Research article Special Issues

Global solvability of a chemotaxis-haptotaxis model in the whole 2-d space


  • Received: 27 October 2022 Revised: 07 February 2023 Accepted: 14 February 2023 Published: 17 February 2023
  • This paper investigates a two-dimensional chemotaxis-haptotaxis model

    $ \begin{eqnarray*} \left\{\begin{array}{lll} u_t = \Delta u-\chi\nabla\cdot(u\nabla v)-\xi\nabla\cdot(u\nabla w),&{} x\in\mathbb{R}^2,\ t>0,\\ v_t = \Delta v-v+u,&{}x\in\mathbb{R}^2,\ t>0,\\ w_t = -vw,&{}x\in\mathbb{R}^2,\ t>0, \end{array}\right. \end{eqnarray*} $

    where $ \chi $ and $ \xi $ are positive parameters. It is proved that, for any suitable smooth initial data $ (u_0, v_0, w_0) $, this model admits a unique global strong solution if $ \left\|u_0\right\|_{L^1} < \frac{8 \pi}{\chi} $. Compared to the result by Calvez and Corrias (Calvez and Corrias, 2008 [1]), we can see that the haptotaxis effect is almost negligible in terms of global existence, which is consistent with the result of bounded domain (Jin and Xiang, 2021 [2]). Moreover, to the best of our knowledge, this is the first analytical work for the well-posedness of chemotaxis-haptotaxis system in the whole space.

    Citation: Meng Liu, Yuxiang Li. Global solvability of a chemotaxis-haptotaxis model in the whole 2-d space[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 7565-7593. doi: 10.3934/mbe.2023327

    Related Papers:

  • This paper investigates a two-dimensional chemotaxis-haptotaxis model

    $ \begin{eqnarray*} \left\{\begin{array}{lll} u_t = \Delta u-\chi\nabla\cdot(u\nabla v)-\xi\nabla\cdot(u\nabla w),&{} x\in\mathbb{R}^2,\ t>0,\\ v_t = \Delta v-v+u,&{}x\in\mathbb{R}^2,\ t>0,\\ w_t = -vw,&{}x\in\mathbb{R}^2,\ t>0, \end{array}\right. \end{eqnarray*} $

    where $ \chi $ and $ \xi $ are positive parameters. It is proved that, for any suitable smooth initial data $ (u_0, v_0, w_0) $, this model admits a unique global strong solution if $ \left\|u_0\right\|_{L^1} < \frac{8 \pi}{\chi} $. Compared to the result by Calvez and Corrias (Calvez and Corrias, 2008 [1]), we can see that the haptotaxis effect is almost negligible in terms of global existence, which is consistent with the result of bounded domain (Jin and Xiang, 2021 [2]). Moreover, to the best of our knowledge, this is the first analytical work for the well-posedness of chemotaxis-haptotaxis system in the whole space.



    加载中


    [1] V. Calvez, L. Corrias, The parabolic-parabolic Keller-Segel model in $\mathbb R^2$, Commun. Math. Sci., 6 (2008), 417–447. http://projecteuclid.org/euclid.cms/1214949930
    [2] H. Y. Jin, T. Xiang, Negligibility of haptotaxis effect in a chemotaxis-haptotaxis model, Math. Models Methods Appl. Sci., 31 (1979), 827–868. https://doi.org/10.1080/03605307908820113 doi: 10.1080/03605307908820113
    [3] M. A. J. Chaplain, G. Lolas, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity, Netw. Heterog. Media, 1 (2006), 399–439. https://doi.org/10.3934/nhm.2006.1.399 doi: 10.3934/nhm.2006.1.399
    [4] P. Y. H. Pang, Y. Wang, Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling, Math. Models Methods Appl. Sci., 28 (2018), 2211–2235. https://doi.org/10.1142/S0218202518400134 doi: 10.1142/S0218202518400134
    [5] Y. Tao, M. Wang, Global solution for a chemotactic-haptotactic model of cancer invasion, Nonlinearity, 21 (2008), 2221–2238. https://doi.org/10.1088/0951-7715/21/10/002 doi: 10.1088/0951-7715/21/10/002
    [6] Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, J. Math. Anal. Appl., 354 (2009), 60–69. https://doi.org/10.1016/j.jmaa.2008.12.039 doi: 10.1016/j.jmaa.2008.12.039
    [7] X. Cao, Boundedness in a three-dimensional chemotaxis–haptotaxis model, Zeitschrift für angewandte Mathematik und Physik, 67 (2006).
    [8] Y. Tao, M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differ. Equations, 257 (2014), 784–815. https://doi.org/10.1016/j.jde.2014.04.014 doi: 10.1016/j.jde.2014.04.014
    [9] Y. Tao, M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225–1239. https://doi.org/10.1088/0951-7715/27/6/1225 doi: 10.1088/0951-7715/27/6/1225
    [10] Y. Tao, M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1067–1084. https://doi.org/10.1017/S0308210512000571 doi: 10.1017/S0308210512000571
    [11] T. Xiang, Finite time blow-up in the higher dimensional parabolic-elliptic-ODE minimal chemotaxis-haptotaxis system, J. Differential Equations, 336 (2022), 44–72. https://doi.org/10.1016/j.jde.2022.07.015 doi: 10.1016/j.jde.2022.07.015
    [12] C. Morales-Rodrigo, Local existence and uniqueness of regular solutions in a model of tissue invasion by solid tumours, Math. Comput. Model., 47 (2008), 604–613. https://doi.org/10.1016/j.mcm.2007.02.031 doi: 10.1016/j.mcm.2007.02.031
    [13] C. Walker, G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2006), 1694–1713. https://doi.org/10.1137/060655122 doi: 10.1137/060655122
    [14] A. Marciniak-Czochra, M. Ptashnyk, Boundedness of solutions of a haptotaxis model, Name J., 20 (2010), 449–476. https://doi.org/10.1142/S0218202510004301 doi: 10.1142/S0218202510004301
    [15] G. Liţcanu, C. Morales-Rodrigo, Asymptotic behavior of global solutions to a model of cell invasion, Math. Models Methods Appl. Sci., 20 (2010), 1721–1758. https://doi.org/10.1142/S0218202510004775 doi: 10.1142/S0218202510004775
    [16] E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Name J., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
    [17] D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. Ⅰ, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103–165.
    [18] T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217. https://doi.org/10.1007/s00285-008-0201-3 doi: 10.1007/s00285-008-0201-3
    [19] N. Bellomo, N. Outada, J. Soler, Y. Tao, M. Winkler, Chemotaxis and cross-diffusion models in complex environments: models and analytic problems toward a multiscale vision, Math. Models Methods Appl. Sci., 32 (2022), 713–792. https://doi.org/10.1142/S0218202522500166 doi: 10.1142/S0218202522500166
    [20] G. Arumugam, J. Tyagi, Keller-Segel chemotaxis models: a review, Acta Appl. Math., 171 (2021), 6-82. https://doi.org/10.1007/s10440-020-00374-2 doi: 10.1007/s10440-020-00374-2
    [21] Y. Ke, J. Li, Y. Wang, Analysis of reaction-diffusion models with the taxis mechanism, Financial Mathematics and Fintech, Springer, Singapore, 2022. https: //doi.org/10.1007/978-981-19-3763-7
    [22] A. Blanchet, J. Dolbeault, B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differ. Equations, (2004), 32–44.
    [23] A. Blanchet, E. A. Carlen, J. A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, J. Funct. Anal., 262 (2012), 2142–2230. https://doi.org/10.1016/j.jfa.2011.12.012 doi: 10.1016/j.jfa.2011.12.012
    [24] D. Wei, Global well-posedness and blow-up for the 2-D Patlak-Keller-Segel equation, J. Funct. Anal., 274 (2018), 388–401. https://doi.org/10.1016/j.jfa.2017.10.019 doi: 10.1016/j.jfa.2017.10.019
    [25] T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581–601.
    [26] T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37–55. https://doi.org/10.1155/S1025583401000042 doi: 10.1155/S1025583401000042
    [27] Y. Naito, T. Suzuki, Self-similar solutions to a nonlinear parabolic-elliptic system, Taiwanese J. Math., 8 (2004), 43–55. https://doi.org/10.11650/twjm/1500558456 doi: 10.11650/twjm/1500558456
    [28] T. Nagai, T. Senba, K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411–433. http://www.math.kobe-u.ac.jp/fe/xml/mr1610709.xml
    [29] P. Biler, G. Karch, P. Laurençot, T. Nadzieja, The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Methods Appl. Sci., 29 (2006), 1563–1583. https://doi.org/10.1002/mma.743 doi: 10.1002/mma.743
    [30] A. Blanchet, J. A. Carrillo, N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $\mathbb R^2$, Comm. Pure Appl. Math., 61 (2008), 1449–1481. https://doi.org/10.1002/cpa.20225 doi: 10.1002/cpa.20225
    [31] P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Math., 114 (1995), 181–205. https://doi.org/10.4064/sm-114-2-181-205 doi: 10.4064/sm-114-2-181-205
    [32] G. Karch, Scaling in nonlinear parabolic equations, J. Math. Anal. Appl., 234 (1999), 534–558. https://doi.org/10.1006/jmaa.1999.6370 doi: 10.1006/jmaa.1999.6370
    [33] P. Biler, L. Brandolese, On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis, Studia Math., 193 (2009), 241–261. https://doi.org/10.48550/arXiv.0804.1000 doi: 10.48550/arXiv.0804.1000
    [34] R. Lemarié, G. Pierre, Small data in an optimal Banach space for the parabolic-parabolic and parabolic-elliptic Keller-Segel equations in the whole space, Adv. Differ. Equations, 18 (2013), 1189–1208. http://projecteuclid.org/euclid.ade/1378327383
    [35] T. Senba, A fast blowup solution to an elliptic-parabolic system related to chemotaxis, Adv. Differ. Equations, 11 (2006), 981–1030.
    [36] N. Mizoguchi, T. Senba, Type-Ⅱ blowup of solutions to an elliptic-parabolic system, Adv. Math. Sci. Appl., 17 (2007), 505–545.
    [37] P. Biler, G. Karch, D. Pilarczyk, Global radial solutions in classical Keller-Segel model of chemotaxis, J. Differ. Equations, 267 (2019), 6352–6369. https://doi.org/10.1016/j.jde.2019.06.024 doi: 10.1016/j.jde.2019.06.024
    [38] Y.Naito, Blow-up criteria for the classical Keller-Segel model of chemotaxis in higher dimensions, J. Differ. Equations, 297 (2021), 144–174. https://doi.org/10.1016/j.jde.2021.06.024 doi: 10.1016/j.jde.2021.06.024
    [39] T. Nagai, T. Ogawa, Brezis-Merle inequalities and application to the global existence of the Cauchy problem of the Keller-Segel system, Commun. Contemp. Math., 13 (2011), 795–812. https://doi.org/10.1142/S0219199711004440 doi: 10.1142/S0219199711004440
    [40] N. Mizoguchi, Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane, Calc. Var. Partial Differ. Equations, 48 (2013), 491–505. https://doi.org/10.1007/s00526-012-0558-4 doi: 10.1007/s00526-012-0558-4
    [41] A. Blanchet, J. A. Carrillo, D. Kinderlehrer, M. Kowalczyk, P. Laurençot, S. Lisini, A hybrid variational principle for the Keller-Segel system in $\mathbb R^2$, ESAIM Math. Model. Numer. Anal., 49 (2015), 1553–1576. https://doi.org/10.1051/m2an/2015021 doi: 10.1051/m2an/2015021
    [42] R. Schweyer, Stable blow-up dynamic for the parabolic-parabolic Patlak-Keller-Segel model, preprint, arXiv: math/1403.4975.
    [43] N. Mizoguchi, Finite-time blowup in Cauchy problem of parabolic-parabolic chemotaxis system, J. Math. Pures Appl., 136 (2020), 203–238. https://doi.org/10.1016/j.matpur.2019.10.004 doi: 10.1016/j.matpur.2019.10.004
    [44] O. A. Ladyenskaja, V. A. Solonnikov, N. Uralceva, Linear and quasilinear equations of parabolic type, American Mathematical Society, Providence, 1968.
    [45] M. Chae, K. Kang, J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst., 33 (2013), 2271–2297. https://doi.org/10.3934/dcds.2013.33.2271 doi: 10.3934/dcds.2013.33.2271
    [46] Y. Peng, Z. Xiang, Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with boundary, Math. Models Methods Appl. Sci., 28 (2018), 869–920. https://doi.org/10.1142/S0218202518500239 doi: 10.1142/S0218202518500239
    [47] T. Nagai, R. Syukuinn, M. Umesako, Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in ${\bf{R}}^n$, Funkcial. Ekvac., 46 (2003), 383–407. https://doi.org/10.1619/fesi.46.383 doi: 10.1619/fesi.46.383
    [48] P. Quittner, P. Souplet, Superlinear parabolic problems, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1422) PDF downloads(95) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog