Research article Special Issues

Dissection of tumor antigens and immune landscape in clear cell renal cell carcinoma: Preconditions for development and precision medicine of mRNA vaccine


  • Received: 20 August 2022 Revised: 25 October 2022 Accepted: 06 November 2022 Published: 16 November 2022
  • Accumulating evidence reveals that mRNA-type cancer vaccines could be exploited as cancer immunotherapies in various solid tumors. However, the use of mRNA-type cancer vaccines in clear cell renal cell carcinoma (ccRCC) remains unclear. This study aimed to identify potential tumor antigens for the development of an anti-ccRCC mRNA vaccine. In addition, this study aimed to determine immune subtypes of ccRCC to guide the selection of patients to receive the vaccine. Raw sequencing and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. Further, the cBioPortal website was used to visualize and compare genetic alterations. GEPIA2 was employed to evaluate the prognostic value of preliminary tumor antigens. Moreover, the TIMER web server was used to evaluate correlations between the expression of specific antigens and the abundance of infiltrated antigen-presenting cells (APCs). Single-cell RNA sequencing data of ccRCC was used to explore the expression of potential tumor antigens at single-cell resolution. The immune subtypes of patients were analyzed by the consensus clustering algorithm. Furthermore, the clinical and molecular discrepancies were further explored for a deep understanding of the immune subtypes. Weighted gene co-expression network analysis (WGCNA) was used to cluster the genes according to the immune subtypes. Finally, the sensitivity of drugs commonly used in ccRCC with diverse immune subtypes was investigated. The results revealed that the tumor antigen, LRP2, was associated with a good prognosis and enhanced the infiltration of APCs. ccRCC could be divided into two immune subtypes (IS1 and IS2) with distinct clinical and molecular characteristics. The IS1 group showed a poorer overall survival with an immune-suppressive phenotype than the IS2 group. Additionally, a large spectrum of differences in the expression of immune checkpoints and immunogenic cell death modulators were observed between the two subtypes. Lastly, the genes correlated with the immune subtypes were involved in multiple immune-related processes. Therefore, LRP2 is a potential tumor antigen that could be used to develop an mRNA-type cancer vaccine in ccRCC. Furthermore, patients in the IS2 group were more suitable for vaccination than those in the IS1 group.

    Citation: Jianpei Hu, Zengnan Mo. Dissection of tumor antigens and immune landscape in clear cell renal cell carcinoma: Preconditions for development and precision medicine of mRNA vaccine[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 2157-2182. doi: 10.3934/mbe.2023100

    Related Papers:

  • Accumulating evidence reveals that mRNA-type cancer vaccines could be exploited as cancer immunotherapies in various solid tumors. However, the use of mRNA-type cancer vaccines in clear cell renal cell carcinoma (ccRCC) remains unclear. This study aimed to identify potential tumor antigens for the development of an anti-ccRCC mRNA vaccine. In addition, this study aimed to determine immune subtypes of ccRCC to guide the selection of patients to receive the vaccine. Raw sequencing and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. Further, the cBioPortal website was used to visualize and compare genetic alterations. GEPIA2 was employed to evaluate the prognostic value of preliminary tumor antigens. Moreover, the TIMER web server was used to evaluate correlations between the expression of specific antigens and the abundance of infiltrated antigen-presenting cells (APCs). Single-cell RNA sequencing data of ccRCC was used to explore the expression of potential tumor antigens at single-cell resolution. The immune subtypes of patients were analyzed by the consensus clustering algorithm. Furthermore, the clinical and molecular discrepancies were further explored for a deep understanding of the immune subtypes. Weighted gene co-expression network analysis (WGCNA) was used to cluster the genes according to the immune subtypes. Finally, the sensitivity of drugs commonly used in ccRCC with diverse immune subtypes was investigated. The results revealed that the tumor antigen, LRP2, was associated with a good prognosis and enhanced the infiltration of APCs. ccRCC could be divided into two immune subtypes (IS1 and IS2) with distinct clinical and molecular characteristics. The IS1 group showed a poorer overall survival with an immune-suppressive phenotype than the IS2 group. Additionally, a large spectrum of differences in the expression of immune checkpoints and immunogenic cell death modulators were observed between the two subtypes. Lastly, the genes correlated with the immune subtypes were involved in multiple immune-related processes. Therefore, LRP2 is a potential tumor antigen that could be used to develop an mRNA-type cancer vaccine in ccRCC. Furthermore, patients in the IS2 group were more suitable for vaccination than those in the IS1 group.



    加载中


    [1] U. Capitanio, K. Bensalah, A. Bex, S. A. Boorjian, F. Bray, J. Coleman, et al., Epidemiology of renal cell carcinoma, Eur. Urol., 75 (2019), 74–84. https://doi.org/10.1016/j.eururo.2018.08.036 doi: 10.1016/j.eururo.2018.08.036
    [2] R. L. Siegel, K. D. Miller, H. E. Fuchs, A. Jemal, Cancer statistics, 2021, CA Cancer J. Clin., 71 (2021), 7–33. https://doi.org/10.3322/caac.21654 doi: 10.3322/caac.21654
    [3] B. Escudier, C. Porta, M. Schmidinger, N. Rioux-Leclercq, A. Bex, V. Khoo, et al., Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up, Ann. Oncol., 30 (2019), 706–720. https://doi.org/10.1093/annonc/mdz056 doi: 10.1093/annonc/mdz056
    [4] H. Moch, A. L. Cubilla, P. A. Humphrey, V. E. Reuter, T. M. Ulbright, The 2016 WHO classification of tumours of the urinary system and male genital organs-part a: Renal, penile, and testicular tumours, Eur. Urol., 70 (2016), 93–105. https://doi.org/10.1016/j.eururo.2016.02.029 doi: 10.1016/j.eururo.2016.02.029
    [5] L. Kuthi, A. Jenei, A. Hajdu, I. Németh, Z. Varga, Z. Bajory, et al., Prognostic factors for renal cell carcinoma subtypes diagnosed according to the 2016 WHO renal tumor classification: A study involving 928 patients, Pathol. Oncol. Res., 23 (2017), 689–698. https://doi.org/10.1007/s12253-016-0179-x doi: 10.1007/s12253-016-0179-x
    [6] M. O. Grimm, I. Wolff, S. Zastrow, M. Fröhner, M. Wirth, Advances in renal cell carcinoma treatment, Ther. Adv. Urol., 2 (2010), 11–17. https://doi.org/10.1177/1756287210364959 doi: 10.1177/1756287210364959
    [7] U. Capitanio, F. Montorsi, Renal cancer, Lancet, 387 (2016), 894–906. https://doi.org/10.1016/S0140-6736(15)00046-X doi: 10.1016/S0140-6736(15)00046-X
    [8] E. M. Posadas, S. Limvorasak, R. A. Figlin, Targeted therapies for renal cell carcinoma, Nat. Rev. Nephrol., 13 (2017), 496–511. https://doi.org/10.1038/nrneph.2017.82 doi: 10.1038/nrneph.2017.82
    [9] T. Powles, L. Albiges, M. Staehler, K. Bensalah, S. Dabestani, R. H. Giles, et al., Updated European association of urology guidelines: Recommendations for the treatment of first-line metastatic clear cell renal cancer, Eur. Urol., 73 (2018), 311–315. https://doi.org/10.1016/j.eururo.2017.11.016 doi: 10.1016/j.eururo.2017.11.016
    [10] R. J. Motzer, A. Ravaud, J. J. Patard, H. S. Pandha, D. J. George, A. Patel, et al., Adjuvant sunitinib for high-risk renal cell carcinoma after nephrectomy: Subgroup analyses and updated overall survival results, Eur. Urol., 73 (2018), 62–68. https://doi.org/10.1016/j.eururo.2017.09.008 doi: 10.1016/j.eururo.2017.09.008
    [11] D. A. Braun, Z. Bakouny, L. Hirsch, R. Flippot, E. M. V. Allen, C. J. Wu, et al., Beyond conventional immune-checkpoint inhibition—novel immunotherapies for renal cell carcinoma, Nat. Rev. Clin. Oncol., 18 (2021), 199–214. https://doi.org/10.1038/s41571-020-00455-z doi: 10.1038/s41571-020-00455-z
    [12] C. Ciccarese, R. Iacovelli, C. Porta, G. Procopio, E. Bria, S. Astore, et al., Efficacy of VEGFR-TKIs plus immune checkpoint inhibitors in metastatic renal cell carcinoma patients with favorable IMDC prognosis, Cancer Treat. Rev., 100 (2021), 102295. https://doi.org/10.1016/j.ctrv.2021.102295 doi: 10.1016/j.ctrv.2021.102295
    [13] A. Raimondi, G. Randon, P. Sepe, M. Claps, E. Verzoni, F. Braud, et al., The evaluation of response to immunotherapy in metastatic renal cell carcinoma: Open challenges in the clinical practice, Int. J. Mol. Sci., 20 (2019), 4263. https://doi.org/10.3390/ijms20174263 doi: 10.3390/ijms20174263
    [14] A. G. Winer, R. J. Motzer, A. A. Hakimi, Prognostic biomarkers for response to vascular endothelial growth factor-targeted therapy for renal cell carcinoma, Urol. Clin. North Am., 43 (2016), 95–104. https://doi.org/10.1016/j.ucl.2015.08.009 doi: 10.1016/j.ucl.2015.08.009
    [15] B. A. Sullenger, S. Nair, From the RNA world to the clinic, Science, 352 (2016), 1417–1420. https://doi.org/10.1016/j.ucl.2015.08.009 doi: 10.1016/j.ucl.2015.08.009
    [16] N. Pardi, M. J. Hogan, F. W. Porter, D. Weissman, mRNA vaccines—a new era in vaccinology, Nat. Rev. Drug Discov., 17 (2018), 261–279. https://doi.org/10.1038/nrd.2017.243 doi: 10.1038/nrd.2017.243
    [17] E. Faghfuri, F. Pourfarzi, A. H. Faghfouri, M. A. Shadbad, K. Hajiasgharzadeh, B. Baradaran, Recent developments of RNA-based vaccines in cancer immunotherapy, Expert Opin. Biol. Ther., 21 (2021), 201–218. https://doi.org/10.1080/14712598.2020.1815704 doi: 10.1080/14712598.2020.1815704
    [18] L. Miao, Y. Zhang, L. Huang, mRNA vaccine for cancer immunotherapy, Mol. Cancer, 20 (2021), 41. https://doi.org/10.1186/s12943-021-01335-5 doi: 10.1186/s12943-021-01335-5
    [19] S. Wagner, C. S. Mullins, M. Linnebacher, Colorectal cancer vaccines: Tumor-associated antigens vs neoantigens, World J. Gastroenterol., 24 (2018), 5418–5432. https://doi.org/10.3748/wjg.v24.i48.5418 doi: 10.3748/wjg.v24.i48.5418
    [20] A. J. Barbier, A. Y. Jiang, P. Zhang, R. Wooster, D. G. Anderson, The clinical progress of mRNA vaccines and immunotherapies, Nat. Biotechnol., 40 (2022), 840–854. https://doi.org/10.1038/s41587-022-01294-2 doi: 10.1038/s41587-022-01294-2
    [21] S. C. Kim, S. S. Sekhon, W. R. Shin, G. Ahn, B. K. Cho, J. Y. Ahn, et al., Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency, Mol. Cell Toxicol., 18 (2022), 1–8. https://doi.org/10.1007/s13273-021-00171-4 doi: 10.1007/s13273-021-00171-4
    [22] F. P. Polack, S. J. Thomas, N. Kitchin, J. Absalon, A. Gurtman, S. Lockhart, et al., Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine, N. Engl. J. Med., 383 (2020), 2603–2615. https://doi.org/10.1056/NEJMoa2034577 doi: 10.1056/NEJMoa2034577
    [23] Y. Wang, Z. Zhang, J. Luo, X. Han, Y. Wei, X. Wei, mRNA vaccine: A potential therapeutic strategy, Mol. Cancer, 20 (2021), 33. https://doi.org/10.1186/s12943-021-01311-z doi: 10.1186/s12943-021-01311-z
    [24] S. Rausch, C. Schwentner, A. Stenzl, J. Bedke, mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer, Hum. Vaccines Immunother., 10 (2014), 3146–3152. https://doi.org/10.4161/hv.29553 doi: 10.4161/hv.29553
    [25] L. Liu, Y. Wang, L. Miao, Q. Liu, S. Musetti, J. Li, et al., Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer, Mol. Ther., 26 (2018), 45–55. https://doi.org/10.1016/j.ymthe.2017.10.020 doi: 10.1016/j.ymthe.2017.10.020
    [26] Y. Wang, L. Zhang, Z. Xu, L. Miao, L. Huang, mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma, Mol. Ther., 26 (2018), 420–434. https://doi.org/10.1016/j.ymthe.2017.11.009 doi: 10.1016/j.ymthe.2017.11.009
    [27] S. M. Rittig, M. Haentschel, K. J. Weimer, A. Heine, M. R. Müller, W. Brugger, et al., Long-term survival correlates with immunological responses in renal cell carcinoma patients treated with mRNA-based immunotherapy, Oncoimmunology, 5 (2015), e1108511. https://doi.org/10.1080/2162402X.2015.1108511 doi: 10.1080/2162402X.2015.1108511
    [28] F. Geng, X. Bao, L. Dong, Q. Guo, J. Guo, Y. Xie, et al., Doxorubicin pretreatment enhances FAPa/survivin co-targeting DNA vaccine anti-tumor activity primarily through decreasing peripheral MDSCs in the 4T1 murine breast cancer model, Oncoimmunology, 9 (2020), 1747350. https://doi.org/10.1080/2162402X.2020.1747350 doi: 10.1080/2162402X.2020.1747350
    [29] M. J. Goldman, B. Craft, M. Hastie, K. Repečka, F. McDade, A. Kamath, et al., Visualizing and interpreting cancer genomics data via the Xena platform, Nat. Biotechnol., 38 (2020), 675–678. https://doi.org/10.1038/s41587-020-0546-8 doi: 10.1038/s41587-020-0546-8
    [30] E. Cerami, J. Gao, U. Dogrusoz, B. E. Gross, S. O. Sumer, B. A. Aksoy, et al., The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data, Cancer Discov., 2 (2012), 401–404. https://doi.org/10.1158/2159-8290.CD-12-0095 doi: 10.1158/2159-8290.CD-12-0095
    [31] Z. Tang, B. Kang, C. Li, T. Chen, Z. Zhang, GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis, Nucleic Acids Res., 47 (2019), 556–560. https://doi.org/10.1093/nar/gkz430 doi: 10.1093/nar/gkz430
    [32] T. Li, J. Fan, B. Wang, N. Traugh, Q. Chen, J. S. Liu, et al., TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells, Cancer Res., 77 (2017), e108–e110. https://doi.org/10.1158/0008-5472.CAN-17-0307 doi: 10.1158/0008-5472.CAN-17-0307
    [33] C. Su, Y. F. Lv, W. H. Lu, Z. Y. Yu, Y. Ye, B. Q. Guo, et al., Single-cell RNA sequencing in multiple pathologic types of renal cell carcinoma revealed novel potential tumor-specific markers, Front. Oncol., 11 (2021), 719564. https://doi.org/10.3389/fonc.2021.719564 doi: 10.3389/fonc.2021.719564
    [34] Z. L. Long, C. F. Sun, M. Tang, Y. Wang, J. Y. Ma, J. C. Yu, et al., Single-cell multiomics analysis reveals regulatory programs in clear cell renal cell carcinoma, Cell Discov., 8 (2022), 68. https://doi.org/10.1038/s41421-022-00415-0 doi: 10.1038/s41421-022-00415-0
    [35] M. D. Wilkerson, D. N. Hayes, ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking, Bioinformatics, 26 (2010), 1572–1573. https://doi.org/10.1093/bioinformatics/btq170 doi: 10.1093/bioinformatics/btq170
    [36] K. Yoshihara, M. Shahmoradgoli, E. Martínez, R. Vegesna, H. Kim, W. Torres-Garcia, et al., Inferring tumour purity and stromal and immune cell admixture from expression data, Nat. Commun., 4 (2013), 2612. https://doi.org/10.1038/ncomms3612 doi: 10.1038/ncomms3612
    [37] S. Hänzelmann, R. Castelo, J. Guinney, GSVA: Gene set variation analysis for microarray and RNA-seq data, BMC Bioinf., 14 (2013), 7. https://doi.org/10.1186/1471-2105-14-7 doi: 10.1186/1471-2105-14-7
    [38] B. Chen, M. S. Khodadoust, C. L. Liu, A. M. Newman, A. A. Alizadeh, Profiling tumor infiltrating immune cells with CIBERSORT, Methods Mol. Biol., 1711 (2018), 243–259. https://doi.org/10.1007/978-1-4939-7493-1_12 doi: 10.1007/978-1-4939-7493-1_12
    [39] X. Huang, G. Zhang, T. Tang, T. Liang, Identification of tumor antigens and immune subtypes of pancreatic adenocarcinoma for mRNA vaccine development, Mol. Cancer., 20 (2021), 44. https://doi.org/10.1186/s12943-021-01310-0 doi: 10.1186/s12943-021-01310-0
    [40] C. C. Bozkus, V. Roudko, J. P. Finnigan, J. Mascarenhas, R. Hoffman, C. Iancu-Rubin, et al., Immune checkpoint blockade enhances shared neoantigen-induced t-cell immunity directed against mutated calreticulin in myeloproliferative neoplasms, Cancer Discov., 9 (2019), 1192–1207. https://doi.org/10.1158/2159-8290.CD-18-1356 doi: 10.1158/2159-8290.CD-18-1356
    [41] P. Langfelder, S. Horvath, WGCNA: An R package for weighted correlation network analysis, BMC Bioinf., 9 (2008), 559. https://doi.org/10.1186/1471-2105-9-559 doi: 10.1186/1471-2105-9-559
    [42] G. Yu, L. Wang, Y. Han, Q. He, ClusterProfiler: An R package for comparing biological themes among gene clusters, OMICS: J. Integr. Biol., 16 (2012), 284–287. https://doi.org/10.1089/omi.2011.0118 doi: 10.1089/omi.2011.0118
    [43] W. Yang, J. Soares, P. Greninger, E. J. Edelman, H. Lightfoot, S. Forbes, et al., Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells, Nucleic Acids Res., 41 (2013), 955–961. https://doi.org/10.1093/nar/gks1111 doi: 10.1093/nar/gks1111
    [44] D. Maeser, R. F. Gruener, R. S. Huang, oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data, Brief Bioinf., 22 (2021), bbab260. https://doi.org/10.1093/bib/bbab260 doi: 10.1093/bib/bbab260
    [45] D. S. Chandrashekar, B. Bashel, S. A. H. Balasubramanya, C. J. Creighton, I. Rodriguez, B. V. Chakravarthi, et al., UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses, Neoplasia, 19 (2017), 649–658. https://doi.org/10.1016/j.neo.2017.05.002 doi: 10.1016/j.neo.2017.05.002
    [46] V. Thorsson, D. L. Gibbs, S. D. Brown, D. Wolf, D. S. Bortone, T. O. Yang, et al., The immune landscape of cancer, Immunity, 48 (2018), 812–830. https://doi.org/10.1016/j.immuni.2018.03.023 doi: 10.1016/j.immuni.2018.03.023
    [47] D. Sha, Z. Jin, J. Budczies, K. Kluck, A. Stenzinger, F. A. Sinicrope, Tumor mutational burden as a predictive biomarker in solid tumors, Cancer Discov., 10 (2020), 1808–1825. https://doi.org/10.1158/2159-8290.CD-20-0522 doi: 10.1158/2159-8290.CD-20-0522
    [48] R. Akin, D. Hannibal, M. Loida, E. M. Stevens, E. A. Grunz-Borgmann, A. R. Parrish, Cadmium and lead decrease cell-cell aggregation and increase migration and invasion in renca mouse renal cell carcinoma cells, Int. J. Mol. Sci., 20 (2019), 6315. https://doi.org/10.3390/ijms20246315 doi: 10.3390/ijms20246315
    [49] M. Auvray, E. Auclin, P. Barthelemy, P. Bono, P. Kellokumpu-Lehtinen, M. Gross-Goupil, et al., Second-line targeted therapies after nivolumab-ipilimumab failure in metastatic renal cell carcinoma, Eur. J. Cancer, 108 (2019), 33–40. https://doi.org/10.1016/j.ejca.2018.11.031 doi: 10.1016/j.ejca.2018.11.031
    [50] L. G. Ye, L. Wang, J. A. Yang, P. Hu, C. Y. Zhang, S. A. Tong, et al., Identification of tumor antigens and immune subtypes in lower grade gliomas for mRNA vaccine development, J. Transl. Med., 19 (2021), 352. https://doi.org/10.1186/s12967-021-03014-x doi: 10.1186/s12967-021-03014-x
    [51] K. M. Zirlik, D. Zahrieh, D. Neuberg, J. G. Gribben, Cytotoxic T cells generated against heteroclitic peptides kill primary tumor cells independent of the binding affinity of the native tumor antigen peptide, Blood, 108 (2006), 3865–3870. https://doi.org/10.1182/blood-2006-04-014415 doi: 10.1182/blood-2006-04-014415
    [52] D. Jocham, A. Richter, L. Hoffmann, K. Iwig, D. Fahlenkamp, G. Zakrzewski, et al., Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase Ⅲ, randomised controlled trial, Lancet, 363 (2004), 594–599. https://doi.org/10.1016/S0140-6736(04)15590-6 doi: 10.1016/S0140-6736(04)15590-6
    [53] A. Kirner, A. Mayer-Mokler, C. Reinhardt, IMA901: A multi-peptide cancer vaccine for treatment of renal cell cancer, Hum. Vaccines Immunother., 10 (2014), 3179–3189. https://doi.org/10.4161/21645515.2014.983857 doi: 10.4161/21645515.2014.983857
    [54] A. Amin, A. Z. Dudek, T. F. Logan, R. S. Lance, J. M. Holzbeierlein, J. J. Knox, et al., Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): Phase 2 study results, J. Immunother. Cancer, 3 (2015), 14. https://doi.org/10.1186/s40425-015-0055-3 doi: 10.1186/s40425-015-0055-3
    [55] M. A. Monslow, S. Elbashir, N. L. Sullivan, D. S. Thiriot, P. Ahl, J. Smith, et al., Immunogenicity generated by mRNA vaccine encoding VZV gE antigen is comparable to adjuvanted subunit vaccine and better than live attenuated vaccine in nonhuman primates, Vaccine, 38 (2020), 5793–5802. https://doi.org/10.1016/j.vaccine.2020.06.062 doi: 10.1016/j.vaccine.2020.06.062
    [56] A. M. T. V. Nuffel, S. Wilgenhof, K. Thielemans, A. Bonehill, Overcoming HLA restriction in clinical trials: immune monitoring of mRNA-loaded DC therapy, Oncoimmunology, 1 (2012), 1392–1394. https://doi.org/10.4161/onci.20926 doi: 10.4161/onci.20926
    [57] M. A. McNamara, S. K. Nair, E. K. Holl, RNA-based vaccines in cancer immunotherapy, J. Immunol. Res., 2015 (2015), 794528. https://doi.org/10.1155/2015/794528 doi: 10.1155/2015/794528
    [58] Y. Weng, C. Li, T. Yang, B. Hu, M. Zhang, S. Guo, et al., The challenge and prospect of mRNA therapeutics landscape, Biotechnol. Adv., 40 (2020), 107534. https://doi.org/10.1016/j.biotechadv.2020.107534 doi: 10.1016/j.biotechadv.2020.107534
    [59] A. G. O. V Niessen, M. A. Poleganov, C. Rechner, A. Plaschke, L. Kranz, S. Fesser, et al., Improving mRNA-based therapeutic gene delivery by expression-augmenting 3' UTRs identified by cellular library screening, Mol. Ther., 27 (2019), 824–836. https://doi.org/10.1016/j.ymthe.2018.12.011 doi: 10.1016/j.ymthe.2018.12.011
    [60] R. Bouzid, M. Peppelenbosch, S. I. Buschow, Opportunities for conventional and in situ cancer vaccine strategies and combination with immunotherapy for gastrointestinal cancers, A review, Cancers (Basel), 12 (2020), 1121. https://doi.org/10.3390/cancers12051121 doi: 10.3390/cancers12051121
    [61] R. K. Andersen, K. Hammer, H. Hager, J. N. Christensen, M. Ludvigsen, B. Honoré, et al., Melanoma tumors frequently acquire LRP2/megalin expression, which modulates melanoma cell proliferation and survival rates, Pigm. Cell Melanoma Res., 28 (2015), 267–280. https://doi.org/10.1111/pcmr.12352 doi: 10.1111/pcmr.12352
    [62] Y. He, L. Cao, L. Wang, L. Liu, Y. Huang, X. Gong, Metformin inhibits proliferation of human thyroid cancer TPC-1 cells by decreasing LRP2 to suppress the JNK pathway, Oncol. Targets Ther., 13 (2020), 45–50. https://doi.org/10.2147/OTT.S227915 doi: 10.2147/OTT.S227915
    [63] A. Zulijani, A. Dekanić, T. Ćabov, H. Jakovac, Metallothioneins and megalin expression profiling in premalignant and malignant oral squamous epithelial lesions, Cancers (Basel), 13 (2021), 4530. https://doi.org/10.3390/cancers13184530 doi: 10.3390/cancers13184530
    [64] C. M. Díaz-Montero, B. I. Rini, J. H. Finke, The immunology of renal cell carcinoma, Nat. Rev. Nephrol., 16 (2020), 721–735. https://doi.org/10.1038/s41581-020-0316-3 doi: 10.1038/s41581-020-0316-3
    [65] Q. Wang, X. Ju, J. Wang, Y. Fan, M. Ren, H. Zhang, Immunogenic cell death in anticancer chemotherapy and its impact on clinical studies, Cancer Lett., 438 (2018), 17–23. https://doi.org/10.1016/j.canlet.2018.08.028 doi: 10.1016/j.canlet.2018.08.028
    [66] S. Jhunjhunwala, C. Hammer, L. Delamarre, Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion, Nat. Rev. Cancer., 21 (2021), 298–312. https://doi.org/10.1038/s41568-021-00339-z doi: 10.1038/s41568-021-00339-z
    [67] N. Borcherding, A. Vishwakarma, A. P. Voigt, A. Bellizzi, J. Kaplan, K. Nepple, et al., Mapping the immune environment in clear cell renal carcinoma by single-cell genomics, Commun. Biol., 4 (2021), 122. https://doi.org/10.1038/s42003-020-01625-6 doi: 10.1038/s42003-020-01625-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2458) PDF downloads(134) Cited by(0)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog