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Abstract: In this paper, we study fixed-deviation stabilization and synchronization for fractional-
order complex-valued neural networks with delays. By applying fractional calculus and fixed-
deviation stability theory, sufficient conditions are given to ensure the fixed-deviation stabilization and
synchronization for fractional-order complex-valued neural networks under the linear discontinuous
controller. Finally, two simulation examples are presented to show the validity of theoretical results.
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1. Introduction

Fractional calculus is a theory of differentiation and integration of arbitrary order, which is an
extension of integer order calculus. Initially, the study of fractional calculus theory was mainly
conducted in the field of pure number theory, but as it developed further, fractional calculus was
widely used in fluid mechanics [1], mechanical systems [2], signal processing [3, 4], system
identification [5], and many other fields. Fractional calculus has become an essential theory in many
fields. Many scholars have applied fractional-order derivatives to neural networks and have built
fractional-order neural networks (FONNSs). So far, the study of FONNs has yielded some interesting
results [6-17]. Zhang and Zeng [18] showed asymptotic stability of nonlinear FONNs with
unbounded time-varying delays and asymptotic synchronization of FONNs under a linear controller.
Ding et al. [19] investigated the robust finite-time stability of FONNS.

Complex-valued neural networks (CVNNSs), whose input/output signals, connection weights, and
activation functions are derived from the complex domain. Unlike real-valued neural networks,
functions that are both bounded and analytic in the complex domain must be constant according to
Liouville’s theorem [20]. Therefore, the study of the dynamics of CVNNSs is essential. In recent years,
the dynamic behavior of fractional-order CVNNs (FOCVNNS5) has been reported in many kinds of
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literatures, including finite-time stability [21, 22], impulse stability and synchronization [23], and
Mittag-Leffler stability and synchronization [24,25].

In neural networks, time delays are prevalent. Failure to take into account time delays will cause
stable systems to be unstable and lead to a reduction in the capabilities of the neural network [26,27].
Therefore it is relevant to study FOCVNNs with time delays in practical applications. Bao et al. [28]
obtained sufficient conditions to guarantee the synchronization of FOCVNNs with time delays using
linear delay feedback control and fractional-order inequalities. Liu and Yu [29] derived several
conditions for quasi-projective synchronization and complete synchronization of FOCVNNs with
time delays based on generalized discrete fractional Halanay inequality and Lyapunov generalized
function methods without dividing the complex-valued neural network into two real-valued systems.

Deviation dynamics is particularly important for the evolutionary characterization of control
systems. Fixed-deviation stabilization and synchronization are very important dynamical behaviors of
discontinuous neural network systems. There have been some important findings about
fixed-deviation dynamics [30,31]. Chen et al. [30] initially proposed the concept of fixed-deviation
stability to describe the stability properties of discontinuous systems, and sufficient conditions to
ensure globally uniform asymptotic fixed-deviation stability of delayed fractional-order memristive
neural networks were given. Based on the theory of fixed-deviations in [30], Zhang [31] used
linear-type discontinuous control and fractional-order calculus methods to address fixed-deviation
stability and synchronization problems of FONNs. Clearly, the investigation of fixed-deviation
dynamics for FONNSs is an important topic. But so far, there are few results on the fixed-deviation
dynamics of FOCVNN:G.

In the above view, we present the problems of fixed-deviation stability and synchronization of
FOCVNNSs. Continuous FONNSs are difficult to achieve fixed-deviation stability and synchronization,
and a special control method needs to be imposed to make the continuous system generate
fixed-deviation dynamics behavior. A natural idea is to add a discontinuous controller so that
continuous FOCVNNSs turn into the discontinuous system under the discontinuous controller, and
then impose complex-valued conditions to make the FOCVNNs achieve fixed-deviation stability and
synchronization. Also based on the theory of fixed-deviations in [30], fractional-order calculus and
Lyapunov method, sufficient conditions for the formation of fixed-deviation stability and
synchronization of FOCVNNs under linear discontinuous controllers are obtained.

2. Model description and preliminaries

In this section, necessary definitions and lemmas will be provided for the proof of the theorem in
Section 3.
The Caputo’s fractional derivative of a function J7(f) € C*!([ty, +o0),R) with order @ > 0 is
defined by
1 AL 0))
s,
Ir(A-a)J, (- syl

Dy A1) =
where t > 1), A — 1 < @ < A, A is positive integer, « is a positive constant and I'(-) is Gamma function,

that is
(@) = f 1 leds.
0
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The Riemann-Liouville fractional derivative of order @ > 0 for a function J#Z(t) € C**'([ty, +0),R)
is defined by

1 dt )
RLDa - - = i S
D= F T an ), o

where A -1 <a<A4,4>0.
By the above definition, the following relation holds:

()

DY (1) = DY (1) — t—1)7%
to () fo () r(l—a)( 0)
Now, we introduce delayed FOCVNNS as follows:
DLzt = —az(t) + ) biefilz0) + ) dugelze(t = @u(t) + Ui(o), (2.1)
=1 =1

where 0 < a < 1, zx(¥) € C denotes the state variable; a; > 0 is the self-feedback connective weight of
the kth neuron; by, and d;, are the connective weights matrix without and with time delay respectively;
Jfe(ze(1)), ge(ze(t—w(2))) represent the complex-valued state activation functions at time ¢ and t—@y,(?);
@ (1) s the time-varying delay satisfying 0 < @y, (1) < @; U(¢) stands for the external input.

Let C, = C([-w,0],R") be the Banach space of continuous functions mapping [—w, 0] into R".
Fory € Cq, Wllc = sup [ (s)ll.

—w<s<0

Note the initial conditions of delayed FOCVNNSs (2.1) as
alto+5) =YR(s) +yi(s), —@w<s<0,k=1,---,n. (2.2)

Let z = X + iz’ € C. For any ¢, fi(z) and g/(z(t — @)) can be shown by dividing into its real and
imaginary parts as

fi@) =fRR, 2 +if (. 2,

2.3
gzt — @) =gt - @), 7 (t - @) + igh(R(t - ©), 7 (t - ©)). 2-3)

Let z4(?) = zf (1) + izi(r). Delayed FOCVNNS (2.1) can be described as the following equation:
DL = - b0+ Y B @) = Y b )
=1 =1

+ D dgR it = m) = D diglzt — mi0) + U (@),
=1 =1

D0 = — adf () + Y B fl ) + ) bl fE ()
=1 (=1

+ Z dg(ze(t — w(0))) + Z di,gr (ze(t — (1)) + UL(D). (2.4)
=1 =1

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10244—-10263.



10247

Definition 1 ([30]): FOCVNNSs (2.1) is called globally uniformly S-stable if for any € > 0 and any
initial values ¢, ¢ € Cq, ||¢ — ¢|lc < &, there is a constant 7' (£) > 0, such that

”Z(t’ to, ¢) - Z(t’ Iy, 90)” < ﬁ

for all t >ty + T(¢), where 5 > 0.

Remark 1: S-stability, also known as fixed-deviation stability, specifically, when the difference
between two different initial values of the described neural network are kept in a certain range, the
difference among final values of the system trajectories starting from these two initial values will be
maintained in a fixed-deviation degree.

Definition 2: The zero solution of delayed FOCVNNSs (2.1) is called globally uniformly -stable if
forany ¢ € Co, € > 0, |[¥|lc < &, there is a constant 7'(¢) > 0, such that

”Z(ta To, W)” < ﬁ

for all t > ty + T(¢), where 8 > 0 is a constant.

In this paper, we propose the below assumptions:

(i) The activation functions f;(-) and g.(-) satisfy f,(0) = g,(0) = 0.

(ii) For functions fR(-,-), f/(-,-), gX(,-), g}(-,-), there exist positive constants Fi<, Ff, FIX, FI,
GER, GN, GIR,G!, such that

|f€R(ZR,ZI) _ ng(ZR’ZI)l < FéeRlZR _ ZRl + Ffllzl _ Z1|
G2 = fi @ DI < R =28+ R = 2]

lgR(ZR, 7 — gR(R, ) < GRRIZR - 2F 1+ GR) - )
lgh(Z®, 2 - gl ) < GIFIZR - &)+ G - Z).

(2.5)

Remark 2: Condition (i) holds if and only if both its real and imaginary parts are 0, i.e., /~(0,0) =
/7(0,0) = 0 and g¥(0,0) = g/(0,0) = 0 for any £ € R.
Next, we present two necessary lemmas.

Lemma 1 ( [30]): If functions f(¢) and g(¢) together with their derivatives are continuous in [7, ],
then fractional differentiation of the Leibniz rule is in the form

n dm
D30 = ) () o Dt a0 - 1o,
m=0

wheren > a + 1,

(a/) B Ta+1)

m| m T@-m+1)
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and

N _(_1)n(r _ a)n—a+l 1 1
no = [ [ Fa.maan

Fo(t, £, 1) =q(to + hi(t — 1)) p"* V(to + (t — t)({ + Fr — L))

Lemma 2: For a continuous differentiable function P(¢) : [ ty, +o0) — [ 0, +00) and Q(¢) = (t — 1o +
o)*P(t), then
+a?

Cna _ a Cya l-a A
Dy Q1) < (t =ty +0)* "Dy P(t) + T2 Q1),

where ¢ > ty, o > 0 and Q(¢) = sup Q(s).

to<s<t

Proof: From Lemma 1, we know

Cna _ RLya _ Q(lO) _ —a
D Q1) = "Dy Q(t) - (t=1t)

:@—m+¢ﬂ@@?@+a%~m+aﬁ4“EHPm—Rﬂﬂ—GWWMU—WW

0 0 (1 -a)

_ a/C na P(IO) _ -ay _ O-QP(IO) _ - 204 a—1 RL nya-1

<@ -1+ 0)'CD,P@)+ - a)(r 1)) = a)(t ) " +a(t—ty+0) Dy~ P(1)
< (t—to + )" “DIP(1) + Plo)_, @’ (t —ty + o) *EDEIP(1)

o I -a) o

Q)

< (=19 +0) “DyP(1) + + a2 (t— 1o+ o) FEDYTIP(r).

oc?T'(l —a)
Also by the definition of Riemann-Liouville fractional derivative,

&t =19+ ) K DI P(r)

2 2

(t—to+ o) ! f (t— 5) "P(s)ds < o_aa—é(t).

“T(-a) T2 - a)
Therefore,
a(t) a? —
Cna _ a Cna
Dy Q1) < (t =ty +0)* "Dy P(1) + T - =T - Q)Q(t)
. o C a l-a+a® =
=(t—to+0)" “DiP(t) + “TC_a) Q1)

for t > ty. Proof of Lemma 2 is finished.
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3. Main results

In this section, we will provide some sufficient conditions to guarantee fixed-deviation stability and
synchronization of delayed FOCVNNSs (2.1).

3.1. Fixed-deviation stability

We design linear discontinuous control for system (2.1):
Ur(t) = Mizi(r) + Nilsgn(zg (1) + isgn(z;(1))], (3.1)

wherek=1,--- ,n.
Thus by controller (3.1), system (2.4) is converted as

D) = - azf () + Z b R (0) - Z bl f} (ze(®)

+ Z A8 (ze(t — (1)) Z d},81(ze(t — (1) + Mizi (£) + Nisgn(zi (1)),

DRz = - af(n) + Z bR fLe0) + Z A0
Z A gh(zi(t — (1) + Z L8Rt — w1) + Mih(D) + Nesgn(@l(r).  (3.2)

Theorem 1: If there are positive constants o > @w > 0 and u, > 0,v, > 0 (r = 1,--- ,n) such that
the following conditions

n

l-—a+a? 1
a, — | rl—m - Z [ RIFR + FRDY + ILIFR + FI
K (3.3)
0— (04
(Id I(GRR + GEY + |d! [(GIR + Gg,’))(—) ]ﬂ[ >0
—w + O
and )
l-a+a 1 ©
a = IMI-— s | DRIGF 4 FL) + Bl CE + FE
" (3.4)

IR 11 1 [(GRR 4+ GRI % .
+ (AGH + G + LG + GED) =2 o > 0

hold, then delayed FOCVNNSs (3.2) is globally uniformly S-stable, that is, delayed FOCVNNSs (2.1) is
globally uniformly -stable via control rule (3.1).
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Proof: Construct an auxiliary function as follows

P(t) = max max {

1<k<n

12 (D) Izk(t)l}

Mk Vi

Let

Q) = (t -ty + ) P(1), Q)= sup Q(s).

ty—0<s<t

There exists r € {1, --- , n} for given ¢ > ¢, having

R 1
P(t) = max{w, M}

Hr vr

R 1 R
Ol oy = Ol Now, we tet () = 2!

r r

Then we get P(t) =
Hr
By (2.5) and (2.7) it follows that

, and another case is similar.

“DIP(1) _/.T ‘Do) < M prR(r)

r

M, N,
< Dy P L Z BRICFEFIE @) + FEIzj0)
Hr Hr Hr =
- — Z BlAFRIf O] + FJl 240D + — Z dRNGEF =t = )] + G 24t = (1))
Hr = Hr =
1 1 IR 11 I
o Z /G = = )] + G2t = @, (1))
" e=1
N

- (a, = IMDP@) +

r

+— Z BEICFE + FE P + — Z IBLACF LR + F{DuP (o)

’51 ’51

o Z (dRIGEE + GEOu P = (1) + — Z LG + GHueP(t = @,(1))

K K5
1 C RR RI 1 IR 11
={ =@M+ SR+ FE + WA + D e
"oe=1
1 n RR RI 1 IR 11 |NI’|
+— 3 [aIGE + G + LG + I e - i) + =L (3.5)
" =1 r
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By using Lemma 2 and (3.5), then

2 —_—
CDQU) <(t — 1o + ) CDIP(1) + %am

<{ - @ - M+ izn][w (FE + FE) + IDLAFL + FID @t
" e=1

1
+— > [1a8IGE + GE + 141G + G ||
" =1

t—ty+o
t—w(t)—tg+0

) Q- ey

o NG l-a+a?
+u—m+a)ur+oﬂnz_mQO

n

<f - @~ IMD+ ﬁ% ; [ 1681 + FE + 1L FE + 2 @)

+l2[|d (GFR + GFT) + d! |(G1R+G”)]ug(

Hr =

t—ty+o )(z_()
—w(t)—th+ 0
IN 1-a+a?

+(t—ty+0) m + — F(Z—Q)Q(t)'

. o+ & ) ) .
It is known that ——————— is monotone non-increasing for & > 0, and thus
E —wy(t) + 0

t—ty+o o o

< < ,
t—wt)—tgy+o0 —wy()+oc —-w+o

therefore,
CD(tQ(t)
1 -—a+a? 1
< - @ - M+ o _Z[ R & FR 4 (bl ((FIR 5 FI)
=
RR RI IR 11 g . o NG
(|d (GRR + GF) + |d' [(GF + G ))(—) ],ug}Q(t)+(t—to+0')
—w+o -
- AU+ (t—to+0) B (3.6)
when Q(¢) = Q(1), for t > t,, where
—a+ a? 1 ©
o A min{ M- 2 [lb ((FRR 4 FRIY 4 1L (FIR 4 FIT)
l<r<n loaid F(2 @) U ; rt t
+ (145IGE + GE + 1L + G | =) [,
—w+o
A ~ max ('er).
1<r<n My
Next, from the definition Q) = sup Q(s), we will divide into three cases to prove

to—0<s<t
fixed-deviation stable.
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Case 1: Q(s) > Q(s) for any ty < s < t. Now, we consider Q(¢) is the maximum value of Q(s) at
moment %, that is

Q) = Q(ty), Yt >t

Hence,
_ |l |l = . |l =
lzOIl <l|ullP@) = C—h+or O_)QQ(I) < C—h+or O_)QQ(I) i Er—— O_)QQ(IO)
[|el o lullo®&
(-t + U')ﬂminW”C = (t = to + O )dmin
when [lc < &, where pyi, = lI£11<Il {1},
Case 2: Q(r) = Q(f). We obtain
‘DIQ(N) < “DEQD), t > 1. (3.7)

From divisional integration method, we have

QA -Q), _ . Q) -Qs) Q) -Q) (A - Q)

lim
0 (=9 s (t=8)* (t=to)* o (=9
el e Q) -Q) 1) - Q)
= ‘h_g} _a[ Q(5) - Q ()]t -s) i 1)° a U=y ds
Q) - Q(ty) "Q(s) — Q(s)
_—W—a . stso,
thus, (3.7) holds.
Next, we demand
B
P(t) < E, t=> 1. (3.8)

Otherwise, from (3.6) and (3.7) we have

‘DIQ(N) <“DIQ() < ~A QD) + (t — 1y + T)* B
S—dA—tg+)"Pt)+({t—tg+0) % <0.

It is known that Q(7) is monotonically increasing, so Z'l,(t) > 0, then

_ 1 * Q)
‘DQ(r) = ds >0,
QO = ey, o2
which is a contradiction. Hence, (3.8) is true.
Therefore,
llull %
DIl < ||ullP(r) <

llzOIl < [lpllP(2) 7
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for t > 1. _ _
Case 3: Q) = Q(D), t, < f < t, and Q(s) > Q(s), for Vs € (7, 1].
Combining Cases 1 and 2, we get

A
P(i) < 7
and

QH<QH)=QD) =Q0) = (F—tg+ ) PEH < Tty + 0')“%

Therefore, for t > ¢,
Il Q(r) <l
(t—to+o)e ~ o

o= (25 -1}

B
()] < “lili L

forallt > ty+T(£), when |[y]|c < &. So, it can be inferred that then delayed FOCVNNS (2.1) is globally
uniformly S-stable via control rule (3.1).

Ol < [lullP@) =

In conclusion, let

then

Corollary 1: If there are n positive constants y,, v, such that

n

M= - T IRIGEE & FE + LS + Ff)

" e=1

(ld (GR® + GRy 1 |d)(G'* + G"))]W >0 (3.9)

and

n

1
ar— M| - — Z[ BRICFIR + FIy + [bL(FRR + FR)

Vr (=1

(ld (GI® + GIT) + d" [(GP* + Gﬁ?’))]vpo (3.10)

hold, then delayed FOCVNNSs (2.1) is globally uniformly fixed-deviation stable via control rule (3.1).
Proof: Let

—a+a’ RR RI L \(FIR 4 FlI
L) = a-IM,| - mr(z ;[ RICEER + R + bl (I + FITy

(GE + I + G + G s e
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l-a+da? 1 ©
%(0) = a,—lM,l - m - v—r [Z:; [ |b§€|(FgR + Fél) + |b£[|(F§R + F?I)

9 «
+ dR GIR +GII + d] GRR +GRI )( ) ] ,
(| p((Cr ) +1d, (G ¢) o+ Ve

where 9 > @, then from conditions (3.9), (3.10),

. 1
Tim 209) = a,- M- — [ R ICFR® 4 FR 4 B I(FIR + F1)

=1

+ (|d§|(G§R +GRY + 1dLI(GIR + Ggf))]y[ >0,

: 1 <
lim 2°(9) = a,-IM|-— > [ BRI(FIR + FITy + bl [(FFR + FR)
J—+o0 vV, =

+ (|d§|(G§R + Gy + |d\(GF* + Gf’))]vg > 0.

By the property of the limit, there is a constant o= > @ such that .Z (o) > 0 and 2 (o) > 0. So (3.3)
and (3.4) hold. The proof is completed.

3.2. Fixed-deviation synchronization

Regard the following system (3.11) as the drive system,
D} (1) = —arzn(t) + Zn: brefe(ze(2) + Zn: dre8e(ze(t — wi(1))), (3.11)
=1 =1
and the response system is defined by the following:
DLz = —aZ(D) + i brefe(Ze()) + i drege(Ze(t — wie(1))) + Ui(0). (3.12)
(=1 =1

where Z(1) = Z{(1) + iZ;(1).
The initial values of system (3.12) is given by

Zlto + 8) = UR(s) +di(s), —@ < s<0.

Define Ay(f) = Z(t) — zx(2),

AR() = 280 — Z(1), ML) = Zu() — 240,

then we consider the following error system

DY A1) = —ae A1) + Z bie fe(Ae()) + Z diege(Ae(t — wie(1))) + Ur(1), (3.13)
=1 =1

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10244—-10263.
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where

Je(N () =fe(Ze(2) — [fe(ze(2)),
8e(Ae(t — @ye(1))) =8e(Ze(t — @ye(2))) — 8e(2e(t — TH(D))).

The initial value of the error system (3.13) is noted in the following form:
Ailto + 8) = P(s) = Yn(s) = ¥i(s), —@ <5 <0.
For error system (3.13), we construct the following controller:
Uk(t) = MilAi(1) + Nilsgn(Af (D) + isgn(Ag(n)]. (3.14)

Thus by controller (3.14), system (3.13) is converted as

CDIAR®) = - aAf (@) + Z RGOS Z bl f} (A1)

n

+ Z R R (At — (1)) — Z di 8 (At — Te(1)) + MAL(E) + Nisgn(AF (1),
=

=1

CDLALD = — arAf() + Z B (A1) + Z B fF(AD)

* Z AR GHA L = (1)) + Z dl R (At = (1) + ML) + Nisgn(AL(D).

(3.15)
Under assumption (i), the following inequality holds:
A A)] < FERIAL O] + FE A0

[l (Ae))| < FIRIAR@)| + FI|AL@)] .16

g8 (At — Tre@))| < GER |AR(t = ()| + GE |AlE — (1))
i (At — T@)| < G ARt — @] + GV [Nt — T (D)) -

Theorem 2: If there are positive constants o > @w > 0 and u, > 0,v, > 0 (r = 1,--- ,n) such that
the following conditions

1 —a+a? 1 &
ar =M = T = N BAIGFE + FE 4 AP + FI
o' T2-a) p (3.17)

o a
+ (141G + Gy + LG + GID | ———) e > 0
—w+ 0
and

—a+a? 1 ¢
~ M= T = S B + P+ B + FE
r (3.18)

(ld (G + G + |d!,|(GRR + GR’))(L) ]W >0
- + O

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10244—-10263.



10256

hold, then delayed FOCVNNSs (3.15) is globally uniformly -stable. In other words, fixed-deviation
synchronization between the drive system (3.11) and the response system (3.12) can be achieved.

Proof: Construct an auxiliary function as follows

{IAf(t)l IAi(t)I}

P(t) = max max ,
Mk Vi

1<k<n

Let

Q1) = (t— 1o+ ) P@), Q)= sup Q).

thy—0<s<t

There exists r € {1,--- , n} for given ¢ > 1y, having

AR Al
o) - ax{| fo | ,(t)l}.
Hr 1z
R AI R
Then we get P(t) = | A0 , P(t) = l A1) . Now, we let P(r) = A ’(t)|, another case is similar.
Hr r ,
By (3.15) and (3.16) it follows that
R
“DIP(t) = p CD“IAR(t)|< MCDZ) AR (D)
—(a, — M, N,
< =MD nry o B Zw AFEFIAR @]+ FEIAL D)
r r r =1

+— Z b I(FFIAG (O] + FLADD) + — Z I NGERIAL (= ()] + AN = @ (1))

=1 ’fl

- — Z /NGNS = @ (D)) + GYIALE = (1))

T =1

IN|

r

< —(a, = IMDHP@) +

+— Z BRICFEE + FE P (o) + — Z BLACF LR + F{uP (o)

Hr = Hr =
+— Z IAENGER + GEOuP(t = (1) + — Z NG + GueP(t = (1))
Hr = Hr =

n

== @ =MD+ 3 [BRIEE + EF 4 I+ P o

T =1

1 n
= [ Il (GE™ + G + |di (G + Gf/)]uﬂ)(t ~ w0y +

r =1 r

(3.19)
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By applying Lemma 2 and (3.19), we have

2 —_
CDTQ) <(t — 1 + ) CDIP(1) + %Qm

< - @ - |Mr|>+ﬂii[|b (FE + FE) + IDLAFL + FID @t
" oe=1

N 1 Z [ IdRI(GRR + GBI + |d! |(G™F + G?)]/w‘f(

re=1

t—ty+o
t—w(t)—tg+ 0

) Qt - (1))

JN 1 —a+a?
+(—19+0) . +o’“F(2—a)Q()

n

<f = @ =MD+ 3 [ BRI + FE W + P @)
" =1

1
b [ IR I(GRR + GRT) 4 1dL)(GI¥ + Gg’)]w(

T oe=1

t—ty+ 0 )“—()
t—w(t)—tg+ 0
N 1-a+da?

+(t—ty+0) m + — r(2_&)@0).

) oc+& . . .
It is known that —————— is monotone non-increasing for & > 0, and thus
E —w(t) + o

I—ty+o o o

S S b
t—w()—-ty+o —-wt)+o —w+o

therefore,

n

C e l-a+a’ 1 RR RI 1\(FIR 4 FlI
DLW <{ =~ @~ M+ s D BRI + FE Y+ F)
=1

N

r

(ld (GRR + GFT) + 1d" (G + G”))(#)Q]MZ}Q(I) L=ty + )
< QU+t -ty + 0V B (3.20)

when Q(7) = Q(¢), for t > t,, where

CZ+Q
o £ uin {a, - M| - ar<2— ;[ BEACFER + FR) 1 b1 (FI + F1)

+ (EI(GE® + GE) + Il (G + G”))(_w"+ ) |}
9B ~ max (' Nil )

I<rsn \ U,

Similar to cases 1-3 in Theorem 1, we finally obtain

Il 8

=l < =

Y
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forall t >ty + T(&), when ||W||c < &, where

(Z) 110}

So, fixed-deviation synchronization between the drive system (3.11) and the response system (3.12)
can be achieved.

T¢) = max{

Corollary 2: If there are n positive constants y,, v, such that

n

1
ar—IMI - D] IBRICFES 4+ FE + 1 ACFI* + FY
" =1

+ (|d§€|(G’;R +GHY + |dLIGR + G{!))]W >0 3.21)

and

n

1
ar =M = = D[ IBRICEE + I + IS+ FE
" =1

n (|d§5 (GI® + Gy + |d)(GF* + Gfl))]\/g >0 (3.22)

r

hold, then delayed FOCVNNSs (3.15) is globally uniformly S-stable. In other words, fixed-deviation
synchronization between the drive system (3.11) and the response system (3.12) can be achieved.

Proof: The proof of Corollary 2 is similar to the proof of Corollary 1.

4. Numerical examples

Example 1: We consider the following delayed FOCVNN:Ss:

CD%QZk(f) = =2z21(1) + b1 f1(z1(D) + D12 f2(22(D) + d1181(z1 (2 — 1)) + d1282(22(2 = 1)) + U (2),

“DYzi(t) = —4z5(t) + by fi(21 (1)) + b fo(2o(1)) + do181(zi(t — 1)) + drnga(za(t — 1)) + Un(2),
(4.1)

where 1y = 0, zi(1) = z{(0) + iz (D), fe(ze) = ge(zr) = tanh(zy) + tanh(z))i, € = 1,2,

0.03 +0.05; —0.05 + 0.04: -0.07 - 0.02i 0.03 +0.01:

B=lwre={00_001i -003+002) P=U2={_0051003 0.01+005i°

It’s not hard to choose that FRX + F& = FIR + FIl =2, GR® + GF = GIfF + GI! = 2.

Let M; = 0.06, M, =0.04, 0 =10, u; = u, = 1, vi = v, = 1, then (3.3) and (3.4) hold. Hence,
system (4.1) is globally uniformly g-stable from Theorem 1. Figure 1 shows the numerical simulation
of FOCVNNSs (4.1) under discontinuous control rules U;(f) = 0.06z,(¢) + 1.19[sgn(zf(t)) + isgn(z{ ()]
and U,(1) = 0.04z5(7) + 1.19[sgn(z5 (1)) + isgn(z5())].
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$1=0.997

Figure 1. The fixed-deviation stabilization of system (4.1), where 8 = N(B; + 3,), N = 10.

Example 2: Regard the following FOCVNNSs (4.2) as the drive system:
DY 7(0) = = 521(0) + bi fiz1(D) + bio fo(za(D) + di1g1(21(t = 1)) + d12ga(2a(t — 1)),
DY u(t) = = 322(0) + ba1 f1(z1 (1) + b fo(22(D) + da181(21 (1 — 1)) + dnga(za(t — 1)),
4.2)
where 1) = 0, fi(z¢) = ge(z¢) = cos(z}) + cos(z))i, € = 1,2,

—-0.02 + 0.057 0.04 + 0.06i
0.02-0.01; -0.07 +0.09:

0.03-0.02i -0.08 +0.09:

B = (bt = ( ~0.05 +0.03i 0.01+0.05i |

), D = (di)rxr = (

The response system is given by

CDYP7(1) = = 521(1) + b fiZ1(D) + bio o(Za(D) + d11g1Gi(t = 1) + d12ga(Ba(t — 1)) + U (1),

“DYP7(1) = = 322(0) + bat fiG1 (D) + b fo(22 (1)) + dai g1(E1 (F = 1)) + dga(Za(t — 1)) + Ua (1),
4.3)

where the parameters by, dis, f7(+), g¢(-) are all the same as in FOCVNNs (4.2).

As above choose that FRX + F = FIR + FlIl =2, GRX + G¥ = GIf + GIl = 2.

Let M; =0.02, M, =0.04,0 =20, u; = u» = 1, vy = v, = 1, then (3.17) and (3.18) hold. Hence, it
can be seen that drive system (4.2) and response system (4.3) are fixed-deviation synchronization from

Theorem 2. Figure 2 shows the numerical simulation of error system under discontinuous control rules
Ui(1) = 0.02A(1)+2.22[sgn(AR (1)) +isgn(A] (1))] and Uo(r) = 0.04A,(1)+2.22[sgn(A (1) +isgn(AS(1))].
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Figure 2. The fixed-deviation synchronization of drive system (4.2) and response system
(43), where,b’ = N(ﬂl +,32 +,83 +,34),,81 +,32 = ﬁ3 +,34 =0.996,N = 10.

5. Conclusions

This paper discusses fixed-deviation stability and synchronization of FOCVNNSs. The system
investigated in this paper is a continuous neural network, and a discontinuous controller is introduced
to address this problem. Under the discontinuous controller, fixed-deviation stability theory and
fractional calculus method are used to observe the fixed-deviation dynamical behavior of delayed
FOCVNNSs. In this paper, a continuous system is transformed into a discontinuous system by
imposing a discontinuous controller to achieve fixed-deviation dynamics, this technique can be
extended to other more complex systems, which would be a future direction of research.

Acknowledgments

This work is supported by the Natural Science Foundation of China under Grant 61976084, the
Natural Science Foundation of Hubei Province of China under Grant 2021CFA080, the Young Top-
Notch Talent Cultivation Program of Hubei Province of China.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124
(2002), 803-806. https://doi.org/10.1115/1.1478062

2. J. M. Balthazar, P. B. Goncalves, S. Lenci, Y. V. Mikhlin, Models, methods, and applications of
dynamics and control in engineering sciences: state of the art, Math. Probl. Eng., 2010 (2010),
487684. https://doi.org/10.1155/2010/487684

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10244—-10263.


http://dx.doi.org/https://doi.org/10.1115/1.1478062
http://dx.doi.org/https://doi.org/10.1155/2010/487684

10261

10.

11.

12.

13.

14.

15.

16.

P. Panda, M. Dash, Fractional generalized splines and signal processing, Signal Process., 86
(2006), 2340-2350. https://doi.org/10.1016/j.sigpro.2005.10.017

M. S. Aslam, M. A. Z. Raja, A new adaptive strategy to improve online secondary path modeling
in active noise control systems using fractional signal processing approach, Signal Process., 107
(2015), 433—-443. https://doi.org/10.1016/].sigpro.2014.04.012

C.J. Z. Aguilar, J. F. Gmez-Aguilar, V. M. Alvarado-Martnez, H. M. Romero-Ugalde, Fractional
order neural networks for system identification, Chaos, Solitons Fractals, 130 (2020), 109444.
https://doi.org/10.1016/j.chaos.2019.109444

S. Fazzino, R. Caponetto, L. Patane, A new model of Hopfield network with fractional-
order neurons for parameter estimation, Nonlinear Dyn., 104 (2021), 2671-2685.
https://doi.org/10.1007/s11071-021-06398-z

Y. Liu, Y. Sun, L. Liu, Stability analysis and synchronization control of fractional-order
inertial neural networks with time-varying delay, IEEE Access, 10 (2022), 56081-56093.
https://doi.org/10.1109/ACCESS.2022.3178123

E. Kaslik, S. Sivasundaram, Nonlinear dynamics and chaos in fractional-order neural networks,
Neural Networks, 32 (2012), 245-256. https://doi.org/10.1016/j.neunet.2012.02.030

H. Wang, Y. Yu, G. Wen, S. Zhan, J. Yu, Global stability analysis of fractional-
order Hopfield neural networks with time delay, Neurocomputing, 154 (2015), 15-23.
https://doi.org/10.1016/j.neucom.2014.12.031

C. Huang, J. Wang, X. Chen, J. Cao, Bifurcations in a fractional-order BAM
neural network with four different delays, Neural Networks, 141 (2021), 344-354.
https://doi.org/10.1016/j.neunet.2021.04.005

C. Xu, D. Mu, Z. Liu, Y. Pang, M. Liao, C. Aouiti, New insight into bifurcation of fractional-
order 4D neural networks incorporating two different time delays, Commun. Nonlinear Sci. Numer.
Simul., 118 (2023), 107043. https://doi.org/10.1016/j.cnsns.2022.107043

C. Huang, H. Liu, X. Shi, X. Chen, M. Xiao, Z. Wang, et al., Bifurcations in a fractional-
order neural network with multiple leakage delays, Neural Networks, 131 (2020), 115-126.
https://doi.org/10.1016/j.neunet.2020.07.015

C. Xu, W. Zhang, C. Aouiti, Z. Liu, L. Yao, Bifurcation insight for a fractional-order stage-
structured predator-prey system incorporating mixed time delays, Math. Methods Appl. Sci., 2023.
https://doi.org/10.1002/mma.904 1

C. Xu, D. Mu, Z. Liu, Y. Pang, M. Liao, P. Li, et al., Comparative exploration on bifurcation
behavior for integer-order and fractional-order delayed BAM neural networks, Nonlinear Anal.
Modell. Control, 27 (2022), 1030-1053. https://doi.org/10.15388/namc.2022.27.28491

C. Xu, Z. Liu, Y. Pang, S. Saifullah, J. Khan, Torus and fixed point attractors of a new hyperchaotic
4D system, J. Comput. Sci., 67 (2023), 101974. https://doi.org/10.1016/].jocs.2023.101974

C. Xu, M. Rahman, D. Baleanu, On fractional-order symmetric oscillator with
offset-boosting  control,  Nonlinear Anal. Modell. Control, 27 (2022), 1-15.
https://doi.org/10.15388/namc.2022.27.28279

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10244—-10263.


http://dx.doi.org/https://doi.org/10.1016/j.sigpro.2005.10.017
http://dx.doi.org/https://doi.org/10.1016/j.sigpro.2014.04.012
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2019.109444
http://dx.doi.org/https://doi.org/10.1007/s11071-021-06398-z
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2022.3178123
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2012.02.030
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2014.12.031
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2021.04.005
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2022.107043
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2020.07.015
http://dx.doi.org/https://doi.org/10.1002/mma.9041
http://dx.doi.org/https://doi.org/10.15388/namc.2022.27.28491
http://dx.doi.org/https://doi.org/10.1016/j.jocs.2023.101974
http://dx.doi.org/https://doi.org/10.15388/namc.2022.27.28279

10262

17. C. Xu, W. Alhejaili, S. Saifullah, A. Khan, J. Khan, M. A. El-Shorbagy, Analysis of
Huanglongbing disease model with a novel fractional piecewise approach, Chaos Solitons
Fractals, 161 (2022), 112316. https://doi.org/10.1016/j.chaos.2022.112316

18. F. Zhang, Z. Zeng, Asymptotic stability and synchronization of fractional-order neural networks
with unbounded time-varying delays, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 5547-5556.
https://doi.org/10.1109/TSMC.2019.2956320

19. Z. Ding, Z. Zeng, L. Wang, Robust finite-time stabilization of fractional-order neural networks
with discontinuous and continuous activation functions under uncertainty, /[EEE Trans. Neural
Networks Learn. Syst., 29 (2018), 1477-1490. https://doi.org/10.1109/TNNLS.2017.2675442

20. W. Rudin, Real and Complex Analysis, Mcgraw-Hill, New York, 1987.

21. X. Ding, J. Cao, X. Zhao, F. E. Alsaadi, Finite-time stability of fractional-order complex-
valued neural networks with time delays, Neural Process. Lett., 46 (2017), 561-580.
https://doi.org/10.1007/s11063-017-9604-8

22. T. Hu, Z. He, X. Zhang, S. Zhong, Finite-time stability for fractional-order complex-
valued neural networks with time delay, Appl. Math. Comput., 365 (2020), 124715.
https://doi.org/10.1016/j.amc.2019.124715

23. P. Wan, J. Jian, Impulsive stabilization and synchronization of fractional-order complex-valued
neural networks, Neural Process. Lett., 50 (2019), 2201-2218. https://doi.org/10.1007/s11063-
019-10002-2

24. X. You, Q. Song, Z. Zhao, Global Mittag-Leffler stability and synchronization of discrete-time
fractional-order complex-valued neural networks with time delay, Neural Networks, 122 (2020),
382-394. https://doi.org/10.1016/j.neunet.2019.11.004

25. J. Chen, B. Chen, Z. Zeng, Global asymptotic stability and adaptive ultimate Mittag-
Leffler synchronization for a fractional-order complex-valued memristive neural
networks with delays, [EEE Trans. Syst. Man Cybern. Syst., 49 (2019), 2519-2535.
https://doi.org/10.1109/TSMC.2018.2836952

26. X. Li, J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses,
Automatica, 64 (2016), 63—-69. https://doi.org/10.1016/j.automatica.2015.10.002

27. X. Li, S. Song, Stabilization of delay systems: delay-dependent impulsive control, /IEEE Trans.
Autom. Control, 62 (2017), 406—411. https://doi.org/10.1109/TAC.2016.2530041

28. H. Bao, J. H. Park, J. Cao, Synchronization of fractional-order complex-valued neural networks
with time delay, Neural Networks, 81 (2016), 16-28. https://doi.org/10.1016/j.neunet.2016.05.003

29. X. Liu, Y. Yu, Synchronization analysis for discrete fractional-order complex-valued
neural networks with time delays, Neural Comput. Appl., 33 (2021), 10503-10514.
https://doi.org/10.1007/s00521-021-05808-y

30. J. Chen, B. Chen, Z. Zeng, Global uniform asymptotic fixed-deviation stability and stability
for delayed fractional-order memristive neural networks with generic memductance, Neural
Networks, 98 (2018), 65-75. https://doi.org/10.1016/j.neunet.2017.11.004

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10244—-10263.


http://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.112316
http://dx.doi.org/https://doi.org/10.1109/TSMC.2019.2956320
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2017.2675442
http://dx.doi.org/https://doi.org/10.1007/s11063-017-9604-8
http://dx.doi.org/https://doi.org/10.1016/j.amc.2019.124715
http://dx.doi.org/https://doi.org/10.1007/s11063-019-10002-2
http://dx.doi.org/https://doi.org/10.1007/s11063-019-10002-2
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2019.11.004
http://dx.doi.org/https://doi.org/10.1109/TSMC.2018.2836952
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2015.10.002
http://dx.doi.org/https://doi.org/10.1109/TAC.2016.2530041
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2016.05.003
http://dx.doi.org/https://doi.org/10.1007/s00521-021-05808-y
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2017.11.004

10263

31. J. Zhang, Linear-type discontinuous control of fixed-deviation stabilization and synchronization
for fractional-order neurodynamic systems with communication delays, IEEE Access, 6 (2018),
52570-52581. https://doi.org/10.1109/ACCESS.2018.2870979

% AIMS Press

4

4

Mathematical Biosciences and Engineering

©2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Volume 20, Issue 6, 10244—-10263.


http://dx.doi.org/https://doi.org/10.1109/ACCESS.2018.2870979
http://creativecommons.org/licenses/by/4.0

	Introduction
	Model description and preliminaries
	Main results
	Fixed-deviation stability
	Fixed-deviation synchronization

	Numerical examples
	Conclusions

