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Abstract: This paper investigates a two-dimensional chemotaxis-haptotaxis model

U= Au—xV-uVv)—€V-@Vw), xeR? t>0,
v, =Av—v+u, xeR% >0,
W, = —VW, xeR% >0,

where y and £ are positive parameters. It is proved that, for any suitable smooth initial data (ug, vy, wo),
this model admits a unique global strong solution if ||ug|l;1 < i—” Compared to the result by Calvez
and Corrias (Calvez and Corrias, 2008 [1]), we can see that the haptotaxis effect is almost negligible
in terms of global existence, which is consistent with the result of bounded domain (Jin and Xiang,
2021 [2]). Moreover, to the best of our knowledge, this is the first analytical work for the well-
posedness of chemotaxis-haptotaxis system in the whole space.
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1. Introduction

In the present work, we shall consider a chemotaxis-haptotaxis model

uy = Au—xV-uVv) =V - (uVw) + uu(l — u — w),
™V, =Av—v+u, (1.1)
wy = —vw +nu(l —u—w),

where y and £ are positive parameters. In the model (1.1), u represents the density of cancer cell, v and
w denote the density of matrix degrading enzymes (MDESs) and the extracellular matrix (ECM) with the
positive sensitivity y, &, respectively. Such an important extension of chemotaxis to a more complex
cell migration mechanism has been proposed by Chaplain and Lolas [3] to describe the cancer cell
invasion of tissue. In that process, cancer invasion is associated with the degradation of ECM, which
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is degraded by MDEs secreted by cancer cells. Besides random motion, the migration of invasive cells
is oriented both by a chemotaxis mechanism and by a haptotaxis mechanism.

In the past ten more years, the global solvability, boundedness and asymptotic behavior for the
corresponding no-flux or homogeneous Neumann boundary-initial value problem in bounded domain
and its numerous variants have been widely investigated for certain smooth initial data. For the full
parabolic system of (1.1), Pang and Wang [4] studied the global boundedness of classical solution in
the case 7 = 1 in 2D domains, and the global solvability also was established for three dimension.
When n = 0 and 7 = 1, Tao and Wang [5] proved the existence and uniqueness of global classical
solution for any y > 0 in 1D intervals and for small j—i > 0 in 2D domains, and Tao [6] improved the
results for any 4 > 0 in two dimension; Cao [7] proved for small )/f > 0, the model (1.1) processes a
global and bounded classical solution in 3D domains.

When 7 = 0, the second equation of (1.1) becomes an elliptic function. In the case of n > 0, Tao
and Winkler [8] proved the global existence of classical solutions in 2D domains for any u > 0. In the
case of n = 0, the global existence and boundedness for this simplified model under the condition of
u> % ¥ in any N-D domains in [9]. Moreover, the stabilization of solutions with on-flux boundary
conditions was discussed in [10]. For the explosion phenomenon, Xiang [11] proved that (1.1) possess
a striking feature of finite-time blow-up for N > 3 with u = n = 7 = 0; the blow-up results for two
dimension was discussed in [2] with w, = —vw + pw(1 —w) and u = 0.

When y = 0, the system (1.1) becomes a haptotaxis-only system. The local existence and
uniqueness of classical solutions was proved in [12]. In [13-15], the authors respectively established
the global existence, the uniform-in-time boundedness of classical solutions and the asymptotic
behavior. Very recently, Xiang [11] showed that the pure haptotaxis term cannot induce blow-up and
pattern for N < 3 or 7 = O in the case of u = 7 = 0.

Without considering the effect of the haptotaxis term in (1.1), we may have the extensively-studied
Keller-Segel system, which was proposed in [16] to describe the collective behavior of cells under the
influence of chemotaxis

(1.2)

ou = Au—xV - (uVv),
T0v=Au—Av+u

with u and v denoting the cell density and chemosignal concentration, respectively. There have been a
lot of results in the past years (see [17-21], for instance). Here we only mention some global existence
and blow-up results in two dimensional space. For the parabolic-elliptic case of (1.2) with 4 = 0,
8 was proved to be the mass threshold in two dimension in [22-24] (see also [25, 26] for related
results in the bounded domain); namely, the chemotactic collapse (blowup) should occur if and only
if |lupl|;1 1s greater than i—” If |luolly < i—”, the existence of free-energy solutions were improved
in [22]. Furthermore, the asymptotic behavior was given by a unique self-similar profile of the system
(see also [27] for radially symmetric results concerning self-similar behavior). For the results in the
threshold 8;”, we refer readers for [28-30] for more details. For the parabolic-elliptic model in higher

dimensions (N > 3) in (1.2), the solvability results were discussed in [31-34] with small data in critical

spaces like L> (RN ) , Lv% (RN ) M 3 (RN ), 1.e., those which are scale-invariant under the natural scaling.
Blowing up solutions to the parabolic-elliptic model of (1.2) in dimension N > 3 have been studied
in [35-38].

In the case 7 = 1, Calvez and Corrias [1] showed that under hypotheses uIn (1 + |x|2) e L (Rz)
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and ug Inug € L' (Rz), any solution exists globally in time if [Juo||;1 < i—” In [39], the extra assumptions
on uy were removed, while the condition on mass was restricted to ||ug||;1 < ‘;—”. The value ‘;—” appeared
since a Brezis-Merle type inequality played an essential role there. These results were improved in [40,
41] to global existence of all solutions with [ul|;1 < fj(—” by two different method. Furthermore the
global existence of solutions was also obtained under some condition on u in the critical case |ugl|;1 =
87 in [40]. The blow-up results of the parabolic-parabolic case in the whole space were discussed

in [42,43] with the second equation was replaced by d,v = Au + u.

However, the global solvability and explosion phenomenon of chemotaxis-haptotaxis model in the
whole space have never been touched. Here we consider the global solvability of a simplified model
of (1.1)

u; = Au— xV - (uVv) — €V - (uVw), xeR% >0,
— Av 2
vi=Av—v+u, xERz,t>0, (1.3)
W, = —VW, xeR, t>0,
u(x,0) = up(x), v(x,0) = vo(x), w(x,0)=wp(x), xeR.
Main results. We assume that the initial data satisfies the following assumptions:
(1o, Vo, wo) € H*(R?) x H*(R?) x H*(R?) and uo, vy, wy are nonnegative, (1.4)
uy € L' (R%,In (1 + |x”) dx) and ugInu € L' (R?) (1.5)
and
Awg € L™ (R?) and V ywg € L (R?). (1.6)

Theorem 1.1. Let y > 0, & > 0 and the initial data (uy, vy, wo) satisfy (1.4)—(1.6). If m = ||ugl|,1 < i—”,
then the corresponding chemotaxis-haptotaxis system (1.3) possesses a unique global-in-time,
nonnegative and strong solution (u, v, w) fulfilling that for any T < co

(u,v,w) € C (0, T; H> (RZ) x H? (RZ) x H? (R2)) .

Remark 1.1. Our theorem extends the previous results in two aspects. First, our result agrees with
that in [1] by setting w = 0, which proved that if |lugl|, < i—”, then the Cauchy problem of the
system (1.2) admits a global solution. Secondly, our theorem extends Theorem 1.1 in [2], where the
authors proved that 1—” is the critical mass of the system (1.3) in bounded domains, implying the
negligibility of haptotaxis on global existence.

We obtain the critical mass value using the energy method in [1,22]. The energy functional:

Fu,v,w)(®) = f ulnu —)(f uy —ff uw + X f (v2 + |Vv|2) , Yte 0, Tmx) (1.7)
R2 R2 R2 2 R2

as shown in [2] comes out to be the key ingredient leading to the global existence of solutions under
the smallness condition for the mass. Under the assumption

8
lluollpr < " (1.8)
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and (1.5), we can derive an integral-type Gronwall inequality for F'(z). As a result, we can get a priori
estimate for the fRz ulnu, which is the key step to establish the global existence of solutions to the
system (1.3).

The rest of this paper is organized as follows. In Section 2, we prove local-in-time existence of
the solution, and obtain the blow-up criteria for the solution. In Section 3, we give the proof of the
Theorem 1.1.

In the following, (u#), and (u)_ will denote the positive and negative part of u as usual, while L? :=
L7 (R?).

2. local existence

We now establish the local existence and uniqueness of strong solutions to system (1.3). Our
strategy is first to construct an iteration scheme for (1.3) to obtain the approximate solutions and then
to derive uniform bounds for the approximate solutions to pass the limit.

Lemma 2.1. Let y > 0, ¢ > 0 and uy > 0. Then, there exists a maximal existence time Ty.x > 0,

such that, if the initial data (uy, vy, wo) satisfy (1.4), then there exists a unique solution (u,v,w) of (1.3)
satisfying for any T < Tyax, and

(v, w) € C (0, T; H*(R?) x HY(R?) x H*(R?)). (2.1)
Furthermore, u, v and w are all nonnegative.

Proof. To obtain the local solution, we follow similar procedures of an iterative scheme developed in
[45,46]. We construct the solution sequence (uj v w )jzo by iteratively solving the Cauchy problems
of the following system

Ol = Autt =}V - (W) - £V - (uVwI), x e R2 1> 0,

Ol = At — it i, xeR% >0,

Owith = —pitlyyirl xeR% >0,

u(x,0) = up(x), v(x,0) =vo(x), w(x,0)=wy(x), xeR.

(2.2)

We first set (uo(x, ),V (x, 1), w'(x, t)) = (up(x), vo(x), wo(x)). We point out that the system is decouple,
then by the linear parabolic equations theory in [44, Theorem II1.5.2], we can obtain the unique

1
solution u',v' € Vzl’2 ([O, T] x Rz), then we get w' € C! ([0, T],HI(RZ)) by directly solving the
ordinary equation. Similarly, we define (uf vl owi ) iteratively.

In the following, we shall prove the convergence of the iterative sequences {uj v w } o in
j=

C(0,T; X) with X := H*> x H®> x H? for some small T > 0. To obtain the uniform estimates, we may
use the standard mollifying procedure. However, since the procedure is lengthy, we omit the details,
like in the proofs of Theorem 1.1 in [45] and Theorem 2.1 in [46].

Uniform estimates: We will use the induction argument to show that the iterative sequences
{uf, v, wf}j>1 are in C(0, T; X) with X := H? x H?> x H? for some small 7 > 0, which means that there
exists a constant R > 0 such that, for any j, the following inequality holds for a small time interval

sup ([jw/]l. + ]l + W[l ) < & 23)
0<t<T
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where R = 2{ ||luollz2 + |[Vollgs + [[wollg3 } + 8. Due to the definition of R, the case j = 0 is obvious. Then,
we need to show that (2.3) is also true for j + 1. This will be done by establishing the energy estimate
for (uf“, VARE wf“). First, we begin with the estimate of v/*!.

(i) Estimates of v/*!. Taking the L? inner product of the second equation of (2.2) with v/*!,
integrating by parts and using Young’s inequality, we have

_f(vj+l)2+f vj+luj
R2 R2

1, . 1 ;
5 7!l + 3 el 24)

1d

e e

IA

To show the H! estimate of v/*!, we will multiply the second equation of (2.2) by d,»/*!, integrating by
parts and then obtain

Sl + o I} = - fR W fR o
< 5 ol + I+ el 2.5)
For the H? estimate of v/*!, by Young’s inequality, we have
Sl v = - fR (@ fR A
1 , 1 .
< —§||Avf+‘||i2+5||Auf||iz. (2.6)

Similarly, integrating by parts, it is clear that for all # € (0,7)

d . . . . .
ZIvvrolf, =2 f VWAV -t 1)

R2
-2 f v 2 f v -2 f vhH V2
R2 R2 R2

4 j+1]|? 3.5+ |2 2 jlI?
I -2+ [

IA

togethering with (2.3)—(2.6) and adjusting the coefficients carefully, we can find a positive constant «
such that

d, . . .
@l + (e + oo )
< (v + ) X

with ¢; > 0. Here after ¢;(i = 2, 3...) denotes the constant independent of R. Integrating on (0, 7), we
can obtain for all r € (0,7)

!
bl va [ (o 6h o G
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4T 2 N T TNE
< e vl + €T sup [/,
te(0,T)

< e voll;, + e TR

2
< 2|vollys + 2,

by choosing 7 > 0 small enough to satisfy ¢“'7 < 2 and TR* < 1.

(2.8)

(ii) The estimate of w'*!. In fact, the third component of the above solution of (2.2) can be expressed

explicitly in terms of v/*!. This leads to the representation formulae

Wj+1(.x, t) — Wo(x)e—fot Vj+l(x,s)ds,

t
. N iy .
VWJ-H()C, t) — Vwo(x)e—fo vitl(x,5)ds W()(.X)C_fo v/ 1()C,S)dsf Vv]"'l(x’ S)dS
0

as well as

Aw/t(x, 1)

!
oy iy .
:AWO(.X)C_IO vt (x,5)ds _ 2e—f0 v l(x’S)dsVW()(.X') . f VVJ+](X, s)ds
0

!
f Vvt (x, s)ds
0

From (2.9), we can easily get for # € (0,7)

2

+ wop(x)e™ b v s

Wl < Iwollr, Vp € (1, 00].

From (2.10), by (2.8), the definition of R and the following inequality

ff(x,s)ds :{f |ff(x,s)ds|pdx}p
0 L R2 0

t »
< {t”‘l fzf |f|”dsdx} <t sup [[f()Il,,, forallpe(l, o),
R2 JO

s€(0,1)

we can obtain

!
. LS I J
9wl < 19wollz2 + fwoe™ 6" dbf v
0 12
73
j+1
< IVwoll2 + [woll va’+ ds
0 L?
i+1
< IVwollz + lwollz= T sup ||VV’+ ||L2
te(0,T)
< Vwollz + R°T
< Vwoll2 + 1

!
e ,
— wo(x)e™ Jo ¥ s f AvT(x, s)ds.
0

2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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by setting T small enough to satisfy ¢,R°T < 1.
Similarly, by the embedding H*> — W'# and (2.13), we can obtain from (2.11) for all t € (0, T)

f 1 2
law ]|, < ||Aw0||L2+2‘Vw0 f vvitlds|| + |lw f Vvitlds
0 12 0 12
t .
+ wof Avitlds
0 LZ
[ . [ .
< lAwollz2 + 2 [[Vwoll .+ f Vv sl + [lwoll ||l f Vit ds)?
0 L4 0 12
!
+ |Iwoll f Avtlds
0 LZ
j+1 2 J+1][2
< llAwollz + 21Vwolls T sup [[Vv/*!| . + lIwoll= T2 sup [[Fv/*![|,
te(0,T) te(0,7)
i+1
+lwollz= T sup [|av™|,,
te(0,T)
< | Awollz + c3R*T + c3R*T?
< |l Awoll2 +2 (2.15)

by setting 7 small enough to satisfy c3R>T < 1 and c3R*T? < 1.
Now we deduce the L? norm of V3w/*!. According to the equation of w and Holder inequality, we
can easily get for all t € (0, T)

d .
ZIvw ol
zzf V3Wj+1v3wj+1 — _zf V3Wj+lv3(vj+le+l)
R2 ' R2
<[ [P0 )
<cy ||V3wj+]||L2 ||V3wj+lvj+1 NENS A VAIAARE VAVAR NG vESTVARY vAVPUAR RS V‘o’ij'leJrl||L2
< {9 [ o7 I+ 9 e 920 9
[V 192 s 9 (1927 99 [ (2.16)
By Galiardo-Nirenberg inequality, we have
72 o < s 75
9007 [ < s 92 2 [
Together with Young’s inequality, (2.8), (2.12) and (2.16), we can get
d ) . . .
S Ol < o[ I + 1) 19w [ + o9

12
< R |VPw|, + c6 IV woll7e
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< R |Vw |, + e R 2.17)
Then, we can deduce from Gronwall’s inequality that for all 7 € (0, T)

273 2 273
IR ||V3wo||L2 + T R*T

2|V w2, +2 (2.18)

3. j+1][?
(AR

IA

IA

by setting T small enough to satisfy e%'7’ < 2 and ¢;R?T < 1.
Combining with (2.12)—(2.15) and (2.18), we can see that

w5 < 2 wolles + 5. (2.19)

(iii) Estimates of u/*!. Taking the L* inner product of the equation of #/*! in (2.2), integrating by
part we obtain

1d
2 dt
:)(f VAR AVRE V/7UAS ST TTASE VNN /T AR
R R
< o 109970 9+ e 97 (9 (2:20)

™ Dl + [V

By (2.8), (2.19) and (2.20) and the embedding H> — W', we can see for all t € (0, T)

1d

S 2w O[5+ [0 [ < cor? [ + 5 19 2.21)

Now we turn to show the L*-estimate of Vu/*!. Multiplying —Au/*! to both sides of the first equation
of (2.3) and integrating by parts, we obtain for all 7 € (0, T)

1d PN 12
L oo, + e
:Xf AtV . (uj”ij) + §f Aut'v . (u”lej)
R2 R2
=1 + b. (222)
By Holder inequality and Young’s inequality, it yields that

j+1
< eofjaw,

\Y (uf” va')

12

j+1 Jj+1 J
< cao A o { [l 111}

1 2 ) 112
7 I8 e+ e e [l
< 1 ||Au ||L2 + Cio V)1 11 |l
Applying the similar procedure to /;, we can obtain
I, < 1 Ayt 2 2 uodll? 0+ |2
2= Z u 12 + CIO w H? u Hl
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which entails that for all r € (0, T)

ld . ; Ly, ,
5 9 Ol + 5 A, < en [ 2.23)
Similar as (2.16), we can get

d .
2V ol

. i
=2 | VAVt
R2

2 f V22 (Au! = V- @) - £V - (T Vw)) |
RZ

2 f V2V AW = 2y f VAV (W) = 26 | VUV (o)
R2 R2 R2
=-2 ||V3u~"+1||i2 +2x fRz Viu/tv? (uj+1ij) +2£ fRz Viutlv? (u”lej)

2
LZ}

< [V + e [ (2.24)

. 2 . NI . .
< - ||V3MJ+1||L2 +cp {HV2 (MJ-HVVJ)HLZ + '|V2 (MHIVW])

Together with (2.21), (2.23) and (2.24), and adjusting the coefficients carefully, we can find a
positive constant 8 such that

o+ B, < o @29
which implies from Gronwall’s inequality that
WH%+@fWH%<wWWmmsmmm,mmMe@D, (2.26)
0
by choosing 7 small enough to satisfy e“¥'7 < 2.
Combining (2.8), (2.19) and (2.26), we can get for all t € (0, T)
e/ [+ 74 e + 97 e < 2 Mlatolln + Ivollie + lIwolls) + 7 < R, (2.27)

by the definition of R.

Convergence: The derivation of the relevant estimates of u/*! —u/, v/*! =/ and w/*! —w/ are similar
to the ones of u/*!, v/*! and w/*!, so we omit the details. For simplicity, we denote 6 f/*! := f/*! — fJ,
Subtracting the j-th equations from the (j + 1)-th equations, we have the following equations for
ou*t, v+ and sw/t!

,0ut! = Asur™t =}V - (5u 'V ) =y V - (uV6v) = £V - (5u VW) - £V - (uw/Vowd),
9,001 = AVt — svit! + o, (2.28)

8,5Wj+1 — —Vj+]6Wj+l _ 5vj+le+l'
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(i) Estimates of 6v/*!. Using the same procedure as proving (2.8), we can obtain that for all # € (0, T)
6V D[ + @ fO t (||6vj+1(s)||:4 + ||a,5vf+1(s)||iz)ds <eeisT sup lowa|.. @229

(ii) Estimates of Sw/*!. According to the third equation of (2.28), we have for all t € (0, T)
Switl(t) = — fo o LM ()50 (5)ds, (2.30)

Using the same procedure as proving (2.19) entails that for all # € (0, T)

o, < sup [ho . sup 01,7 < vk sup [T
0,7) te(0,T) te(0,T)

+

! !
f Vw/($)ov/ (s)ds f wtl(9)Vert(s)ds
0 12 0

! !
f witl gyt f Vvt drds
0 s 12

<c7RT sup ||5vj+1||L2 + c17RT sup ||V(5vj+1||L2 +c7R*T? sup ||(5vj+1||L2
1€(0,7) 1€(0.7) 1€(0.7)

<cis(R® + R)T sup ||ov*!||
t€(0,T)

Jj+1
[vow™||,. <

12

+

H!'>

||A6wj+1||L2 = ”— LtA{e—fs'vf“drwjﬂévjn}ds

12

<T sup
1€(0,T)

<7 sup { (I 7+ 1 e 7)o e

B ARWES| ; i
A{e J;v dTW]+16V]+1}

12

<cio(R® + ROT sup [|ov*!]],..

te(0,T)
and
. 2 nR2 .
920 [, < 1T sup o],
which imply that for all € (0, T)
6w’ ||, < c21®® + R* + R)T sup |6u’0),,. - (2.31)
0<t<T

by setting 7' < 1.
(iii) Estimates of Su’*'. Using the same procedure as proving (2.26) entails that for all ¢ € (0, T')

t
sup [low*!|[}, + f o[ < e eaRT sup (6w, + low’]s)- (2.32)
0<t<T 0 0<t<T
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Combining with (2.29), (2.31) and (2.32), we can obtain for all ¢ € (0, T)

sup ([’ + flov"* ! + l]ow"l .
0<t<T

<o FHRART o (R3 4+ R2 + R)T sup (||5uj||H2 + ||5v-"||H3 + ||5w-’||H3). (2.33)
0<t<T

Taking 7 > 0 small enough, we can find a constant » € (0, 1) such that

sup ([506 e + o7+ Jow ) < 7 sup (ol + v+ fowil,,) 34

for any j > 1 and ¢ € (0, T). From the above inequality, we find that (uf VY, wj) is a Cauchy sequence
in the Banach space C (0, T; X) for some small 7 > 0, and thus its corresponding limit denoted by
(u, v, w) definitely exists in the same space.

Uniqueness: If (i, v, w) is another local-in-time solution of system (1.3), (i1, 7, W) := (u — it,v —
v, w — w) solves

B, = Aii — yV - (i) — ¥V - (uVD) — €V - AVW) — €V - uVw), xeR% 0<t<T,

07 =Av—7+ i1, xeR% 0<t<T,
O = —viv — I, xeR% 0<t<T,
ii(x,0) = (x,0) = w(x,0) = 0, x € R?,

where T is any time before the maximal time of existence. Following a same procedure as (2.34), we
can deduce that it = ¥ = w = 0, which implies the uniqueness of the local solution.

Nonnegativity: The nonnegativity of w/ can be easily obtained by (2.9) and the nonnegativity of
wo. We will use the induction argument to show that u/ and v/ are nonnegative for all j > 0. We
assume that «/ and v/ are nonnegative. If we apply the maximum principle to the second equation

of (2.2), we find v/*! is nonnegative (#/ is nonnegative). Then we turn to deal with u/*!. Let us
{ uj+1 uj+1 >0 I { —l/tj+1 uj+1 <0

0 wr<o W u=v g s

Now multiplying the negative part u’™! on both sides of the first equation of (2.2) and integrating over
[0, 1] X R?, we can get

[ [ ot
0 JR2
! t
=— ](; 'V(u{+l)“iz ds +)(L fﬂ; PIARA VAV v e ‘ffRz PIARA VAV v Al
t
< (o) (19 + o) 5 ), 0

by Young’s inequality and the fact the weak derivative of wis —Vutlif ™' < 0, otherwise zero.
Since u/*', gut! € 12 (O, T:L? (Rz)), we can have
LZ) ’

j: fR2 AOu’t! (uj+1)_ dxds = %(”(u’jl)(O)
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together with the above inequality, it holds that

H(u]_'ﬂ)(t) iz < H(uj_'ﬂ)(O)H; exp (C £1(||ij||iw + ||wa||im)ds).

Due to the fact u’*'(0) is nonnegative, we can deduce that u/*! is nonnegative. This completes the proof
of Lemma 2.1. O

Remark 2.1. Since the above choice of T depends only on |[[ug|lg2®2), [Vollm3rz) and [[wollp3 g2y, it is
clear by a standard argument that (u, v, w) can be extended up to some T, < o0. If T < o0 in
Lemma 2.1, then

lim sup (||M(f)||H2(R2) + VOl 32y + ||W(l)||H3(R2)) = 0. (2.35)

t—=Tmax

In order to show the H? x H? x H*-boundedness of (u, v, w), it suffices to estimate a suitable L”-norm
of u, with some large, but finite p.

Lemma 2.2. Suppose that y,¢& > 0 and the initial data (uy, vy, wo) satisfy all the assumptions
presented in Lemma 2.1. Then for every K > 0 there is C > 0 such that whenever
(u,v,w) e C (O, T; H*(R?) x H3(R?) x H3(R2)) solves (1.3) for some T > 0 and qo > 2 satisfies

llu(-, )0 < K, forallte (0,T), (2.36)
then
(Dl 2wz + VOl 3 R2) + WOl g3R2) < C forallt € (0,T). (2.37)

Proof. Firstly, we suppose that for some ¢go > 2 and K > 0

(@)l o0og2) < K, forallte(0,7). (2.38)
By the Duhamel principle, we represent u# and v of the following integral equations
t t
u(t) = e®ug — x f eTOAY L (uVv)(t)drT - € f eTOAY L (uVw)(t)dr (2.39)
0 0
and
t
v(t) = ey + f e T Dy (1)dr. (2.40)
0

where e f(x) = [, G(x — y,1)f(y)dy and

G e e[
G(x, 1) = Gix) := @ exp( 1 )

is the Gaussian heat kernel. The following well-known L” — L7 estimates of the heat semigroup play
an important role in the proofs [47,48]. For 1 < p < g < ooand f € L1 (Rz), we have

le £ll,, < @ry )i flla,
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where Cj is a constant depending on p and g. Then, according to (2.39), we can see that for gy > 2 and
allr e (0,7)

! 11 ! 11
@l < llutollz + x f (t—7) > “llu- V||podr +§ f (t—7) 7 “llu- Vwllpwdt
0 0
73 !
< luollze + K/\/f(t — ) W |Vyedr + Kgf (t—7) w0 Vnlmdr.  (2.41)
0 0
From (2.40) and the above L” — L9 estimates of the heat semigroup, we have

t
)z < vollus + f et — ) %P u)llpwdt < Ci, Vg € (1, 00] (2.42)
0

and by the embedding H>(R?) — W!*(R?)

d 1 1
IVVOlle= < IVl + f e = 1) 0 |lu@)l|mdT < Cs, (2.43)
0

where C, and C5 depend on ||vyl|zz and K in (2.38).
According to the equation of w, we can see that for some C¢ = C¢(||[wollz3, [IVollz2, K, T) > 0 and all
te0,7)

9Ol < [|Fwge b

+
L

!
woe_fov(”ds f Vv(s)ds
0 L

< lwollgs + lwollz sup IVv(@ll=T < Coe (2.44)
te(0,T)

by the embedding H*(R?) — W!'*(R?). Inserting (2.43) and (2.44) into (2.41), this yields for all
te0, 1)

! 1 1 ! 1 1
[l < luollr~ + KCS)(f(t -7) 2 wodr+ KC6é:f (t—71) 2 wdr < (Cy, (2.45)
0 0

where C7 depends on ||uo|z2, [[Vollg2, [IWollgz, K and T.
Integrating by parts and by Young’s inequality, we can obtain from the second equation of (1.3) that
forallr e (0,7)

1d
—— oI, + IOy, = — f (Ov)* + f 0vou
2 dt R2 R2
1 1
< ) 10,1175 + 3 10,ull7, (2.46)
and

37 IVv@ll7> + |AV][7, = LZ VAV + Lz ulAv

1 1
< = IV, + 3 el 7 + 3 IAVIIZ, - (2.47)
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Similarly, according to the first equation of (1.3), (2.43) and (2.44), we have for all r € (0,T)

1d
ST luII?, + IVull;, :sz uVv -Vu+¢ | uVw-Vu

R R2

2 2 1
< XE UV, + % Vw7, + 3 IVull?
2,2 22
xC &C 1
< > > lull?, + Té llull2, + 3 IV ull7, (2.43)

and by (2.27) for some 8 > 0
1d ) )
2 dt R2 R2
+ ff ouVw - Vo,u + ff uvow - Vo,u
R2 R2
1
<Cs ([IVVl|z~ + [[VWl[z=) (QII@MIIiz +3 IIVazulliz)

2
+ Csllull (9”V6tvlliz +0[IVo,wlly + g IIVafulliz)

Cg(Cs + C6 + 2C7)
)
+6CC (IVOE + V0w, (2.49)

<Cs(Cs + Co)0 10,ull}> + IVO,ull}

Now we turn to estimate the last term of the right side of (2.49). According to the third equation of
(1.3), (2.42) and (2.43), we obtain for some Cy > 0

2 2 2 2 2
IVO Wl < IVVII IWllze + VW VIl

2 2 2 2 2 2 2
< [wollz= IVVII: + C (||VW0||L2 +T° sup |IVVlz- ”WO”LZ)

te(0,T)
< G |IVVI[7, + Co. (2.50)
Combining with (2.46)—(2.50) and setting 8 > 0 to satisfy w < %, we can obtain such
Gronwall-type inequality
d
10w @I + 9V + eI + 1)
+Cio (IIV(?zVIIiz +IVullz, + 119V + AV, + IIV&MIIZ)
<Cuo (I18vI13. + IVVIZ, + lully, + 9ully, + 1), forall € (0,T), (2.51)

then by direct integration, we can have for some Cy; = Cy1(||wollmws, [Vollz2, luollz2, K, T) > 0

!
f (VOB + IVl + IV, + IAVIE, + IV,ull.)
0

+ {102, + IV, + s + 10,22} < 1y, forall 1 € 0, ). (2.52)
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By (2.42) and (2.52) and the second equation of v in (1.3), we have
NAVII2 < [10vll2 + VIl + [lull2 < Cra,  forallz € (0,7), (2.53)

where Ci, = Ca(|Iwollgs, vollaz, lluollz2, K, T). Hence by the equation of w and Young’s inequality, we
obtain for some Ci3 = Ci3(|lwollzs, [Ivolla2, lluollm2, K, T) > 0

2

! ! !
lAW| 2 < [|Awoll2 + 2[[Vwoll va + [Iwoll = va + [[woll fAv
0 4 0 12 0 12
<||Awoll2 + 2[[Vwollps sup [[VV|[a T
te(0,T)
2
+ |lwolls sup [IVV|[[s T + [woll~ sup [[AV]|2 T
1€(0,T) 1€(0,7)
<Cy;, forallte (0,7). (2.54)

By (2.42) and (2.43) and the embedding W>?(R?) — W!#(R?), we can see

d
S vl < € (ol vt + 9 720 191
[Vl 92 19wl + ]9 il (992
< Cu||VPw|ls + Cou |V, + Cray forall 1€ 0, 7). (2.55)

Integrating on (0, #), we have
t
V3w, < Cis|[VPwol[o2 + Cis f IV, + Cis, forall 7 e (0,7). (2.56)
0

Now we turn to estimate the second integral of the right side of (2.56). Applying V to the second
equation of (1.3) and rewriting the equation as VAv = Vv, + Vv — Vi, then by (2.52) we have that

! ! ! !
3112 2 2 2
f0||v v||L2$LIIVvt||L2+f0||Vv||L2+£||Vu||L2

<Cy, forallte(0,T). (2.57)
Inserting (2.57) into (2.56), we can obtain that for some C;4 > 0
|V?w|,. < Cis, forallte (0, 7). (2.58)

Now we deduce the L*-norm of Vu and VZu. We multiply the first equation of (1.3) by —Au, integrate
by parts and then obtain

1d
——IVu®Il7, + lAully, =x f AuV - (uVv) + £ f Au - V(uVw)
2 dt R2 R?

:)(f AuVu - Vv +)(f uAuAv
R2 R2

+& | AuVu-Vw+ €& | uAuAw
R2

R2
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=l +L+ 5+ 1. (2.59)
Then by (2.42), (2.45) and (2.52), Holder’s inequality and Young’s inequality, we have
Iy + L < )l l|Aullrl[Vullrz + X NAVI 2l Aul |2 |l |
< %IIAulliz + CiylIVull7, + Ci7.
Similarly, according to (2.43), (2.45) and (2.56), we can obtain
I3 + 1y < YNVl l|Aull2l[Vullrz + xNAVI 2l Aul | 2|l

1
< leAulliz + CpalIVull}, + Cis.

Then we have L d |
EE”VM(I)H%Z + §||AM||iz < CpllVull?, + Cho.

Integrating on (0, t), we have for some Cy > 0
IVull;2 < Cyp, forallze (0,7). (2.60)

Rewriting the first equation of (1.3) as Au = u; + ¥V - (uVv) + €V - (uVw), and by (2.42)—(2.44), (2.53)
and (2.54), we have for some Cy; > 0

Aullz2 <110ullzz + x IV - VVl2 + x ludvllpz + ENVu - VWil + & |ludwllp2
<Ol + x [IVull 2 VYl + x 1AV 22 [lual| o
+ &Vl IVl + E AW 22 [lull
<Cy. (2.61)

For the L*-norm of Vv, integrating by parts, we deduce that

d
- Vv =2 fR VWA v+ )

= -2 f V4" -2 f V[ +2 f VvWiu
R2 R2 R2

<= [ =2 [Vl + 9P
then by (2.61) and Gronwall’s inequality, we can see that for all # € (0, T)
Vv, < Caa. (2.62)
Putting (2.52)—(2.54), (2.58) and (2.60)—(2.62) together, we conclude that for some C > 0
Ol 2@2) + VOl @2y + W32y < €, V1€ (0,T), (2.63)

which completes the proof. O
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3. proof of Theorem1.1

As a preparation, we first state some results concerning the system which will be used in the proof
of Theorem 1.1.

Lemma 3.1. The local-in-time classical solution (u,v,w) of system (1.3) satisfies
lu@llzr = lluoll := M, V1t € (0, Trmax) (3.1
and
VOl = lluollr + (vollr — lluollz) €™, Vi € (0, Tinax) - (3.2)

Proof. Integrating the first and second equation of (1.3) on R?, we can obtain

d
— u:fAu—)(fV-(qu)—ffV-(qu)zO
dt R2 R2 R2 R2

and J
—fv:fAv—fv+fu:—fv+fu,
dt Jre R2 R2 R2 R2 R2
which can easily yield (3.1) and (3.2). O
The following energy

F(t)=fulnu—/\/f uv—§f uw+)£f(v2+|Vv|2)
R2 R2 R2 2 R2

plays a key role in the proof. The main idea of the proof is similar to the strategy introduced in [2].

Lemma 3.2. Assume that (1.4) and (1.5) holds. Let (u,v,w) be the local-in-time classical solution of
system (1.3). Then F(t) satisfies

F(t)+)(f0 fszerfofRzuw(lnu—Xv—gw)F:F(0)+§j; fRzuvw, Vi€ (0, Tmay). (3.3)

Proof. We use the same ideas as in the proofs of [45, Theorem 1.3], [46, Lemma 3.1] and [1, Theorem
3.2]. The equation of u can be written as u; = V - uV(Inu — v — éw)). Multiplying by Inu — yv — éw
and integrating by parts, we obtain

- f ulV(nu — yv — éw)f* = f u(Inu — yv — éw)
RZ RZ

d
:—f(ulnu—)(uv—fuw)+)(f uvt+§f uw;. 3.4
dt R2 R2 R2
Substituting the second and third equation of (1.3) into (3.4) and integrating by parts, we have

- f ulV(lnu — yv — fw)l2

R
d
=— (ulnu—)(uv—guw)+)(f (Vz—AV+V)Vz+ff uvw
dt R2 R2 R2
:i (ulnu — yuv — Euw) —)(f v2+)£i (v2+|Vv|2)+§f uvw 3.5
dt R2 R2 ! 2 dt R2 R2 ’ ’
which, upon being integrated from O to ¢, yields simply that (3.3). O

Mathematical Biosciences and Engineering Volume 20, Issue 4, 7565-7593.



7582

We give some lemmas to deal with the term fRZ ulnuin (1.7).

Lemma 3.3. ( [1, Lemma 2.1]) Let y be any function such that ¢¥ € L! (Rz) and denote

-1
= Me ( fR2 e‘”dx) with M a positive arbitrary constant. Let E : L} (RZ) — R U {oo} be the entropy
functional

E(u;y) = f (ulnu — wp)dx
RZ

and let RE : L! (Rz) — R U {oo} defined by

RE(u | i) = f uln(Eydx
R2 u

be the relative (to it) entropy.
Then E(u;y) and RE(u | ) are finite or infinite in the same time and for all u in the set U =
{u € L}r (RZ) , fRZ u(x)dx =M } and it holds true that

E(u; ) — E(a;¢) = RE(u | @) 2 0.

Next, we give a Moser-Trudinger-Onofri inequality.

Lemma 3.4. ([1, Lemma 3.1]) Let H be defined as H(x) = %(1+|1 o Then
1
f Y H(x)dx < exp f e(x)H(x)dx + — f IVeo(x)|*dx ¢, (3.6)
R2 R2 167T R2

for all functions ¢ € L! (Rz, H (x)dx) such that |Vo(x)| € L? (R2, dx).

Lemma 3.5. ( [1, Lemma 2.4]) Let ¢ be any function such that ¢ € L! (Rz), and let f be a non-

negative function such that ( 1< 1}) el (RZ) NL! (Rz, Itﬁ(x)ldx). Then there exists a constant C such
that

fR f@)n f(x))-dx < C - JOW(x)dx.

{f<y

With the help of Lemma 3.2-3.5, we now use the subcritical mass condition (1.8) to derive a
Gronwall-type inequality and to get a time-dependent bound for ||(z In u)(?)||;.:.

Lemma 3.6. Under the subcritical mass condition (1.8) and (1.5), there exists C = C (ug, vo, wo) > 0
such that

K
@ Inw) @)l + V@I, < Cer', Vi€ (0, Ty, (3.7)

where K > 0 and vy are defined by (3.8) and (3.10) below, respectively.
Proof. According to the third equation of (1.3), we have for all r € (0,7)

[Wllze < [wollr= := K, (3.8)
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then we apply the estimate of (3.3) to find that

F@t) + f f ulV(nu — yv — Ew)P < F(O) + €K f f wv, Yt € (0, Tmay)- (3.9)
0 R2 0 R2

For our later purpose, since M < 8;” we first choose some positive constant y > 0 small enough to

satisfy

2
Mty

0, 3.10
. (3.10)

then by the definition of F(¢) in (1.7), we use (3.1) and (3.8) to deduce that

F() = fulnu—)(f uv—(ff uw+)—(f(v2+|Vv|2)

RZ RZ ]R2 2 Rz
fulnu—(,\/+y)fuv—fKM+/Kf(v2+|Vv|2)+yf uv. 3.11)
R2 R2 2 R2 R2

1
Similar as the calculation shown in [1], we set ii(x, £) = MeX &) H(x) ( fRz XYV [ (x)dx) , where
H(x) is defined in Lemma 3.4. Then, we can apply the Entropy Lemma 3.3 with ¢ = (v + y)v+ In H
to obtain

\%

Ew,;(x+yw+InH) > E(u;(y +y)v+1nH)

=MInM - MlIn ( f eW”)V(x”)H(x)dx) . (3.12)
RZ

Furthermore, applying Lemma 3.4 with ¢ = (x + y)v to the last term in the right hand side of (3.12),
we have that

E(u;(X+y)v+lnH):fulnu—()(+’y)fuv—fulnH
2 2 R2

R R

>MInM - Mln ( f VD i (x)dx)
R2

M 2
> MInM - M(y +7) vH—Mf Vv, (3.13)
R2 16 R2

Then by Young’s inequality, we have M(y + ) j;%z vH < %?2 fR2 v + 4Mn fRZ H?. Together

with (3.13) and the fact fRz H?*(x)dx = ﬁ, we can easily obtain

fulnu—(,y+y)fuv—fulnH
R2 R? R?

M 2
ZMlnM—MgHy)va—ﬂf Vo2
RZ R2

167
M 2 M 2 4
2M1nM—(X—+7)f VZ_MI V]2 — =M. (3.14)
1671' R2 167( R2 3
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Substituting (3.14) into (3.11), we have

F(t)zfulnu—(,y+y) uv+)£f(v2+|Vv|2)+yf uv — KM
R2 R2 2 R2 R2
M(y +v)? 4
ZMlnM+fulnH+ x_ Muryr f(v2+|Vv|2)+)/f w — (€K + )M
R2 2 167 R2 R2 3
4
2M1nM+fulnH+yf u — (€K + )M (3.15)
R2 R2 3

by (3.10). Now we turn to estimate the second term on the right side of (3.15). We set ¢(x) = In(1+|x|?),
then we can obtain by Young’s inequality

i u¢:futqﬁ:qugb-V(lnu—)(v—fw)
dt R2 R2 R2

1
< f ulVol* + — f ulV(nu — yv — éw)*, forall z € (0, Tiax)-
R2 4 RZ

By the fact [Vg(x)| =

2x
1+x?

< 1, we have

d

1
— u¢§fu+—fulV(lnu—Xv—§W)|2§M+
R? R2 4 Jg2

V(nu — yv — 2
5 fRzul (Inu—yxv-~E&w),

1
4
upon being integrated from O to ¢, which yields simply that for all ¢ € (0, Tax)

1 !
f uln(l + |x?) < f uo In(1 + |x[*) + Mt + — f f ulV(nu — yv — éw)P. (3.16)
R2 R2 4 Jo Jr
By the definition of H(x), we have for all 7 € (0, Tyax)

fulnH:—Zf uln(1 + [x) = MInx
R2 R2

1 !
> —2f uo In(1 + |x|*) — 2Mt — 3 f f ulV(nu — yv — éw)* = MInn. (3.17)
R2 0 2

R
Substituting (3.15) and (3.17) into (3.9), we have for all ¢ € (0, Tax)

!
4
yf uvngffuv+2Mt+F(O)+2f uoln(l+|x|2)+(1n7r+§K+——lnM)M. (3.18)
R2 0 Jr2 R2 3

From (1.4), we have assumed for convenience that uyInuy and ugIn(1 + |x*) belongs to L'(R?) for
convenience. Then we conclude an integral-type Gronwall inequality as follows

!
yf uvstffuv+2Mt+C1, Vt € (0, Thax) » (3.19)
R? 0 Jr2

where C; = F(0) + 2fR2 uoIn(1 + |x1?) + (Inm + éK + % — In M)M is a finite number. Solving the
integral-type Gronwall inequality (3.19) via integrating factor method, we infer that for some C, > 0

!
fzuv+ff2uvsCzeﬁvkt, VYt € (0, Trax) -
R 0 JR
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Then by (3.9), one can simply deduce that F(#) grows no great than exponentially as well:
F(t) < Cse™', V1€ (0, Ta). (3.20)

Similarly, this along with (1.7) shows that for some Cy4 > 0

fzulnu+f2v2+f2 |Vv|2§C4e%t, Vi€ (0, Trax) - (3.21)
R R R

According to Lemma 3.5 with ¥ = —(1 + 6) ln(l + |x|2), for arbitrary 6 > 0 in order to have
e~ 1+ I(141x) ¢ 1 (Rz), we have for all ¢ € (0, Trax)

f u(lnu)_dx
R2

<(1+ 5)f uln (1 + x?)dx + Cs
RZ

<(1+9) {f uo In(1 + [x*) + Mt + 1 f f ulV(anu — yv — gw)|2} + Cs
R2 4 0 R2
1+6 { !
<—{F(0) —F(t)+§Kf f uv} + M1 +6)t + Cq
4 ' 0 R2
<Cre7! (3.22)

for some C; > 0 (i = 5, 6,7). Finally, the identity

flulnuldx:fulnudx+2f u(lnu)_dx (3.23)
R? R2 R?

gives that ||(u Inu)(@)||pr < Cge%t for some Cg > 0. Together with (3.21), this easily yield (3.7). O

Next, we wish to raise the regularity of u based on the local L'-boundedness of u In u. In particular,
for subcritical mass M, we have fRz(u(x, t) — k),dx < M for any k > 0, while for k > 1 we have for all
1 € (0, Trax)

f (u(x,t) —k),dx < Lk f (u(x,t) —k); Inu(x, H)dx
R2 2

" In R

e,

(3.24)

1 Ce
< — H(l N.dx < .
—mkfRz”(x’ Jnu(x, 0).dx < =—

Lemma 3.7. Under the condition (1.5) and (1.8), for any T € (0, Tpnay), there exists C(T) > 0 such that
the local solution (u,v,w) of (1.1) verifies that for any p > 2

f uP(x,t)dx < C(T), YVt € (0, T], (3.25)
R2

where C(T) = 2PC(T)+ (2k)?~' M with k and C(T) respectively given by (3.37) and (3.40) below, which
are finite for any T > 0.
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Proof. Let k > 0, to be chosen later. We derive a non-linear differential inequality for the quantity
Y (1) := fRz(u(x, 1) — k)" dx, which guarantees that the L”-norm of u remains finite.

Multiplying the equation of u in (1.3) by p(u — k)f'f1 yields, using integration by parts,

—f(u—k)pdx

- D

= V(u - k)+ dx —(p- I)Xf (u — k) Avdx — pk/\/f (u— k)" Avdx
p R? R2 R2
—(p- l)ff (u — k)? Awdx — pkff (u— k)" Awdx
R R
=l + L+ 5L+ 1+ Is. (3.26)

Now using the equation of v in (1.3) and the nonnegativity of v, one obtains

L = —(p- I)Xf (u — k) Avdx
RZ
= (p- 1)Xf (u—kE (v, —v+u)dx
RZ
< 4p—nxfku—Mﬁﬁwp—Dxfku—mwa+@—1mleu—m&u (3.27)
R2 R2 R2

and
I; = —pk)(f(u—k)f_lAvdx
R2

= pk)(f (u— k)’j_l(—v, —v+u)dx
R2

IA

—pky f (- k) 'v,dx + pky f (- k) dx + pkx f (- k)" dx. (3.28)
R R R

Using Gagliardo-Nirenberg inequality fRz fAx)dx<C fRz F2(x)dx fR L IVF(0)Pdx with f = (u— k)? and
Holder inequality, we obtain for £ > 0

(u — k) v,dx

R2

1
< ( (u— k)j’dx) lIvell 2

< C( (u— k)‘zd)c)2 (
R? R2

< C(p)elvilly, f (u—k
R2

p
k)

) 1/2
dx) [[Villz2

P12
k)?2| dx. (3.29)

NS [98]

Similarly, we have, for p >

‘fm—@ dx] < (f(—m?”wywmz
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1

< (C(M, p)+C(p) fRz(u - k).zde) lvell 2

<C(M, p) IVill2 + C(p)e vill7 f (u—k)idx
R2

-1
+ P f
ep*k Jp
Then we can see that

-1
L+ < (p—1)f(u—k)i“dx+(p—)f
R2 P R2

+C(p, x)(k + D vl fz(u — Y dx + C(M, p, )k Ivill.2
R

r2
V(u-k);| dx. (3.30)

p12
V(u—-k)?| dx

+2p - l)k)(f (u—k)Pdx + pkz)(f (u—k)" dx (3.31)
R? R?

by setting € = 4y. According to the equation of w and v and (3.8), one obtains for all r € (0, T)

f f 4
—AW(x, 1) = — Awp(x)e™ b s 4 0e= sy, (4 f Vo(x, s)ds
0

!
f Vv(x, s)ds
0

! 2 )
<llAwollr~ — e~ h V(X’S)ds( VWo f Vv(x, s)ds — VWO) + e b s [Vwol
0 +\/

Wo Wwo

2

_ W()(X)e_ fot v(x,s)ds

!
+ wo(x)e_fﬂ vxs)ds f Av(x, s)ds

0

. 1
+ wo(x)e” Jp vixsds f (vy(x, 8) + v —u)ds. (3.32)
0
Here to estimate the last integral of the right side of (3.32) we first note (1.7) guarantees that

! !
wo(x)e_fo vxs)ds f (vs(x, 8) + v —u)ds < |[woll Looe_fo vxs)ds [v(x, 1) — vy + f v(x, s)ds]
0 0

W 0
< Iwollew + 22 g 0,7
c

by the nonnegativity of wy and vy and the fact e™*x < é for all x > 0. Substituting (3.8) and (3.32) into
(3.26), we have

Li+Is=—(p- l)ff (u — k)Y Awdx — pkff (u— k)" "' Awdx
R R
<(p- DKE [ (w=blvdr+ (p- DKiE [ @bl
RZ R2
+ pkaf (u— k)" 'vdx + pkK & | (u— k)" dx,
R? R?

where K| = ||Awyl|z~ + 4|V \/VTOHiw + IE( Applying similar procedure as (3.29) and (3.30) to fRZ(u -
k)?vdx and [, (u - k). vdx, this yields

~1
L+l < )f
p R2
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+(p- I)Klff (u— k)l dx + pkKl.ff (u—k)" ' dx (3.33)
R2 R2

by setting £ = 2K£. Combining (3.26), (3.31) and (3.33), we have for all t € (0, T)

d P
- L (u—kyldx
L

2
2 dx+(p—1)f(u—k)i+‘dx
R2

+12p - Dk + (p - DKL€] f (u— k) dx + (pkx + pkK.©) f (= 0" dx
R2 R2

+ C(p. K x. )k + 1) (1012 + VI f (u = k)Jdx + C(M, p, K. Ok (19vll2 + M) . (3.34)
R2

Next, we estimate the nonlinear and negative contribution —2(”7?1) fR2 |V(u— k)? [*dx in terms of fRz(” -
k)ﬁ”dx, with the help of the Sobolev’s inequality || f IIi2 <allVf IIil. Indeed, by (3.24),

(p+)\2 2
f (u—k)dx = f ((u —k),? ) dx < ¢ (f V(u-k),> dx)
R2 R2 R2
2
=C(p>(f (= k3 )
R2

< C(p) f (u — k) dx f V(- 22 dx

(p+1)

V(u - k)? dx

C(p)— f V- k[ dx, VO<t<T. (3.35)
Moreover, since for p > 2 it holds true that

(u—k)"dx < f (u —k)pdx + f (u — k). dx. (3.36)
R2 R2 R2

Inserting (3.35) and (3.36) into (3.34) gives for p > 2 and 0 < ¢ < T that

d P
E‘ fRZ(I/t - k)+dx

21Ink
<(p- 1)(1 - —H(T]f (u— k) dx
pC(p)Cer " ) IR
+C(p, K, x, f)k(l + 017, + ||v||§2) f e kidx + C(M, p, K, x, E)k (102 + [Vllz2 + 1).
R

For any fixed p we can choose k = k(p, T') sufficiently large such that

2Ink
§i=—"15 150, (3.37)

K

pC(p)Cer "
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. For such a k, using the interpolation

; (-5)
f (u—k)dx < ( f (u— k)+dx) ( f (u— k)fj“dx)
R2 R2 R2
1 (1-3)
<Mv» (f (u — k)’fldx) ,
R2

we end up with the following differential inequality for ¥,(¢), p > 2 fixedand 0 <t < T

&K
namely, k = exp (w)

d 1
E_Yp(t) <-(p-DM "*‘5Y§(f) + 2 (p, K,)(,f)k(l +110vI2, + ”V”iz) Y, (1)

+ c3(M, p, K, x, Ok (1 + 110,15, + M) (3.38)

where § = 1% > 1. Let us write the differential inequality (3.38) as follows for simplicity:
d ~yB
EYP(I) <-=CY,(0+g®Y,0)+g(), 0<r<T, (3.39)

where g(t) = C(M, p. K. x, &)k (1 + 97, + M) and € = (p - DM 71§ > 0. According to (3.7),

(3.9) and (3.20), we can see that g(r) < C(M, p, K, x, f)keg% Then by comparison inequality, we show
that there exists a constant C(T') such that for all ¢ € (0, T)

Y, (1) £Y,(0)exp (fo g(s)ds) +j; g(r)exp (f g(s)ds) dr

. KT _
< Y, (0)C(M, p, K, x.Eke T + C(M, p. K.y, Oke s LHPKek T T = O(T). (340

It is sufficient to observe that for any k > 0

f u’(x,Ndx = f uf(x, dx + f u(x, t)dx
R? {u<2k} {u>2k)

< kY 'M +2° f (u(x, 1) — k)Pdx

{u>2k}

< k)y~'M +2° f (u(x, t) — k)?dx, (3.41)
R2

where the inequality x” < 2P(x — k)”, for x > 2k, has been used. Therefore, (3.25) follows for any
p > 2 by (3.40) and (3.41) choosing k = k(p, T') sufficiently large such that (3.37) holds true. O

Proof of Theorem 1.1. According to the local L”—boundedness of Lemma 3.7 and Lemma 2.2 we
must have the local H?> X H?> x H?-boundedness of («, v, w), which contracts the extensibility criteria
in (2.35). Then we must obtain that 7T\,,x = oo, that is, the strong solution (u, v, w) of (1.3) exists
globally in time and is locally bounded as in (2.2).

O
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