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Abstract: In this paper, we study fixed-deviation stabilization and synchronization for fractional-
order complex-valued neural networks with delays. By applying fractional calculus and fixed-
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Keywords: fractional-order complex-valued neural networks; time delays; fixed-deviation dynamics;
discontinuous control

1. Introduction

Fractional calculus is a theory of differentiation and integration of arbitrary order, which is an
extension of integer order calculus. Initially, the study of fractional calculus theory was mainly
conducted in the field of pure number theory, but as it developed further, fractional calculus was
widely used in fluid mechanics [1], mechanical systems [2], signal processing [3, 4], system
identification [5], and many other fields. Fractional calculus has become an essential theory in many
fields. Many scholars have applied fractional-order derivatives to neural networks and have built
fractional-order neural networks (FONNs). So far, the study of FONNs has yielded some interesting
results [6–17]. Zhang and Zeng [18] showed asymptotic stability of nonlinear FONNs with
unbounded time-varying delays and asymptotic synchronization of FONNs under a linear controller.
Ding et al. [19] investigated the robust finite-time stability of FONNs.

Complex-valued neural networks (CVNNs), whose input/output signals, connection weights, and
activation functions are derived from the complex domain. Unlike real-valued neural networks,
functions that are both bounded and analytic in the complex domain must be constant according to
Liouville’s theorem [20]. Therefore, the study of the dynamics of CVNNs is essential. In recent years,
the dynamic behavior of fractional-order CVNNs (FOCVNNs) has been reported in many kinds of
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literatures, including finite-time stability [21, 22], impulse stability and synchronization [23], and
Mittag-Leffler stability and synchronization [24, 25].

In neural networks, time delays are prevalent. Failure to take into account time delays will cause
stable systems to be unstable and lead to a reduction in the capabilities of the neural network [26, 27].
Therefore it is relevant to study FOCVNNs with time delays in practical applications. Bao et al. [28]
obtained sufficient conditions to guarantee the synchronization of FOCVNNs with time delays using
linear delay feedback control and fractional-order inequalities. Liu and Yu [29] derived several
conditions for quasi-projective synchronization and complete synchronization of FOCVNNs with
time delays based on generalized discrete fractional Halanay inequality and Lyapunov generalized
function methods without dividing the complex-valued neural network into two real-valued systems.

Deviation dynamics is particularly important for the evolutionary characterization of control
systems. Fixed-deviation stabilization and synchronization are very important dynamical behaviors of
discontinuous neural network systems. There have been some important findings about
fixed-deviation dynamics [30, 31]. Chen et al. [30] initially proposed the concept of fixed-deviation
stability to describe the stability properties of discontinuous systems, and sufficient conditions to
ensure globally uniform asymptotic fixed-deviation stability of delayed fractional-order memristive
neural networks were given. Based on the theory of fixed-deviations in [30], Zhang [31] used
linear-type discontinuous control and fractional-order calculus methods to address fixed-deviation
stability and synchronization problems of FONNs. Clearly, the investigation of fixed-deviation
dynamics for FONNs is an important topic. But so far, there are few results on the fixed-deviation
dynamics of FOCVNNs.

In the above view, we present the problems of fixed-deviation stability and synchronization of
FOCVNNs. Continuous FONNs are difficult to achieve fixed-deviation stability and synchronization,
and a special control method needs to be imposed to make the continuous system generate
fixed-deviation dynamics behavior. A natural idea is to add a discontinuous controller so that
continuous FOCVNNs turn into the discontinuous system under the discontinuous controller, and
then impose complex-valued conditions to make the FOCVNNs achieve fixed-deviation stability and
synchronization. Also based on the theory of fixed-deviations in [30], fractional-order calculus and
Lyapunov method, sufficient conditions for the formation of fixed-deviation stability and
synchronization of FOCVNNs under linear discontinuous controllers are obtained.

2. Model description and preliminaries

In this section, necessary definitions and lemmas will be provided for the proof of the theorem in
Section 3.

The Caputo’s fractional derivative of a function H (t) ∈ Cλ+1([t0,+∞),R) with order α > 0 is
defined by

CDα
t0H (t) =

1
Γ(λ − α)

∫ t

t0

H (λ)(s)
(t − s)α−λ+1 ds,

where t ≥ t0, λ − 1 < α < λ, λ is positive integer, α is a positive constant and Γ(·) is Gamma function,
that is

Γ(α) =
∫ ∞

0
tα−1e−tdt.
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The Riemann-Liouville fractional derivative of order α > 0 for a function H (t) ∈ Cλ+1([t0,+∞),R)
is defined by

RLDα
t0H (t) =

1
Γ(λ − α)

dλ

dtλ

∫ t

t0

H (s)
(t − s)α−λ+1 ds,

where λ − 1 < α < λ, λ > 0.
By the above definition, the following relation holds:

CDα
t0H (t) = RLDα

t0H (t) −
H (t0)
Γ(1 − α)

(t − t0)−α.

Now, we introduce delayed FOCVNNs as follows:

CDα
t0zk(t) = −akzk(t) +

n∑
ℓ=1

bkℓ fℓ(zℓ(t)) +
n∑
ℓ=1

dklgℓ(zℓ(t −ϖkl(t))) + Uk(t), (2.1)

where 0 < α < 1, zk(t) ∈ C denotes the state variable; ak > 0 is the self-feedback connective weight of
the kth neuron; bkℓ and dkℓ are the connective weights matrix without and with time delay respectively;
fℓ(zℓ(t)), gℓ(zℓ(t−ϖkℓ(t))) represent the complex-valued state activation functions at time t and t−ϖkℓ(t);
ϖkℓ(t) is the time-varying delay satisfying 0 ≤ ϖkℓ(t) ≤ ϖ; Uk(t) stands for the external input.

Let Cϖ = C([−ϖ, 0],Rn) be the Banach space of continuous functions mapping [−ϖ, 0] into Rn.
For ψ ∈ Cϖ, ∥ψ∥c = sup

−ϖ≤s≤0
∥ψ(s)∥.

Note the initial conditions of delayed FOCVNNs (2.1) as

zk(t0 + s) = ψR
k (s) + ψI

k(s), −ϖ ≤ s ≤ 0, k = 1, · · · , n. (2.2)

Let z = zR + izI ∈ C. For any ℓ, fℓ(z) and gℓ(z(t − ϖ)) can be shown by dividing into its real and
imaginary parts as

fℓ(z) = f R
ℓ (zR, zI) + i f I

ℓ (zR, zI),
gℓ(z(t −ϖ)) =gR

ℓ (zR(t −ϖ), zI(t −ϖ)) + igI
ℓ(z

R(t −ϖ), zI(t −ϖ)).
(2.3)

Let zk(t) = zR
k (t) + izI

k(t). Delayed FOCVNNs (2.1) can be described as the following equation:

CDα
t0z

R
k (t) = − akzR

k (t) +
n∑
ℓ=1

bR
kℓ f R

ℓ (zℓ(t)) −
n∑
ℓ=1

bI
kℓ f I

ℓ (zℓ(t))

+

n∑
ℓ=1

dR
kℓg

R
ℓ (zℓ(t −ϖkℓ(t))) −

n∑
ℓ=1

dI
kℓg

I
ℓ(zℓ(t −ϖkℓ(t))) + UR

k (t),

CDα
t0z

I
k(t) = − akzI

k(t) +
n∑
ℓ=1

bR
kℓ f I

ℓ (zℓ(t)) +
n∑
ℓ=1

bI
kℓ f R

ℓ (zℓ(t))

+

n∑
ℓ=1

dR
kℓg

I
ℓ(zℓ(t −ϖkℓ(t))) +

n∑
ℓ=1

dI
kℓg

R
ℓ (zℓ(t −ϖkℓ(t))) + U I

k(t). (2.4)
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Definition 1 ( [30]): FOCVNNs (2.1) is called globally uniformly β-stable if for any ξ > 0 and any
initial values ϕ, φ ∈ Cϖ, ∥ϕ − φ∥C ≤ ξ, there is a constant T (ξ) ≥ 0, such that

∥z(t, t0, ϕ) − z(t, t0, φ)∥ ≤ β

for all t ≥ t0 + T (ξ), where β > 0.

Remark 1: β-stability, also known as fixed-deviation stability, specifically, when the difference
between two different initial values of the described neural network are kept in a certain range, the
difference among final values of the system trajectories starting from these two initial values will be
maintained in a fixed-deviation degree.

Definition 2: The zero solution of delayed FOCVNNs (2.1) is called globally uniformly β-stable if
for any ψ ∈ Cϖ, ξ > 0, ∥ψ∥C ≤ ξ, there is a constant T (ξ) ≥ 0, such that

∥z(t, t0, ψ)∥ ≤ β

for all t ≥ t0 + T (ξ), where β > 0 is a constant.
In this paper, we propose the below assumptions:
(i) The activation functions fℓ(·) and gℓ(·) satisfy fℓ(0) = gℓ(0) = 0.
(ii) For functions f R

ℓ (·, ·), f I
ℓ (·, ·), gR

ℓ (·, ·), gI
ℓ(·, ·), there exist positive constants FRR

ℓ , FRI
ℓ , F IR

ℓ , F II
ℓ ,

GRR
ℓ , GRI

ℓ , GIR
ℓ ,GII

ℓ , such that
| f R
ℓ (z̃R, z̃I) − f R

ℓ (zR, zI)| ≤ FRR
ℓ |z̃

R − zR| + FRI
ℓ |z̃

I − zI |

| f I
ℓ (z̃R, z̃I) − f I

ℓ (zR, zI)| ≤ F IR
ℓ |z̃

R − zR| + F II
ℓ |z̃

I − zI |

|gR
ℓ (z̃R, z̃I) − gR

ℓ (zR, zI)| ≤ GRR
ℓ |z̃

R − zR| +GRI
ℓ |z̃

I − zI |

|gI
ℓ(z̃

R, z̃I) − gI
ℓ(z

R, zI)| ≤ GIR
ℓ |z̃

R − zR| +GII
ℓ |z̃

I − zI |.

(2.5)

Remark 2: Condition (i) holds if and only if both its real and imaginary parts are 0, i.e., f R
ℓ (0, 0) =

f I
ℓ (0, 0) = 0 and gR

ℓ (0, 0) = gI
ℓ(0, 0) = 0 for any ℓ ∈ R.

Next, we present two necessary lemmas.

Lemma 1 ( [30]): If functions f (t) and g(t) together with their derivatives are continuous in [t0, t],
then fractional differentiation of the Leibniz rule is in the form

RLDα
t0(p(t)q(t)) =

n∑
m=0

(
α

m

)
dm p(t)

dtm
RLDα−m

t0 q(t) − Iαn (t),

where n ≥ α + 1, (
α

m

)
=

Γ(α + 1)
m! Γ(α − m + 1)

,

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10244–10263.



10248

and

Iαn (t) =
(−1)n(t − α)n−α+1

n! Γ(−α)

∫ 1

0

∫ 1

0
𭟋α(t, ζ, ℏ)dζdℏ,

𭟋α(t, ζ, ℏ) =q(t0 + ℏ(t − t0))p(n+1)(t0 + (t − t0)(ζ + ℏ − ζℏ)).

Lemma 2: For a continuous differentiable function P(t) : [ t0,+∞)→ [ 0,+∞) and Q(t) = (t − t0 +

σ)αP(t), then

CDα
t0Q(t) ≤ (t − t0 + σ)α CDα

t0P(t) +
1 − α + α2

σα Γ(2 − α)
Q(t),

where t ≥ t0, σ > 0 and Q(t) = sup
t0≤s≤t
Q(s).

Proof: From Lemma 1, we know

CDα
t0Q(t) = RLDα

t0Q(t) −
Q(t0)
Γ(1 − α)

(t − t0)−α

= (t − t0 + σ)α RLDα
t0P(t) + α2(t − t0 + σ)α−1 RLDα−1

t0 P(t) − Rα
2 (t) −

σαP(t0)
Γ(1 − α)

(t − t0)−α

≤ (t − t0 + σ)α(CDα
t0P(t) +

P(t0)
Γ(1 − α)

(t − t0)−α) −
σαP(t0)
Γ(1 − α)

(t − t0)−α + α2(t − t0 + σ)α−1 RLDα−1
t0 P(t)

≤ (t − t0 + σ)α CDα
t0P(t) +

P(t0)
Γ(1 − α)

+ α2(t − t0 + σ)α−1 RLDα−1
t0 P(t)

≤ (t − t0 + σ)α CDα
t0P(t) +

Q(t)
σα Γ(1 − α)

+ α2(t − t0 + σ)α−1 RLDα−1
t0 P(t).

Also by the definition of Riemann-Liouville fractional derivative,

α2(t − t0 + σ)α−1 RLDα−1
t0 P(t)

=
α2

Γ(1 − α)
(t − t0 + σ)α−1

∫ t

t0
(t − s)−αP(s)ds ≤

α2

σα Γ(2 − α)
Q(t).

Therefore,

CDα
t0Q(t) ≤ (t − t0 + σ)α CDα

t0P(t) +
Q(t)

σα Γ(1 − α)
+

α2

σα Γ(2 − α)
Q(t)

= (t − t0 + σ)α CDα
t0P(t) +

1 − α + α2

σα Γ(2 − α)
Q(t)

for t ≥ t0. Proof of Lemma 2 is finished.
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3. Main results

In this section, we will provide some sufficient conditions to guarantee fixed-deviation stability and
synchronization of delayed FOCVNNs (2.1).

3.1. Fixed-deviation stability

We design linear discontinuous control for system (2.1):

Uk(t) =Mkzk(t) +Nk[sgn(zR
k (t)) + isgn(zI

k(t))], (3.1)

where k = 1, · · · , n.
Thus by controller (3.1), system (2.4) is converted as

CDα
t0z

R
k (t) = − akzR

k (t) +
n∑
ℓ=1

bR
kℓ f R

ℓ (zℓ(t)) −
n∑
ℓ=1

bI
kℓ f I

ℓ (zℓ(t))

+

n∑
ℓ=1

dR
kℓg

R
ℓ (zℓ(t −ϖkℓ(t)))

n∑
ℓ=1

dI
kℓg

I
ℓ(zℓ(t −ϖkℓ(t))) +MkzR

k (t) +Nksgn(zR
k (t)),

CDα
t0z

I
k(t) = − akzI

k(t) +
n∑
ℓ=1

bR
kℓ f I

ℓ (zℓ(t)) +
n∑
ℓ=1

bI
kℓ f R

ℓ (zℓ(t))

+

n∑
ℓ=1

dR
kℓg

I
ℓ(zℓ(t −ϖkℓ(t))) +

n∑
ℓ=1

dI
kℓg

R
ℓ (zℓ(t −ϖkℓ(t))) +MkzI

k(t) +Nksgn(zI
k(t)). (3.2)

Theorem 1: If there are positive constants σ > ϖ ≥ 0 and µr > 0, vr > 0 (r = 1, · · · , n) such that
the following conditions

ar − |Mr|−
1 − α + α2

σα Γ(2 − α)
−

1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )

+

(
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
)(

σ

−ϖ + σ

)α]
µℓ > 0

(3.3)

and

ar − |Mr|−
1 − α + α2

σα Γ(2 − α)
−

1
vr

n∑
ℓ=1

[
|bR

rℓ|(F
IR
ℓ + F II

ℓ ) + |bI
rℓ|(F

RR
ℓ + FRI

ℓ )

+

(
|dR

rℓ|(G
IR
ℓ +GII

ℓ ) + |dI
rℓ|(G

RR
ℓ +GRI

ℓ )
)(

σ

−ϖ + σ

)α]
vℓ > 0

(3.4)

hold, then delayed FOCVNNs (3.2) is globally uniformly β-stable, that is, delayed FOCVNNs (2.1) is
globally uniformly β-stable via control rule (3.1).
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Proof: Construct an auxiliary function as follows

P(t) = max
1≤k≤n

max
{
|zR

k (t)|
µk

,
|zI

k(t)|
vk

}
.

Let

Q(t) = (t − t0 + σ)αP(t), Q(t) = sup
t0−σ≤s≤t

Q(s).

There exists r ∈ {1, · · · , n} for given t ≥ t0 having

P(t) = max
{
|zR

r (t)|
µr

,
|zI

r(t)|
vr

}
.

Then we get P(t) =
|zR

r (t)|
µr

, P(t) =
|zI

r(t)|
vr

. Now, we let P(t) =
|zR

r (t)|
µr

, and another case is similar.

By (2.5) and (2.7) it follows that

CDα
t0P(t) =

1
µr

CDα
t0 |z

R
r (t)| ≤

sgn(zR
r (t))
µr

CDα
t0z

R
r (t)

≤
−(ar − |Mr|)

µr
|zR

r (t)| +
|Nr|

µr
+

1
µr

n∑
ℓ=1

|bR
rℓ|(F

RR
ℓ |z

R
ℓ (t)| + FRI

ℓ |z
I
ℓ(t)|)

+
1
µr

n∑
ℓ=1

|bI
rℓ|(F

IR
ℓ |z

R
ℓ (t)| + F II

ℓ |z
I
ℓ(t)|) +

1
µr

n∑
ℓ=1

|dR
rℓ|(G

RR
ℓ |z

R
ℓ (t −ϖrℓ(t))| +GRI

ℓ |z
I
ℓ(t −ϖrℓ(t))|)

+
1
µr

n∑
ℓ=1

|dI
rℓ|(G

IR
ℓ |z

R
ℓ (t −ϖrℓ(t))| +GII

ℓ |z
I
ℓ(t −ϖrℓ(t))|)

≤ − (ar − |Mr|)P(t) +
|Nr|

µr

+
1
µr

n∑
ℓ=1

|bR
rℓ|(F

RR
ℓ + FRI

ℓ )µℓP(t) +
1
µr

n∑
ℓ=1

|bI
rℓ|(F

IR
ℓ + F II

ℓ )µℓP(t)

+
1
µr

n∑
ℓ=1

|dR
rℓ|(G

RR
ℓ +GRI

ℓ )µℓP(t −ϖrℓ(t)) +
1
µr

n∑
ℓ=1

|dI
rℓ|(G

IR
ℓ +GII

ℓ )µℓP(t −ϖrℓ(t))

=

{
− (ar − |Mr|) +

1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )
]
µℓ

}
P(t)

+
1
µr

n∑
ℓ=1

[
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
]
µℓP(t −ϖrℓ(t)) +

|Nr|

µr
. (3.5)
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By using Lemma 2 and (3.5), then

CDα
t0Q(t) ≤(t − t0 + σ)α CDα

t0P(t) +
1 − α + α2

σα Γ(2 − α)
Q(t)

≤

{
− (ar − |Mr|) +

1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )
]
µℓ

}
Q(t)

+
1
µr

n∑
ℓ=1

[
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
]
µℓ

( t − t0 + σ

t −ϖrℓ(t) − t0 + σ

)α
Q(t −ϖrℓ(t))

+ (t − t0 + σ)α
|Nr|

µr
+

1 − α + α2

σα Γ(2 − α)
Q(t)

≤

{
− (ar − |Mr|) +

1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )
]
µℓ

}
Q(t)

+
1
µr

n∑
ℓ=1

[
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
]
µℓ

( t − t0 + σ

t −ϖrℓ(t) − t0 + σ

)α
Q(t)

+ (t − t0 + σ)α
|Nr|

µr
+

1 − α + α2

σα Γ(2 − α)
Q(t).

It is known that
σ + E

E −ϖrℓ(t) + σ
is monotone non-increasing for E ≥ 0, and thus

t − t0 + σ

t −ϖrℓ(t) − t0 + σ
≤

σ

−ϖrl(t) + σ
≤

σ

−ϖ + σ
,

therefore,

CDα
t0Q(t)

≤

{
− (ar − |Mr|) +

1 − α + α2

σα Γ(2 − α)
+

1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )

+

(
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
)(

σ

−ϖ + σ

)α]
µℓ

}
Q(t) + (t − t0 + σ)α

|Nr|

µr

≤ −A Q(t) + (t − t0 + σ)αB (3.6)

when Q(t) = Q(t), for t ≥ t0, where

A ≜ min
1≤r≤n

{
ar − |Mr| −

1 − α + α2

σα Γ(2 − α)
−

1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )

+

(
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
)(

σ

−ϖ + σ

)α]
µℓ

}
,

B ≜max
1≤r≤n

(
|Nr|

µr

)
.

Next, from the definition Q(t) = sup
t0−σ≤s≤t

Q(s), we will divide into three cases to prove

fixed-deviation stable.
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Case 1: Q(s) > Q(s) for any t0 < s ≤ t. Now, we consider Q(t) is the maximum value of Q(s) at
moment t0, that is

Q(t) = Q(t0), ∀t ≥ t0.

Hence,

∥z(t)∥ ≤∥µ∥P(t) =
∥µ∥

(t − t0 + σ)α
Q(t) ≤

∥µ∥

(t − t0 + σ)α
Q(t) =

∥µ∥

(t − t0 + σ)α
Q(t0)

≤
∥µ∥σα

(t − t0 + σ)µmin
∥ψ∥C ≤

∥µ∥σαξ

(t − t0 + σ)µmin
,

when ∥ψ∥C ≤ ξ, where µmin = min
1≤r≤n

{
µr

}
.

Case 2: Q(t) = Q(t). We obtain

CDα
t0Q(t) ≤ CDα

t0Q(t), t ≥ t0. (3.7)

From divisional integration method, we have∫ t

t0

Q
′

(s) − Q′(s)
(t − s)α

ds = lim
s→t−

Q(s) − Q(s)
(t − s)α

−
Q(t0) − Q(t0)

(t − t0)α
− α

∫ t

t0

Q(s) − Q(s)
(t − s)α+1 ds

= lim
s→t−

1
−α

[
Q
′

(s) − Q′(s)
]
(t − s)1−α −

Q(t0) − Q(t0)
(t − t0)α

− α

∫ t

t0

Q(s) − Q(s)
(t − s)α+1 ds

= −
Q(t0) − Q(t0)

(t − t0)α
− α

∫ t

t0

Q(s) − Q(s)
(t − s)α+1 ds ≤ 0,

thus, (3.7) holds.
Next, we demand

P(t) ≤
B

A
, t ≥ t0. (3.8)

Otherwise, from (3.6) and (3.7) we have

CDα
t0Q(t) ≤CDα

t0Q(t) ≤ −A Q(t) + (t − t0 + σ)αB
≤ −A (t − t0 + σ)αP(t) + (t − t0 + σ)αB < 0.

It is known that Q(t) is monotonically increasing, so Q
′

(t) ≥ 0, then

CDα
t0Q(t) =

1
Γ(1 − α)

∫ t

t0

Q
′

(s)
(t − s)α

ds ≥ 0,

which is a contradiction. Hence, (3.8) is true.
Therefore,

∥z(t)∥ ≤ ∥µ∥P(t) ≤
∥µ∥B

A
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for t ≥ t0.
Case 3: Q(t̂) = Q(t̂), t0 ≤ t̂ < t, and Q(s) > Q(s), for ∀s ∈ (t̂, t].
Combining Cases 1 and 2, we get

P(t̂) ≤
B

A

and
Q(t) < Q(t) = Q(t̂) = Q(t̂) = (t̂ − t0 + σ)αP(t̂) ≤ (t̂ − t0 + σ)α

B

A
.

Therefore, for t ≥ t0

∥z(t)∥ ≤ ∥µ∥P(t) =
∥µ∥Q(t)

(t − t0 + σ)α
≤
∥µ∥B

A
.

In conclusion, let

T (ξ) = max
{[( A ξ

Bµmin

) 1
α

− 1
]
, 0

}
,

then
∥z(t)∥ ≤

∥µ∥B

A
≜ β

for all t ≥ t0+T (ξ), when ∥ψ∥C ≤ ξ. So, it can be inferred that then delayed FOCVNNs (2.1) is globally
uniformly β-stable via control rule (3.1).

Corollary 1: If there are n positive constants µr, vr such that

ar − |Mr| −
1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )

+

(
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
)]
µℓ > 0 (3.9)

and

ar − |Mr| −
1
vr

n∑
ℓ=1

[
|bR

rℓ|(F
IR
ℓ + F II

ℓ ) + |bI
rℓ|(F

RR
ℓ + FRI

ℓ )

+

(
|dR

rℓ|(G
IR
ℓ +GII

ℓ ) + |dI
rℓ|(G

RR
ℓ +GRI

ℓ )
)]

vℓ > 0 (3.10)

hold, then delayed FOCVNNs (2.1) is globally uniformly fixed-deviation stable via control rule (3.1).

Proof: Let

L (ϑ) = ar−|Mr| −
1 − α + α2

ϑα Γ(2 − α)
−

1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )

+

(
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
)(

ϑ

−ϖ + ϑ

)α]
µℓ,
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10254

X (ϑ) = ar−|Mr| −
1 − α + α2

ϑα Γ(2 − α)
−

1
vr

n∑
ℓ=1

[
|bR

rℓ|(F
IR
ℓ + F II

ℓ ) + |bI
rℓ|(F

RR
ℓ + FRI

ℓ )

+

(
|dR

rℓ|(G
IR
ℓ +GII

ℓ ) + |dI
rℓ|(G

RR
ℓ +GRI

ℓ )
)(

ϑ

−ϖ + ϑ

)α]
vℓ,

where ϑ > ϖ, then from conditions (3.9), (3.10),

lim
ϑ→+∞

L (ϑ) = ar−|Mr| −
1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )

+

(
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
)]
µℓ > 0,

lim
ϑ→+∞

X (ϑ) = ar−|Mr| −
1
vr

n∑
ℓ=1

[
|bR

rℓ|(F
IR
ℓ + F II

ℓ ) + |bI
rℓ|(F

RR
ℓ + FRI

ℓ )

+

(
|dR

rℓ|(G
IR
ℓ +GII

ℓ ) + |dI
rℓ|(G

RR
ℓ +GRI

ℓ )
)]

vℓ > 0.

By the property of the limit, there is a constant σ > ϖ such that L (σ) > 0 and X (σ) > 0. So (3.3)
and (3.4) hold. The proof is completed.

3.2. Fixed-deviation synchronization

Regard the following system (3.11) as the drive system,

CDα
t0zk(t) = −akzk(t) +

n∑
ℓ=1

bkℓ fℓ(zℓ(t)) +
n∑
ℓ=1

dkℓgℓ(zℓ(t −ϖkℓ(t))), (3.11)

and the response system is defined by the following:

CDα
t0 z̃k(t) = −akz̃k(t) +

n∑
ℓ=1

bkℓ fℓ(z̃ℓ(t)) +
n∑
ℓ=1

dkℓgℓ(z̃ℓ(t −ϖkℓ(t))) + Uk(t). (3.12)

where z̃k(t) = z̃R
k (t) + iz̃I

k(t).
The initial values of system (3.12) is given by

z̃k(t0 + s) = ψ̃R
k (s) + ψ̃I

k(s), −ϖ ≤ s ≤ 0.

Define Λk(t) = z̃k(t) − zk(t),

ΛR
k (t) = z̃R

k (t) − zR
k (t), ΛI

k(t) = z̃I
k(t) − zI

k(t),

then we consider the following error system

CDα
t0Λk(t) = −akΛk(t) +

n∑
ℓ=1

bkℓ fℓ(Λℓ(t)) +
n∑
ℓ=1

dkℓgℓ(Λℓ(t −ϖkℓ(t))) + Uk(t), (3.13)
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where

fℓ(Λℓ(t)) = fℓ(z̃ℓ(t)) − fℓ(zℓ(t)),
gℓ(Λℓ(t −ϖkℓ(t))) =gℓ(z̃ℓ(t −ϖkℓ(t))) − gℓ(zℓ(t −ϖkl(t))).

The initial value of the error system (3.13) is noted in the following form:

Λk(t0 + s) = ψ̃k(s) − ψk(s) = Ψk(s), −ϖ ≤ s ≤ 0.

For error system (3.13), we construct the following controller:

Uk(t) =MkΛk(t) +Nk[sgn(ΛR
k (t)) + isgn(ΛI

k(t))]. (3.14)

Thus by controller (3.14), system (3.13) is converted as

CDα
t0Λ

R
k (t) = − akΛ

R
k (t) +

n∑
ℓ=1

bR
kℓ f R

ℓ (Λℓ(t)) −
n∑
ℓ=1

bI
kℓ f I

ℓ (Λℓ(t))

+

n∑
ℓ=1

dR
kℓg

R
ℓ (Λℓ(t −ϖkℓ(t))) −

n∑
ℓ=1

dI
kℓg

I
ℓ(Λℓ(t −ϖkℓ(t))) +MkΛ

R
k (t) +Nksgn(ΛR

k (t)),

CDα
t0Λ

I
k(t) = − akΛ

I
k(t) +

n∑
ℓ=1

bR
kℓ f I

ℓ (Λℓ(t)) +
n∑
ℓ=1

bI
kℓ f R

ℓ (Λℓ(t))

+

n∑
ℓ=1

dR
kℓg

I
ℓ(Λℓ(t −ϖkℓ(t))) +

n∑
ℓ=1

dI
kℓg

R
ℓ (Λℓ(t −ϖkℓ(t))) +MkΛ

I
k(t) +Nksgn(ΛI

k(t)).

(3.15)

Under assumption (ii), the following inequality holds:

∣∣∣ f R
ℓ (Λℓ(t))

∣∣∣ ≤ FRR
ℓ

∣∣∣ΛR
ℓ (t)

∣∣∣ + FRI
ℓ

∣∣∣ΛI
ℓ(t)

∣∣∣∣∣∣ f I
ℓ (Λℓ(t))

∣∣∣ ≤ F IR
ℓ

∣∣∣ΛR
ℓ (t)

∣∣∣ + F II
ℓ

∣∣∣ΛI
ℓ(t)

∣∣∣∣∣∣gR
ℓ (Λℓ(t −ϖkℓ(t)))

∣∣∣ ≤ GRR
ℓ

∣∣∣ΛR
ℓ (t −ϖkℓ(t))

∣∣∣ +GRI
ℓ

∣∣∣ΛI
ℓ(t −ϖkℓ(t))

∣∣∣∣∣∣gI
ℓ(Λℓ(t −ϖkℓ(t)))

∣∣∣ ≤ GIR
ℓ

∣∣∣ΛR
ℓ (t −ϖkℓ(t))

∣∣∣ +GII
ℓ

∣∣∣ΛI
ℓ(t −ϖkℓ(t))

∣∣∣ .
(3.16)

Theorem 2: If there are positive constants σ > ϖ ≥ 0 and µr > 0, vr > 0 (r = 1, · · · , n) such that
the following conditions

ar − |Mr| −
1 − α + α2

σα Γ(2 − α)
−

1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )

+

(
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
)(

σ

−ϖ + σ

)α]
µℓ > 0

(3.17)

and

ar − |Mr| −
1 − α + α2

σα Γ(2 − α)
−

1
vr

n∑
ℓ=1

[
|bR

rℓ|(F
IR
ℓ + F II

ℓ ) + |bI
rℓ|(F

RR
ℓ + FRI

ℓ )

+

(
|dR

rℓ|(G
IR
ℓ +GII

ℓ ) + |dI
rℓ|(G

RR
ℓ +GRI

ℓ )
)(

σ

−ϖ + σ

)α]
vℓ > 0

(3.18)
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hold, then delayed FOCVNNs (3.15) is globally uniformly β-stable. In other words, fixed-deviation
synchronization between the drive system (3.11) and the response system (3.12) can be achieved.

Proof: Construct an auxiliary function as follows

P(t) = max
1≤k≤n

max
{
|ΛR

k (t)|
µk

,
|ΛI

k(t)|
vk

}
.

Let

Q(t) = (t − t0 + σ)αP(t), Q(t) = sup
t0−σ≤s≤t

Q(s).

There exists r ∈ {1, · · · , n} for given t ≥ t0 having

P(t) = max
{
|ΛR

r (t)|
µr

,
|ΛI

r(t)|
vr

}
.

Then we get P(t) =
|ΛR

r (t)|
µr

, P(t) =
|ΛI

r(t)|
vr

. Now, we let P(t) =
|ΛR

r (t)|
µr

, another case is similar.

By (3.15) and (3.16) it follows that

CDα
t0P(t) =

1
µr

CDα
t0 |Λ

R
r (t)| ≤

sgn(ΛR
r (t))

µr

CDα
t0Λ

R
r (t)

≤
−(ar − |Mr|)

µr
|ΛR

r (t)| +
|Nr|

µr
+

1
µr

n∑
ℓ=1

|bR
rℓ|(F

RR
ℓ |Λ

R
ℓ (t)| + FRI

ℓ |Λ
I
ℓ(t)|)

+
1
µr

n∑
ℓ=1

|bI
rℓ|(F

IR
ℓ |Λ

R
ℓ (t)| + F II

ℓ |Λ
I
ℓ(t)|) +

1
µr

n∑
ℓ=1

|dR
rℓ|(G

RR
ℓ |Λ

R
ℓ (t −ϖrℓ(t))| +GRI

ℓ |Λ
I
ℓ(t −ϖrℓ(t))|)

+
1
µr

n∑
ℓ=1

|dI
rℓ|(G

IR
ℓ |Λ

R
ℓ (t −ϖrℓ(t))| +GII

ℓ |Λ
I
ℓ(t −ϖrℓ(t))|)

≤ − (ar − |Mr|)P(t) +
|Nr|

µr

+
1
µr

n∑
ℓ=1

|bR
rℓ|(F

RR
ℓ + FRI

ℓ )µℓP(t) +
1
µr

n∑
ℓ=1

|bI
rℓ|(F

IR
ℓ + F II

ℓ )µℓP(t)

+
1
µr

n∑
ℓ=1

|dR
rℓ|(G

RR
ℓ +GRI

ℓ )µℓP(t −ϖrℓ(t)) +
1
µr

n∑
ℓ=1

|dI
rℓ|(G

IR
ℓ +GII

ℓ )µℓP(t −ϖrℓ(t))

=

{
− (ar − |Mr|) +

1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )
]
µℓ

}
P(t)

+
1
µr

n∑
ℓ=1

[
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
]
µℓP(t −ϖrℓ(t)) +

|Nr|

µr
. (3.19)
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By applying Lemma 2 and (3.19), we have

CDα
t0Q(t) ≤(t − t0 + σ)α CDα

t0P(t) +
1 − α + α2

σα Γ(2 − α)
Q(t)

≤

{
− (ar − |Mr|) +

1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )
]
µℓ

}
Q(t)

+
1
µr

n∑
ℓ=1

[
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
]
µℓ

( t − t0 + σ

t −ϖrℓ(t) − t0 + σ

)α
Q(t −ϖrℓ(t))

+ (t − t0 + σ)α
|Nr|

µr
+

1 − α + α2

σα Γ(2 − α)
Q(t)

≤

{
− (ar − |Mr|) +

1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )
]
µℓ

}
Q(t)

+
1
µr

n∑
ℓ=1

[
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
]
µℓ

( t − t0 + σ

t −ϖrℓ(t) − t0 + σ

)α
Q(t)

+ (t − t0 + σ)α
|Nr|

µr
+

1 − α + α2

σα Γ(2 − α)
Q(t).

It is known that
σ + E

E −ϖrℓ(t) + σ
is monotone non-increasing for E ≥ 0, and thus

t − t0 + σ

t −ϖrℓ(t) − t0 + σ
≤

σ

−ϖrℓ(t) + σ
≤

σ

−ϖ + σ
,

therefore,

CDα
t0Q(t) ≤

{
− (ar − |Mr|) +

1 − α + α2

σα Γ(2 − α)
+

1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )

+

(
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
)(

σ

−ϖ + σ

)α]
µℓ

}
Q(t) + (t − t0 + σ)α

|Nr|

µr

≤ −A Q(t) + (t − t0 + σ)αB, (3.20)

when Q(t) = Q(t), for t ≥ t0, where

A ≜ min
1≤r≤n

{
ar − |Mr| −

1 − α + α2

σα Γ(2 − α)
−

1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )

+

(
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
)(

σ

−ϖ + σ

)α]
µℓ

}
,

B ≜max
1≤r≤n

(
|Nr|

µr

)
.

Similar to cases 1–3 in Theorem 1, we finally obtain

∥z(t)∥ ≤
∥µ∥B

A
≜ β
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for all t ≥ t0 + T (ξ), when ∥Ψ∥C ≤ ξ, where

T (ξ) = max
{[( A ξ

Bµmin

) 1
α

− 1
]
, 0

}
.

So, fixed-deviation synchronization between the drive system (3.11) and the response system (3.12)
can be achieved.

Corollary 2: If there are n positive constants µr, vr such that

ar − |Mr| −
1
µr

n∑
ℓ=1

[
|bR

rℓ|(F
RR
ℓ + FRI

ℓ ) + |bI
rℓ|(F

IR
ℓ + F II

ℓ )

+

(
|dR

rℓ|(G
RR
ℓ +GRI

ℓ ) + |dI
rℓ|(G

IR
ℓ +GII

ℓ )
)]
µℓ > 0 (3.21)

and

ar − |Mr| −
1
vr

n∑
ℓ=1

[
|bR

rℓ|(F
IR
ℓ + F II

ℓ ) + |bI
rℓ|(F

RR
ℓ + FRI

ℓ )

+

(
|dR

rℓ|(G
IR
ℓ +GII

ℓ ) + |dI
rℓ|(G

RR
ℓ +GRI

ℓ )
)]

vℓ > 0 (3.22)

hold, then delayed FOCVNNs (3.15) is globally uniformly β-stable. In other words, fixed-deviation
synchronization between the drive system (3.11) and the response system (3.12) can be achieved.

Proof: The proof of Corollary 2 is similar to the proof of Corollary 1.

4. Numerical examples

Example 1: We consider the following delayed FOCVNNs:

CD0.9
t0 zk(t) = −2z1(t) + b11 f1(z1(t)) + b12 f2(z2(t)) + d11g1(z1(t − 1)) + d12g2(z2(t − 1)) + U1(t),

CD0.9
t0 zk(t) = −4z2(t) + b21 f1(z1(t)) + b22 f2(z2(t)) + d21g1(z1(t − 1)) + d22g2(z2(t − 1)) + U2(t),

(4.1)

where t0 = 0, zk(t) = zR
k (t) + izI

k(t), fℓ(zℓ) = gℓ(zℓ) = tanh(zR
ℓ ) + tanh(zI

ℓ)i, ℓ = 1, 2,

B = (bkℓ)2×2 =

(
0.03 + 0.05i − 0.05 + 0.04i
0.02 − 0.01i − 0.03 + 0.02i

)
, D = (dkℓ)2×2 =

(
−0.07 − 0.02i 0.03 + 0.01i
−0.05 + 0.03i 0.01 + 0.05i

)
.

It’s not hard to choose that FRR
ℓ + FRI

ℓ = F IR
ℓ + F II

ℓ = 2, GRR
ℓ +GRI

ℓ = GIR
ℓ +GII

ℓ = 2.
LetM1 = 0.06,M2 = 0.04, σ = 10, µ1 = µ2 = 1, v1 = v2 = 1, then (3.3) and (3.4) hold. Hence,

system (4.1) is globally uniformly β-stable from Theorem 1. Figure 1 shows the numerical simulation
of FOCVNNs (4.1) under discontinuous control rules U1(t) = 0.06z1(t) + 1.19[sgn(zR

1 (t)) + isgn(zI
1(t))]

and U2(t) = 0.04z2(t) + 1.19[sgn(zR
2 (t)) + isgn(zI

2(t))].
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Figure 1. The fixed-deviation stabilization of system (4.1), where β = N(β1 + β2),N = 10.

Example 2: Regard the following FOCVNNs (4.2) as the drive system:

CD0.95
t0 zk(t) = − 5z1(t) + b11 f1(z1(t)) + b12 f2(z2(t)) + d11g1(z1(t − 1)) + d12g2(z2(t − 1)),

CD0.95
t0 zk(t) = − 3z2(t) + b21 f1(z1(t)) + b22 f2(z2(t)) + d21g1(z1(t − 1)) + d22g2(z2(t − 1)),

(4.2)

where t0 = 0, fℓ(zℓ) = gℓ(zℓ) = cos(zR
ℓ ) + cos(zI

ℓ)i, ℓ = 1, 2,

B = (bkℓ)2×2 =

(
−0.02 + 0.05i 0.04 + 0.06i

0.02 − 0.01i − 0.07 + 0.09i

)
, D = (dkℓ)2×2 =

(
0.03 − 0.02i − 0.08 + 0.09i
−0.05 + 0.03i 0.01 + 0.05i

)
.

The response system is given by

CD0.95
t0 z̃k(t) = − 5z̃1(t) + b11 f1(z̃1(t)) + b12 f2(z̃2(t)) + d11g1(z̃1(t − 1)) + d12g2(z̃2(t − 1)) + U1(t),

CD0.95
t0 z̃k(t) = − 3z2(t) + b21 f1(z̃1(t)) + b22 f2(z̃2(t)) + d21g1(z̃1(t − 1)) + d22g2(z̃2(t − 1)) + U2(t),

(4.3)

where the parameters bkℓ, dkℓ, fℓ(·), gℓ(·) are all the same as in FOCVNNs (4.2).
As above choose that FRR

ℓ + FRI
ℓ = F IR

ℓ + F II
ℓ = 2, GRR

ℓ +GRI
ℓ = GIR

ℓ +GII
ℓ = 2.

LetM1 = 0.02,M2 = 0.04, σ = 20, µ1 = µ2 = 1, v1 = v2 = 1, then (3.17) and (3.18) hold. Hence, it
can be seen that drive system (4.2) and response system (4.3) are fixed-deviation synchronization from
Theorem 2. Figure 2 shows the numerical simulation of error system under discontinuous control rules
U1(t) = 0.02Λ1(t)+2.22[sgn(ΛR

1 (t))+isgn(ΛI
1(t))] and U2(t) = 0.04Λ2(t)+2.22[sgn(ΛR

2 (t))+isgn(ΛI
2(t))].
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Figure 2. The fixed-deviation synchronization of drive system (4.2) and response system
(4.3), where β = N(β1 + β2 + β3 + β4), β1 + β2 = β3 + β4 = 0.996,N = 10.

5. Conclusions

This paper discusses fixed-deviation stability and synchronization of FOCVNNs. The system
investigated in this paper is a continuous neural network, and a discontinuous controller is introduced
to address this problem. Under the discontinuous controller, fixed-deviation stability theory and
fractional calculus method are used to observe the fixed-deviation dynamical behavior of delayed
FOCVNNs. In this paper, a continuous system is transformed into a discontinuous system by
imposing a discontinuous controller to achieve fixed-deviation dynamics, this technique can be
extended to other more complex systems, which would be a future direction of research.
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