Research article Special Issues

Acceptance sampling plans for the three-parameter inverted Topp–Leone model


  • Received: 21 June 2022 Revised: 28 August 2022 Accepted: 30 August 2022 Published: 16 September 2022
  • The quadratic rank transmutation map is used in this article to suggest a novel extension of the power inverted Topp–Leone distribution. The newly generated distribution is known as the transmuted power inverted Topp–Leone (TPITL) distribution. The power inverted Topp–Leone and the inverted Topp–Leone are included in the recommended distribution as specific models. Aspects of the offered model, including the quantile function, moments and incomplete moments, stochastic ordering, and various uncertainty measures, are all discussed. Plans for acceptance sampling are created for the TPITL model with the assumption that the life test will end at a specific time. The median lifetime of the TPITL distribution with the chosen variables is the truncation time. The smallest sample size is required to obtain the stated life test under a certain consumer's risk. Five conventional estimation techniques, including maximum likelihood, least squares, weighted least squares, maximum product of spacing, and Cramer-von Mises, are used to assess the characteristics of TPITL distribution. A rigorous Monte Carlo simulation study is used to evaluate the effectiveness of these estimators. To determine how well the most recent model handled data modeling, we tested it on a range of datasets. The simulation results demonstrated that, in most cases, the maximum likelihood estimates had the smallest mean squared errors among all other estimates. In some cases, the Cramer-von Mises estimates performed better than others. Finally, we observed that precision measures decrease for all estimation techniques when the sample size increases, indicating that all estimation approaches are consistent. Through two real data analyses, the suggested model's validity and adaptability are contrasted with those of other models, including the power inverted Topp–Leone, log-normal, Weibull, generalized exponential, generalized inverse exponential, inverse Weibull, inverse gamma, and extended inverse exponential distributions.

    Citation: Said G. Nassr, Amal S. Hassan, Rehab Alsultan, Ahmed R. El-Saeed. Acceptance sampling plans for the three-parameter inverted Topp–Leone model[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13628-13659. doi: 10.3934/mbe.2022636

    Related Papers:

  • The quadratic rank transmutation map is used in this article to suggest a novel extension of the power inverted Topp–Leone distribution. The newly generated distribution is known as the transmuted power inverted Topp–Leone (TPITL) distribution. The power inverted Topp–Leone and the inverted Topp–Leone are included in the recommended distribution as specific models. Aspects of the offered model, including the quantile function, moments and incomplete moments, stochastic ordering, and various uncertainty measures, are all discussed. Plans for acceptance sampling are created for the TPITL model with the assumption that the life test will end at a specific time. The median lifetime of the TPITL distribution with the chosen variables is the truncation time. The smallest sample size is required to obtain the stated life test under a certain consumer's risk. Five conventional estimation techniques, including maximum likelihood, least squares, weighted least squares, maximum product of spacing, and Cramer-von Mises, are used to assess the characteristics of TPITL distribution. A rigorous Monte Carlo simulation study is used to evaluate the effectiveness of these estimators. To determine how well the most recent model handled data modeling, we tested it on a range of datasets. The simulation results demonstrated that, in most cases, the maximum likelihood estimates had the smallest mean squared errors among all other estimates. In some cases, the Cramer-von Mises estimates performed better than others. Finally, we observed that precision measures decrease for all estimation techniques when the sample size increases, indicating that all estimation approaches are consistent. Through two real data analyses, the suggested model's validity and adaptability are contrasted with those of other models, including the power inverted Topp–Leone, log-normal, Weibull, generalized exponential, generalized inverse exponential, inverse Weibull, inverse gamma, and extended inverse exponential distributions.



    加载中


    [1] W. T. Shaw, I. R. C. Buckley, The alchemy of probability distributions: Beyond Gram–Charlier expansions, and a skew-kurtotic normal distribution from a rank transmutation map, preprint, arXiv: 0901.0434.
    [2] M. S. Khan, R. King, I. L. Hudson, Transmuted Weibull distribution: properties and estimation, Commun. Stat. Theory Methods, 46 (2017), 5394–5418. https://doi.org/10.1080/03610926.2015.1100744 doi: 10.1080/03610926.2015.1100744
    [3] Z. M. Nofal, A. Z. Afify, H. M. Yousof, G. M. Cordeiro, The generalized transmuted-G family of distributions, Commun. Stat. Theory Methods, 46 (2017), 4119–4136. https://doi.org/10.1080/03610926.2015.1078478 doi: 10.1080/03610926.2015.1078478
    [4] M. Elgarhy, I. Elbatal, A. S. Hassan, Transmuted Kumaraswamy quasi-Lindley distribution with applications, Ann. Data Sci., 5 (2018), 565–581. https://doi.org/10.1007/s40745-018-0153-4 doi: 10.1007/s40745-018-0153-4
    [5] H. D. Biçer, Properties and inference for a new class of XGamma distributions with an application, Math. Sci., 13 (2019), 335–346. https://doi.org/10.1007/s40096-019-00303-x doi: 10.1007/s40096-019-00303-x
    [6] A. S. Hassan, S. M. Assar, A. M. Abd Elghaffar, Bayesian estimation of power transmuted inverse Rayleigh distributions, Thailand Stat., 19 (2021), 393–410.
    [7] A. S. Hassan, M. A. Khaleel, S. G. Nassr, Transmuted Topp–Leone power function distribution: Theory and application, J. Stat. Appl. Probab., 10 (2021), 215–227. https://doi.org/10.18576/jsap/100120 doi: 10.18576/jsap/100120
    [8] A. Shafiq, S. A. Lone, T. N. Sindhu, Y. E. Khatib, Q. M. Al-Mdallal, T. Muhammad, A new modified Kies Fréchet distribution: Applications of mortality rate of COVID-19, Results Phys., 28 (2021), 104638, 1–17. https://doi.org/10.1016/j.rinp.2021.104638
    [9] A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with applications to the exponential and Weibull families, Biometrika, 84 (1997), 641–652. https://doi.org/10.1093/biomet/84.3.641 doi: 10.1093/biomet/84.3.641
    [10] O. Nave, V. Gol'dshtein, A combination of two semi-analytical method called "singular perturbed homotopy analysis method, (SPHAM)" applied to combustion of spray fuel droplets, Cogent Math., 3 (2016), 1256467. https://doi.org/10.1080/23311835.2016.1256467
    [11] A. Algarni, A. M. Almarashi, I. Elbatal, A. S. Hassan, E. M. Almetwally, A. M. Daghistani, et al., Type I half lLogistic Burr X-G family: Properties, Bayesian, and non-Bayesian estimation under censored samples and applications to COVID-19 data, Math. Probl. Eng., 2021 (2021), 1–21. https://doi.org/10.1155/2021/5461130
    [12] A. S. Hassan, M. A. H. Sabry, A. M. Elsehetry, A new probability distribution family arising from truncated power Lomax distribution with application to Weibull model, Pak. J. Stat. Oper. Res., 16 (2020), 661–674. https://doi.org/10.18187/pjsor.v16i4.3442 doi: 10.18187/pjsor.v16i4.3442
    [13] A. S. Hassan, A. W. Shawkia, H. Z. Muhammeda, Weighted Weibull-G family of distributions: Theory and application in the analysis of renewable energy sources, J. Posit. Sch. Psychol., 6 (2022), 9201–9216.
    [14] A. S. Hassan, A. Al-Omari, R. R. Hassan, G. A. Alomani, The odd inverted Topp Leone–H family of distributions: Estimation and applications, J. Radiat. Res. Appl. Sci., 2022. https://doi.org/10.1016/j.jrras.2022.08.006
    [15] A. Shafiq, T. N. Sindhu, N. Alotaibi, A novel extended model with versatile shaped failure rate: Statistical inference with Covid-19 applications, Results Phys., 3 (2022), 105398. https://doi.org/10.1016/j.rinp.2022.105398 doi: 10.1016/j.rinp.2022.105398
    [16] A. S. Hassan, M. Elgarhy, R. Ragab, Statistical properties and estimation of inverted Topp–Leone distribution, J. Stat. Appl. Probab., 9 (2020), 319–331. https://doi.org/10.18576/jsap/090212 doi: 10.18576/jsap/090212
    [17] G. M. Ibrahim, A. S. Hassan, E. M. Almetwally, H. M. Almongy, Parameter estimation of alpha power inverted Topp–Leone distribution with applications, Intell. Autom. Soft Comput., 29 (2021), 353–371. https://doi.org/10.32604/iasc.2021.017586 doi: 10.32604/iasc.2021.017586
    [18] A. S. Hassan, E. M. Almetwally, G. M. Ibrahim, Kumaraswamy inverted Topp–Leone distribution with applications to COVID-19 data, Comput. Mater. Contin., 68 (2021), 337–358. https://doi.org/10.32604/cmc.2021.013971 doi: 10.32604/cmc.2021.013971
    [19] R. Bantan, M. Elsehetry, A. S. Hassan, M. Elgarhy, D. Sharma, C. Chesneau, et al., A two-parameter model: Properties and estimation under ranked sampling, MDPI Math., 9 (2021), 1214. https://doi.org/10.3390/math9111214 doi: 10.3390/math9111214
    [20] E. M. Almetwally, R. Alharbi, D. Alnagar, E. H. Hafez, A new inverted Topp-Leone distribution: Applications to the COVID-19 mortality rate in two different countries, Axioms, 10 (2021), 25. https://doi.org/10.3390/axioms10010025 doi: 10.3390/axioms10010025
    [21] E. M. Almetwally, The odd Weibull inverse Topp–Leone distribution with applications to COVID-19 data, Ann. Data Sci., 9 (2022), 121–140. https://doi.org/10.1007/s40745-021-00329-w doi: 10.1007/s40745-021-00329-w
    [22] T. A. Abushal, A. S. Hassan, A. R. El-Saeed, S. G. Nassr, Power inverted Topp–Leone distribution in acceptance sampling plans, Comput. Mater. Contin., 67 (2021), 991–1011. https://doi.org/10.32604/cmc.2021.014620 doi: 10.32604/cmc.2021.014620
    [23] E. Lehmann, Elements of Large-sample Theory, Springer-Verlag, New York, 1999. https://doi.org/10.1007/b98855
    [24] J. J. Swain, S. Venkatraman, J. R. Wilson, Least squares estimation of distribution function in Johnson's system, J. Stat. Comput. Simul., 29 (1988), 271–297. https://doi.org/10.1080/00949658808811068 doi: 10.1080/00949658808811068
    [25] R. C. H. Cheng, N. A. K. Amin, Estimating parameters in continuous univariate distributions with a shifted origin, J. R. Stat. Soc., 45 (1983), 394–403. https://doi.org/10.1111/j.2517-6161.1983.tb01268.x doi: 10.1111/j.2517-6161.1983.tb01268.x
    [26] P. D. M. MacDonald, Comment on "An estimation procedure for mixtures of distributions" by Choi and Bulgren, J. R. Stat. Soc. Series B (Methodological), 33 (1971), 326–329. https://doi.org/10.1111/j.2517-6161.1971.tb00884.x doi: 10.1111/j.2517-6161.1971.tb00884.x
    [27] A. Rényi, On measures of entropy and information, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, 1 (1960), 547–561.
    [28] C. Tsallis, Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys., 52 (1988), 479–487. https://doi.org/10.1007/BF01016429 doi: 10.1007/BF01016429
    [29] S. Arimoto, Information-theoretical considerations on estimation problems, Inf. Control, 19 (1971), 181–194. https://doi.org/10.1016/S0019-9958(71)90065-9 doi: 10.1016/S0019-9958(71)90065-9
    [30] J. Havrda, F. Charvat, Quantification method of classification processes, concept of structural a-entropy, Kybernetika, 3 (1967), 30–35
    [31] S. Singh, Y. M. Tripathi, Acceptance sampling plans for inverse Weibull distribution based on truncated life test, Life Cycle Reliab. Saf. Eng., 6 (2017), 169–178. https://doi.org/10.1007/s41872-017-0022-8 doi: 10.1007/s41872-017-0022-8
    [32] D. Hinkley, On quick choice of power transformation, Appl. Stat., 26 (1977), 67–69. https://doi.org/10.2307/2346869 doi: 10.2307/2346869
    [33] T. Bjerkedal, Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli, Am. J. Hyg., 72 (1960), 130–148. https://doi.org/10.1093/oxfordjournals.aje.a120129 doi: 10.1093/oxfordjournals.aje.a120129
    [34] D. Kundu, H. Howlader, Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data, Comput. Stat. Data Anal., 54 (2010), 1547–1558. https://doi.org/10.1016/j.csda.2010.01.003 doi: 10.1016/j.csda.2010.01.003
    [35] A. S. Hassan, S. G. Nassr, Parameter estimation of an extended inverse power Lomax distribution with Type I right censored data, Commun. Stat. Appl. Methods, 28 (2021), 99–118. https://doi.org/10.29220/CSAM.2021.28.2.099 doi: 10.29220/CSAM.2021.28.2.099
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1569) PDF downloads(79) Cited by(7)

Article outline

Figures and Tables

Figures(9)  /  Tables(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog