabilization and synchronization for delayed fractional-order complex-valued neural networks

  • Academic editor: Xiaodi Li
  • Received: 21 February 2023 Revised: 20 March 2023 Accepted: 23 March 2023 Published: 30 March 2023
  • In this paper, we study fixed-deviation stabilization and synchronization for fractional-order complex-valued neural networks with delays. By applying fractional calculus and fixed-deviation stability theory, sufficient conditions are given to ensure the fixed-deviation stabilization and synchronization for fractional-order complex-valued neural networks under the linear discontinuous controller. Finally, two simulation examples are presented to show the validity of theoretical results.

    Citation: Bingrui Zhang, Jin-E Zhang. Fixed-deviation stabilization and synchronization for delayed fractional-order complex-valued neural networks[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 10244-10263. doi: 10.3934/mbe.2023449

    Related Papers:

  • In this paper, we study fixed-deviation stabilization and synchronization for fractional-order complex-valued neural networks with delays. By applying fractional calculus and fixed-deviation stability theory, sufficient conditions are given to ensure the fixed-deviation stabilization and synchronization for fractional-order complex-valued neural networks under the linear discontinuous controller. Finally, two simulation examples are presented to show the validity of theoretical results.



    加载中


    [1] V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124 (2002), 803–806. https://doi.org/10.1115/1.1478062 doi: 10.1115/1.1478062
    [2] J. M. Balthazar, P. B. Goncalves, S. Lenci, Y. V. Mikhlin, Models, methods, and applications of dynamics and control in engineering sciences: state of the art, Math. Probl. Eng., 2010 (2010), 487684. https://doi.org/10.1155/2010/487684 doi: 10.1155/2010/487684
    [3] P. Panda, M. Dash, Fractional generalized splines and signal processing, Signal Process., 86 (2006), 2340–2350. https://doi.org/10.1016/j.sigpro.2005.10.017 doi: 10.1016/j.sigpro.2005.10.017
    [4] M. S. Aslam, M. A. Z. Raja, A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach, Signal Process., 107 (2015), 433–443. https://doi.org/10.1016/j.sigpro.2014.04.012 doi: 10.1016/j.sigpro.2014.04.012
    [5] C. J. Z. Aguilar, J. F. Gmez-Aguilar, V. M. Alvarado-Martnez, H. M. Romero-Ugalde, Fractional order neural networks for system identification, Chaos, Solitons Fractals, 130 (2020), 109444. https://doi.org/10.1016/j.chaos.2019.109444 doi: 10.1016/j.chaos.2019.109444
    [6] S. Fazzino, R. Caponetto, L. Patanè, A new model of Hopfield network with fractional-order neurons for parameter estimation, Nonlinear Dyn., 104 (2021), 2671–2685. https://doi.org/10.1007/s11071-021-06398-z doi: 10.1007/s11071-021-06398-z
    [7] Y. Liu, Y. Sun, L. Liu, Stability analysis and synchronization control of fractional-order inertial neural networks with time-varying delay, IEEE Access, 10 (2022), 56081–56093. https://doi.org/10.1109/ACCESS.2022.3178123 doi: 10.1109/ACCESS.2022.3178123
    [8] E. Kaslik, S. Sivasundaram, Nonlinear dynamics and chaos in fractional-order neural networks, Neural Networks, 32 (2012), 245–256. https://doi.org/10.1016/j.neunet.2012.02.030 doi: 10.1016/j.neunet.2012.02.030
    [9] H. Wang, Y. Yu, G. Wen, S. Zhan, J. Yu, Global stability analysis of fractional-order Hopfield neural networks with time delay, Neurocomputing, 154 (2015), 15–23. https://doi.org/10.1016/j.neucom.2014.12.031 doi: 10.1016/j.neucom.2014.12.031
    [10] C. Huang, J. Wang, X. Chen, J. Cao, Bifurcations in a fractional-order BAM neural network with four different delays, Neural Networks, 141 (2021), 344–354. https://doi.org/10.1016/j.neunet.2021.04.005 doi: 10.1016/j.neunet.2021.04.005
    [11] C. Xu, D. Mu, Z. Liu, Y. Pang, M. Liao, C. Aouiti, New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays, Commun. Nonlinear Sci. Numer. Simul., 118 (2023), 107043. https://doi.org/10.1016/j.cnsns.2022.107043 doi: 10.1016/j.cnsns.2022.107043
    [12] C. Huang, H. Liu, X. Shi, X. Chen, M. Xiao, Z. Wang, et al., Bifurcations in a fractional-order neural network with multiple leakage delays, Neural Networks, 131 (2020), 115–126. https://doi.org/10.1016/j.neunet.2020.07.015 doi: 10.1016/j.neunet.2020.07.015
    [13] C. Xu, W. Zhang, C. Aouiti, Z. Liu, L. Yao, Bifurcation insight for a fractional-order stage-structured predator-prey system incorporating mixed time delays, Math. Methods Appl. Sci., 2023. https://doi.org/10.1002/mma.9041
    [14] C. Xu, D. Mu, Z. Liu, Y. Pang, M. Liao, P. Li, et al., Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks, Nonlinear Anal. Modell. Control, 27 (2022), 1030–1053. https://doi.org/10.15388/namc.2022.27.28491 doi: 10.15388/namc.2022.27.28491
    [15] C. Xu, Z. Liu, Y. Pang, S. Saifullah, J. Khan, Torus and fixed point attractors of a new hyperchaotic 4D system, J. Comput. Sci., 67 (2023), 101974. https://doi.org/10.1016/j.jocs.2023.101974 doi: 10.1016/j.jocs.2023.101974
    [16] C. Xu, M. Rahman, D. Baleanu, On fractional-order symmetric oscillator with offset-boosting control, Nonlinear Anal. Modell. Control, 27 (2022), 1–15. https://doi.org/10.15388/namc.2022.27.28279 doi: 10.15388/namc.2022.27.28279
    [17] C. Xu, W. Alhejaili, S. Saifullah, A. Khan, J. Khan, M. A. El-Shorbagy, Analysis of Huanglongbing disease model with a novel fractional piecewise approach, Chaos Solitons Fractals, 161 (2022), 112316. https://doi.org/10.1016/j.chaos.2022.112316 doi: 10.1016/j.chaos.2022.112316
    [18] F. Zhang, Z. Zeng, Asymptotic stability and synchronization of fractional-order neural networks with unbounded time-varying delays, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 5547–5556. https://doi.org/10.1109/TSMC.2019.2956320 doi: 10.1109/TSMC.2019.2956320
    [19] Z. Ding, Z. Zeng, L. Wang, Robust finite-time stabilization of fractional-order neural networks with discontinuous and continuous activation functions under uncertainty, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 1477–1490. https://doi.org/10.1109/TNNLS.2017.2675442 doi: 10.1109/TNNLS.2017.2675442
    [20] W. Rudin, Real and Complex Analysis, Mcgraw-Hill, New York, 1987.
    [21] X. Ding, J. Cao, X. Zhao, F. E. Alsaadi, Finite-time stability of fractional-order complex-valued neural networks with time delays, Neural Process. Lett., 46 (2017), 561–580. https://doi.org/10.1007/s11063-017-9604-8 doi: 10.1007/s11063-017-9604-8
    [22] T. Hu, Z. He, X. Zhang, S. Zhong, Finite-time stability for fractional-order complex-valued neural networks with time delay, Appl. Math. Comput., 365 (2020), 124715. https://doi.org/10.1016/j.amc.2019.124715 doi: 10.1016/j.amc.2019.124715
    [23] P. Wan, J. Jian, Impulsive stabilization and synchronization of fractional-order complex-valued neural networks, Neural Process. Lett., 50 (2019), 2201–2218. https://doi.org/10.1007/s11063-019-10002-2 doi: 10.1007/s11063-019-10002-2
    [24] X. You, Q. Song, Z. Zhao, Global Mittag-Leffler stability and synchronization of discrete-time fractional-order complex-valued neural networks with time delay, Neural Networks, 122 (2020), 382–394. https://doi.org/10.1016/j.neunet.2019.11.004 doi: 10.1016/j.neunet.2019.11.004
    [25] J. Chen, B. Chen, Z. Zeng, Global asymptotic stability and adaptive ultimate Mittag-Leffler synchronization for a fractional-order complex-valued memristive neural networks with delays, IEEE Trans. Syst. Man Cybern. Syst., 49 (2019), 2519–2535. https://doi.org/10.1109/TSMC.2018.2836952 doi: 10.1109/TSMC.2018.2836952
    [26] X. Li, J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica, 64 (2016), 63–69. https://doi.org/10.1016/j.automatica.2015.10.002 doi: 10.1016/j.automatica.2015.10.002
    [27] X. Li, S. Song, Stabilization of delay systems: delay-dependent impulsive control, IEEE Trans. Autom. Control, 62 (2017), 406–411. https://doi.org/10.1109/TAC.2016.2530041 doi: 10.1109/TAC.2016.2530041
    [28] H. Bao, J. H. Park, J. Cao, Synchronization of fractional-order complex-valued neural networks with time delay, Neural Networks, 81 (2016), 16–28. https://doi.org/10.1016/j.neunet.2016.05.003 doi: 10.1016/j.neunet.2016.05.003
    [29] X. Liu, Y. Yu, Synchronization analysis for discrete fractional-order complex-valued neural networks with time delays, Neural Comput. Appl., 33 (2021), 10503–10514. https://doi.org/10.1007/s00521-021-05808-y doi: 10.1007/s00521-021-05808-y
    [30] J. Chen, B. Chen, Z. Zeng, Global uniform asymptotic fixed-deviation stability and stability for delayed fractional-order memristive neural networks with generic memductance, Neural Networks, 98 (2018), 65–75. https://doi.org/10.1016/j.neunet.2017.11.004 doi: 10.1016/j.neunet.2017.11.004
    [31] J. Zhang, Linear-type discontinuous control of fixed-deviation stabilization and synchronization for fractional-order neurodynamic systems with communication delays, IEEE Access, 6 (2018), 52570–52581. https://doi.org/10.1109/ACCESS.2018.2870979 doi: 10.1109/ACCESS.2018.2870979
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1356) PDF downloads(94) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog