Research article Special Issues

A fuzzy DRBFNN-based information security risk assessment method in improving the efficiency of urban development

  • Received: 05 October 2022 Revised: 05 November 2022 Accepted: 14 November 2022 Published: 01 December 2022
  • The rapid development of urban informatization is an important way for cities to achieve a higher pattern, but the accompanying information security problem become a major challenge restricting the efficiency of urban development. Therefore, effective identification and assessment of information security risks has become a key factor to improve the efficiency of urban development. In this paper, an information security risk assessment method based on fuzzy theory and neural network technology is proposed to help identify and solve the information security problem in the development of urban informatization. Combined with the theory of information ecology, this method establishes an improved fuzzy neural network model from four aspects by using fuzzy theory, neural network model and DEMATEL method, and then constructs the information security risk assessment system of smart city. According to this method, this paper analyzed 25 smart cities in China, and provided suggestions and guidance for information security control in the process of urban informatization construction.

    Citation: Li Yang, Kai Zou, Kai Gao, Zhiyi Jiang. A fuzzy DRBFNN-based information security risk assessment method in improving the efficiency of urban development[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 14232-14250. doi: 10.3934/mbe.2022662

    Related Papers:

  • The rapid development of urban informatization is an important way for cities to achieve a higher pattern, but the accompanying information security problem become a major challenge restricting the efficiency of urban development. Therefore, effective identification and assessment of information security risks has become a key factor to improve the efficiency of urban development. In this paper, an information security risk assessment method based on fuzzy theory and neural network technology is proposed to help identify and solve the information security problem in the development of urban informatization. Combined with the theory of information ecology, this method establishes an improved fuzzy neural network model from four aspects by using fuzzy theory, neural network model and DEMATEL method, and then constructs the information security risk assessment system of smart city. According to this method, this paper analyzed 25 smart cities in China, and provided suggestions and guidance for information security control in the process of urban informatization construction.



    加载中


    [1] Y. Zhong, L. Sun, C. Ge, Key technologies and development status of smart city, J. Phys. Conf. Ser., 1754 (2021), 012102. https://doi.org/10.1088/1742-6596/1754/1/012102 doi: 10.1088/1742-6596/1754/1/012102
    [2] A. I. Tahirkheli, M. Shiraz, B. Hayat, M. Idrees, A. Sajid, R. Ullah, et al., A survey on modern cloud computing security over smart city networks: Threats, vulnerabilities, consequences, countermeasures, and challenges, Electronics, 10 (2021), 1811. https://doi.org/10.3390/electronics10151811 doi: 10.3390/electronics10151811
    [3] K. Dooley, Direct passive participation: aiming for accuracy and citizen safety in the era of big data and the smart city, Smart Cities, 4 (2021), 336–348. https://doi.org/10.3390/smartcities4010020 doi: 10.3390/smartcities4010020
    [4] K. Gokmenoglu, B. M. Eren, S. Hesami, Exchange rates and stock markets in emerging economies: new evidence using the Quantile-on-Quantile approach, Quant. Finance Econ., 5 (2021), 94–110. https://doi.org/10.3934/QFE.2021005 doi: 10.3934/QFE.2021005
    [5] T. Li, J. Zhong, Z. Huang, Potential dependence of financial cycles between emerging and developed countries: Based on ARIMA-GARCH copula model, Emerging Mark. Finance Trade, 56 (2020), 1237–1250. https://doi.org/10.1080/1540496X.2019.1611559 doi: 10.1080/1540496X.2019.1611559
    [6] M. Castells, The Network Society: A Cross-Cultural Perspective, Edward Elgar Publishing, Incorporated, 2004. https://dl.acm.org/doi/abs/10.5555/993619
    [7] J. Zhao, W. Dong, L. Shi, J. Bi, Z. Wang, Y. Liu, et al., Smart city construction and rendering based on virtual city space, in 2020 International Conference on Virtual Reality and Visualization (ICVRV), 2020. https://doi.org/10.1109/ICVRV51359.2020.00066
    [8] M. R. Sanfilippo, Y. Shvartzshnaider, Data and privacy in a quasi-public space: disney world as a smart city, in Diversity, Divergence, Dialogue. iConference 2021. Lecture Notes in Computer Science, 12646 (2021), 235–250. https://doi.org/10.1007/978-3-030-71305-8_19
    [9] X. Li, H. Li, B. Sun, F. Wang, Assessing information security risk for an evolving smart city based on fuzzy and grey FMEA, J. Intell. Fuzzy Syst., 34 (2018), 2491–2501. https://doi.org/10.3233/JIFS-172097 doi: 10.3233/JIFS-172097
    [10] R. Fistola, A. Rastelli, Envisaging urban changes for the smart city: The live city information modeling (LCIM), in Innovation in Urban and Regional Planning. INPUT 2021. Lecture Notes in Civil Engineering, 146 (2021), 161–169. https://doi.org/10.1007/978-3-030-68824-0_17
    [11] T. T. X. Huong, T. T. T. Nga, T. T. K. Oanh, Liquidity risk and bank performance in Southeast Asian countries: a dynamic panel approach, Quant. Finance Econ., 5 (2021), 111–133. https://doi.org/10.3934/QFE.2021006 doi: 10.3934/QFE.2021006
    [12] Z. Li, C. Yang, Z. Huang, How does the fintech sector react to signals from central bank digital currencies, Finance Res. Lett., 50 (2022), 103308. https://doi.org/10.1016/j.frl.2022.103308 doi: 10.1016/j.frl.2022.103308
    [13] A. Aldairi, L. Tawalbeh, Cyber security attacks on smart cities and associated mobile technologies, 109 (2017), 1086–1091. https://doi.org/10.1016/j.procs.2017.05.391
    [14] K. Zhang, J. Ni, K. Yang, X. Liang, J. Ren, X. Shen, Security and privacy in smart city applications: Challenges and solutions, IEEE Commun. Mag., 55 (2017), 122–129. https://doi.org/10.1109/MCOM.2017.1600267CM doi: 10.1109/MCOM.2017.1600267CM
    [15] C. Lim, K. J. Kim, P. P. Maglio, Smart cities with big data: Reference models, challenges, and considerations, Cities, 82 (2018), 86–99. https://doi.org/10.1016/j.cities.2018.04.011 doi: 10.1016/j.cities.2018.04.011
    [16] P. Hui, Construction of information security risk assessment model in smart city, in 2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), 2020. https://doi.org/10.1109/TOCS50858.2020.9339614
    [17] M. Kalinin, V. Krundyshev, P. Zegzhda, Cybersecurity risk assessment in smart city infrastructures, Machines, 9 (2021), 78. https://doi.org/10.3390/machines9040078 doi: 10.3390/machines9040078
    [18] M. Qamruzzaman, T. Tayachi, A. M. Mehta, M. Ali, Do international capital flows, institutional quality matter for innovation output: the mediating role of economic policy uncertainty, J. Open Innov. Technol. Mark. Complex., 7 (2021), 141. https://doi.org/10.3390/joitmc7020141 doi: 10.3390/joitmc7020141
    [19] T. L. Saaty, K. P. Kearns, The analytic hierarchy process, in Analytical Planning: The Organization of Systems, (1985), 19–62. https://doi.org/10.1016/B978-0-08-032599-6.50008-8
    [20] X. Xing, Smart city evaluation based on analytic hierarchy process, in Proceedings of the 2017 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology (FMSMT 2017), Atlantis Press, (2017), 1112–1115. https://doi.org/10.2991/fmsmt-17.2017.219
    [21] P. T. Chang, K. C. Hung, Applying the fuzzy-weighted-average approach to evaluate network security systems, Comput. Math. Appl., 49 (2005), 1797–1814. https://doi.org/10.1016/j.camwa.2004.10.042 doi: 10.1016/j.camwa.2004.10.042
    [22] Y. Gao, J. Luo, Information security risk assessment based on grey relational decision-making algorithm, J. Southeast Univ., 2009. https://doi.org/10.1360/972009-1549 doi: 10.1360/972009-1549
    [23] C. Wagner, H. Hagras, Toward general type-2 fuzzy logic systems based on zSlices, IEEE Trans. Fuzzy Syst., 18 (2010), 637–660. https://doi.org/10.1109/TFUZZ.2010.2045386 doi: 10.1109/TFUZZ.2010.2045386
    [24] J. Huang, L. Dou, H. Fang, J. Chen, Q. Yang, Distributed backstepping-based adaptive fuzzy control of multiple high-order nonlinear dynamics, Nonlinear Dyn., 81 (2015), 63–75. https://doi.org/10.1007/s11071-015-1973-9 doi: 10.1007/s11071-015-1973-9
    [25] C. L. P. Chen, C. Ren, T. Du, Fuzzy observed-based adaptive consensus tracking control for second-order multiagent systems with heterogeneous nonlinear dynamics, IEEE Trans. Fuzzy Syst., 24 (2016), 906–915. https://doi.org/10.1109/TFUZZ.2015.2486817 doi: 10.1109/TFUZZ.2015.2486817
    [26] H. A. Hagras, A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots, IEEE Trans. Fuzzy Syst., 12 (2004), 524–539. https://doi.org/10.1109/TFUZZ.2004.832538 doi: 10.1109/TFUZZ.2004.832538
    [27] F. Liu, An efficient centroid type-reduction strategy for general type-2 fuzzy logic system, Inf. Sci., 178 (2008), 2224–2236. https://doi.org/10.1016/j.ins.2007.11.014 doi: 10.1016/j.ins.2007.11.014
    [28] L. A. Lucas, T. M. Centeno, M. R. Delgado, General type-2 fuzzy inference systems: analysis, design and computational aspects, in 2007 IEEE International Fuzzy Systems Conference, 2007. https://doi.org/10.1109/FUZZY.2007.4295522
    [29] S. Greenfield, R. John, Optimised generalised type-2 join and meet operations, in 2007 IEEE International Fuzzy Systems Conference, (2007), 1–6. https://doi.org/10.1109/FUZZY.2007.4295355
    [30] M. Deveci, D. Pekaslan, F. Canıtez, The assessment of smart city projects using zSlice type-2 fuzzy sets based Interval Agreement Method, Sustainable Cities Soc., 53 (2020). https://doi.org/10.1016/j.scs.2019.101889 doi: 10.1016/j.scs.2019.101889
    [31] H. Zhao, Y. Wang, X. Liu, The assessment of smart city information security risk in China based on zGT2FSs and IAA method, Sci. Rep., 12 (2022). https://doi.org/10.1038/s41598-022-07197-1 doi: 10.1038/s41598-022-07197-1
    [32] M. Alali, A. Almogren, M. M. Hassan, I. A. L. Rassan, M. Z. A. Bhuiyan, Improving risk assessment model of cyber security using fuzzy logic inference system, Comput. Secur., 74 (2017), 323–339. https://doi.org/10.1016/j.cose.2017.09.011 doi: 10.1016/j.cose.2017.09.011
    [33] H. Du, H. Li, L. Yuan, X. Li, Risk assessment model for air traffic control based on fuzzy-ANP method, China Saf. Sci. J., 20 (2010), 79–85.
    [34] C. Wang, G. Lin, The model of network security risk assess based on fuzzy algorithm and hierarchy, J. Wuhan Univ., 52 (2006), 622–626. https://doi.org/10.1360/jos172601 doi: 10.1360/jos172601
    [35] Y. Ou Yang, H. M. Shieh, G. H. Tzeng, A VIKOR technique based on DEMATEL and ANP for information security risk control assessment, Inf. Sci., 232 (2013), 482–500. https://doi.org/10.1016/j.ins.2011.09.012 doi: 10.1016/j.ins.2011.09.012
    [36] A. P. H. D. Gusmo, L. Silva, M. M. Silva, T. Poleto, A. P. C. S. Costa, Information security risk analysis model using fuzzy decision theory, Int. J. Inf. Manage., 36 (2016), 25–34. https://doi.org/10.1016/j.ijinfomgt.2015.09.003 doi: 10.1016/j.ijinfomgt.2015.09.003
    [37] Y. D. Cheng, J. D. He, F. G. Hu, Quantitative risk analysis method of information security-Combining fuzzy comprehensive analysis with information entropy, J. Discrete Math. Sci. Cryptogr., 20 (2017), 149–165. https://doi.org/10.1080/09720529.2016.1178913 doi: 10.1080/09720529.2016.1178913
    [38] Z. Wang, H. Zeng, Study on the risk assessment quantitative method of information security, in 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), 2010. https://doi.org/10.1109/ICACTE.2010.5579187
    [39] W. Liang, Y. Li, K. Xie, D. Zhang, K. Li, A. Souri, et al., Spatial-temporal aware inductive graph neural network for C-ITS data recovery, IEEE Trans. Intell. Transp. Syst., 2022 (2022), 1–12. https://doi.org/10.1109/TITS.2022.3156266 doi: 10.1109/TITS.2022.3156266
    [40] K. Peng, G. Yan, A survey on deep learning for financial risk prediction, Quant. Finance Econ., 5 (2021), 716–737. https://doi.org/10.3934/QFE.2021032 doi: 10.3934/QFE.2021032
    [41] Z. Z. Wang, Y. Q. Xie, X. Y. Wu, F. B. Ge, A survey of information security risk evaluation, Inf. Secur. Commun. Privacy, 2007 (2007).
    [42] Y. Song, Y. Shen, G. Zhang, Y. Hu, The information security risk assessment model based on GA-BP, in 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), IEEE, (2016), 119–122. https://doi.org/10.1109/ICSESS.2016.7883029
    [43] L. Wu, J. Zhou, Z. Li, Applying of GA-BP neural network in the land ecological security evaluation, IAENG Int. J. Comput. Sci., 47 (2020), 11–18.
    [44] W. Guo, Safety risk assessment of tourism management system based on PSO-BP neural network, Comput. Intell. Neurosci., 2021 (2021). https://doi.org/10.1155/2021/1980037 doi: 10.1155/2021/1980037
    [45] R. Deb, S. Roy, A Software Defined Network information security risk assessment based on Pythagorean fuzzy sets, Expert Syst. Appl., 183 (2021), 115383. https://doi.org/10.1016/j.eswa.2021.115383 doi: 10.1016/j.eswa.2021.115383
    [46] X. Huang, W. Xu, Method of information security risk assessment based on improved fuzzy theory of evidence, Int. J. Online Eng., 14 (2018). https://doi.org/10.3991/ijoe.v14i03.8422 doi: 10.3991/ijoe.v14i03.8422
    [47] M. Raikhan, K. Bolat, Z. Meiram, O. Altynay, Assessing information security risk with the fuzzy set theory, J. Theor. Appl. Inf. Technol., 96 (2018), 3142–3152.
    [48] B. Zhang, Z. Wang, W. Wang, Z. Wang, H. Liang, D. Liu, Security assessment of intelligent distribution transformer terminal unit based on RBF-SVM, in 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), 2020. https://doi.org/10.1109/EI250167.2020.9346959
    [49] Q. Liu, P. Sun, X. Fu, J. Zhang, H. Yang, H. Gao, et al., Comparative analysis of BP neural network and RBF neural network in seismic performance evaluation of pier columns, Mech. Syst. Sig. Process., 141 (2020), 106707. https://doi.org/10.1016/j.ymssp.2020.106707 doi: 10.1016/j.ymssp.2020.106707
    [50] R. Li, F. Li, C. Wu, J. Song, Research on vehicle network security situation prediction based on improved CLPSO-RBF, J. Phys. Conf. Ser., 1757 (2021), 012148. https://doi.org/10.1088/1742-6596/1757/1/012148 doi: 10.1088/1742-6596/1757/1/012148
    [51] J. Li, W. Du, F. Yang, G. Hua, The carbon subsidy analysis in remanufacturing closed-loop supply chain, Sustainability, 6 (2014), 3861–3877. https://doi.org/10.3390/su6063861 doi: 10.3390/su6063861
    [52] K. Govindan, D. Kannan, K. M. Shankar, Evaluating the drivers of corporate social responsibility in the mining industry with multi-criteria approach: A multi-stakeholder perspective, J. Cleaner Prod., 84 (2014), 214–232. https://doi.org/10.1016/j.jclepro.2013.12.065 doi: 10.1016/j.jclepro.2013.12.065
    [53] H. Liu, P. Wang, Z. Li, Is there any difference in the impact of digital transformation on the quantity and efficiency of enterprise technological innovation? Taking China's agricultural listed companies as an example, Sustainability, 13 (2021). https://doi.org/10.3390/su132312972 doi: 10.3390/su132312972
    [54] X. Wang, Z. Q. Tang, X. U. Shuo, Information security risk assessment based on fuzzy theory and BRBPNN, Comput. Simul., 36 (2019), 184–189.
  • mbe-19-12-662-supplementary.zip
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1793) PDF downloads(87) Cited by(2)

Article outline

Figures and Tables

Figures(5)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog