In recent years, deep convolutional neural network (CNN) has been applied more and more increasingly used in computer vision, natural language processing and other fields. At the same time, low-power platforms have more and more significant requirements for the size of the network. This paper proposed CED-Net (Channel enhancement DenseNet), a more efficient densely connected network. It combined the bottleneck layer with learned group convolution and channel enhancement module. The bottleneck layer with learned group convolution could effectively increase the network's accuracy without too many extra parameters and computation (FLOPs, Floating Point Operations). The channel enhancement module improved the representation of the network by increasing the interdependency between convolutional feature channels. CED-Net is designed regarding CondenseNet's structure, and our experiments show that the CED-Net is more effective than CondenseNet and other advanced lightweight CNNs. Accuracy on the CIFAR-10 dataset and CIFAR-100 dataset is 0.4 and 1% higher than that on CondenseNet, respectively, but they have almost the same number of parameters and FLOPs. Finally, the ablation experiment proves the effectiveness of the bottleneck layer used in CED-Net.
Citation: Xiangqun Li, Hu Chen, Dong Zheng, Xinzheng Xu. CED-Net: A more effective DenseNet model with channel enhancement[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 12232-12246. doi: 10.3934/mbe.2022569
[1] | Bertrand Haut, Georges Bastin . A second order model of road junctions in fluid models of traffic networks. Networks and Heterogeneous Media, 2007, 2(2): 227-253. doi: 10.3934/nhm.2007.2.227 |
[2] | Mohamed Benyahia, Massimiliano D. Rosini . A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12(2): 297-317. doi: 10.3934/nhm.2017013 |
[3] | Caterina Balzotti, Maya Briani . Estimate of traffic emissions through multiscale second order models with heterogeneous data. Networks and Heterogeneous Media, 2022, 17(6): 863-892. doi: 10.3934/nhm.2022030 |
[4] | Emiliano Cristiani, Smita Sahu . On the micro-to-macro limit for first-order traffic flow models on networks. Networks and Heterogeneous Media, 2016, 11(3): 395-413. doi: 10.3934/nhm.2016002 |
[5] | Maya Briani, Emiliano Cristiani . An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Networks and Heterogeneous Media, 2014, 9(3): 519-552. doi: 10.3934/nhm.2014.9.519 |
[6] | Alberto Bressan, Khai T. Nguyen . Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10(2): 255-293. doi: 10.3934/nhm.2015.10.255 |
[7] | Simone Göttlich, Camill Harter . A weakly coupled model of differential equations for thief tracking. Networks and Heterogeneous Media, 2016, 11(3): 447-469. doi: 10.3934/nhm.2016004 |
[8] | Paola Goatin . Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4(2): 287-301. doi: 10.3934/nhm.2009.4.287 |
[9] | Michael Herty, Adrian Fazekas, Giuseppe Visconti . A two-dimensional data-driven model for traffic flow on highways. Networks and Heterogeneous Media, 2018, 13(2): 217-240. doi: 10.3934/nhm.2018010 |
[10] | Alberto Bressan, Ke Han . Existence of optima and equilibria for traffic flow on networks. Networks and Heterogeneous Media, 2013, 8(3): 627-648. doi: 10.3934/nhm.2013.8.627 |
In recent years, deep convolutional neural network (CNN) has been applied more and more increasingly used in computer vision, natural language processing and other fields. At the same time, low-power platforms have more and more significant requirements for the size of the network. This paper proposed CED-Net (Channel enhancement DenseNet), a more efficient densely connected network. It combined the bottleneck layer with learned group convolution and channel enhancement module. The bottleneck layer with learned group convolution could effectively increase the network's accuracy without too many extra parameters and computation (FLOPs, Floating Point Operations). The channel enhancement module improved the representation of the network by increasing the interdependency between convolutional feature channels. CED-Net is designed regarding CondenseNet's structure, and our experiments show that the CED-Net is more effective than CondenseNet and other advanced lightweight CNNs. Accuracy on the CIFAR-10 dataset and CIFAR-100 dataset is 0.4 and 1% higher than that on CondenseNet, respectively, but they have almost the same number of parameters and FLOPs. Finally, the ablation experiment proves the effectiveness of the bottleneck layer used in CED-Net.
A taxis is the movement of an organism in response to a stimulus such as chemical signal or the presence of food. Taxes can be classified based on the types of stimulus, such as chemotaxis, prey-taxis, galvanotaxis, phototaxis and so on. According to the direction of movements, the taxis is said to be attractive (resp. repulsive) if the organism moves towards (resp. away from) the stimulus. In the ecosystem, a widespread phenomenon is the prey-taxis, where predators move up the prey density gradient, which is often referred to as the direct prey-taxis. However some predators may approach the prey by tracking the chemical signals released by the prey, such as the smell of blood or specific odo, and such movement is called indirect prey-taxis (cf. [1]). Since the pioneering modeling work by Kareiva and Odell [2], prey-taxis models have been widely studied in recent years (cf. [3,4,5,6,7,8,9,10,11,12]), followed by numerous extensions, such as three-species prey-taxis models (cf. [13,14,15]) and predator-taxis models (cf. [16,17]). The indirect prey-taxis models have also been well studied (cf. [18,19,20]).
Recently, a predator-prey model with attraction-repulsion taxis mechanisms was proposed by Bell and Haskell in [21] to describe the interaction between direct prey-taxis and indirect chemotaxis, where the direct prey-taxis describes the predator's directional movement towards the prey density gradient, while the indirect chemotaxis models a defense mechanism in which the prey repels the predator by releasing odour chemicals (like a fox breaking wind in order to escape from hunting dogs). The model reads as
{ut=dΔu+u(a1−a2u−a3v),x∈Ω, t>0,vt=∇⋅(∇v+χv∇w−ξv∇u)+ρv(1−v)+ea3uv,x∈Ω, t>0,wt=ηΔw+ru−γw,x∈Ω, t>0,∇u⋅ν=∇v⋅ν=∇w⋅ν=0,x∈∂Ω,t>0,(u,v,w)(x,0)=(u0,v0,w0)(x),x∈Ω, | (1.1) |
where the unknown functions u(x,t), v(x,t) and w(x,t) denote the densities of the prey, predator and prey-derived chemical repellent, respectively, at position x∈Ω and time t>0. Here, Ω⊂Rn is a bounded domain (habitat of species) with smooth boundary ∂Ω, and ν is the unit outer normal vector of ∂Ω. The parameters d, η, χ, ξ, a1, a2, a3, e, ρ, r, γ are all positive, where χ>0 and ξ>0 denote the (attractive) prey-taxis and (repulsive) chemotaxis coefficients, respectively. The predator v is assumed to be a generalist, so that it has a logistic growth term ρv(1−v) with intrinsic growth rate ρ>0. More modeling details with biological interpretations are referred to in [21]. We remark that the predator-prey model with attraction-repulsion taxes has some similar structures to the so-called attraction-repulsion chemotaxis model proposed originally in [22], where the species elicit both attractive and repulsive chemicals (see [23,24,25,26] and references therein for some mathematical studies).
The initial data satisfy the following conditions:
v0∈C0(¯Ω),u0,w0∈W1,∞(Ω), and u0, v0, w0≩0 in ¯Ω. | (1.2) |
In [21], the global existence of strong solutions to (1.1) was established in one dimension (n=1), and the existence of nontrivial steady state solutions alongside pattern formation was studied by the bifurcation theory. The main purpose of this paper is to study the global dynamics of (1.1) in higher dimensional spaces, which are usually more physical in the real world. Specifically, we shall show the existence of global classical solutions in all dimensions and explore the global stability of constant steady states, by which we may see how parameter values play roles in determining these dynamical properties of solutions.
The first main result is concerned with the global existence and boundedness of solutions to (1.1). For the convenience of presentation, we let
K1=max{a1a2,‖u0‖L∞(Ω)}, K2=max{a1K1+a2K21,a3K1} | (1.3) |
and
K3(z)=23z−12zdz(n+2(z−1)K22z+1)z+12((z−1)(4z2+n)K21)z−12+23zz2d1z((z−1)ξ2z+1)z+1z((4z2+n)K21)1z. | (1.4) |
Then, the result on the global boundedness of solutions to (1.1) is stated as follows.
Theorem 1.1 (Global existence). Let Ω⊂Rn(n⩾1) be a bounded domain with smooth boundary and parameters d, η, χ, ξ, a1, a2, a3, e, ρ, r, γ be positive. If
ρ{>0,n⩽2,⩾2K3([n2]+1)[n2]+1,n>2, |
where K3(p) is defined in (1.4), then for any initial data (u0,v0,w0) satisfying (1.2), the system (1.1) admits a unique classicalsolution (u,v,w) satisfying
u, v,w∈C0(¯Ω×[0,+∞))∩C2,1(¯Ω×(0,+∞)), |
and u,v,w>0 in Ω×(0,+∞). Moreover, there exists a constant C>0 independent of t such that
‖u(⋅,t)‖W1,∞(Ω)+‖v(⋅,t)‖L∞(Ω)+‖w(⋅,t)‖W1,∞(Ω)⩽Cfor all t>0. |
Our next goal is to explore the large-time behavior of solutions to (1.1). Simple calculations show the system (1.1) has four possible homogeneous equilibria as classified below:
{(0,0,0), (0,1,0), (a1a2,0,ra1γa2),if a1⩽a3,(0,0,0), (0,1,0), (a1a2,0,ra1γa2),(u∗,v∗,w∗),if a1>a3, |
with
u∗=ρ(a1−a3)ρa2+ea23,v∗=ea1a3+ρa2ρa2+ea23,w∗=rρ(a1−a3)γ(ρa2+ea23) | (1.5) |
where the trivial equilibrium (0,0,0) is called the extinction steady state, (0,1,0) is the predator-only steady state, and (u∗,v∗,w∗) is the coexistence steady state. We shall show that if a1>a3, then the coexistence steady state is globally asymptotically stable with exponential convergence rate, provided that ξ and χ are suitably small, while if a1⩽a3, the predator-only steady state is globally asymptotically stable with exponential or algebraic convergence rate when ξ and χ are suitably small. To state our results, we denote
Γ=4dρ(a1−a3)K21(ea1a3+ρa2),Φ=2a2ρa23+e,Ψ=γηa23K21(ρa2+ea23)dρ2r2(a1−a3) | (1.6) |
and
A=ξ24d,B=ea2a1,D=16ηγa1r2, | (1.7) |
where K1 is defined in (1.3). Then, the global stability result is stated in the following theorem.
Theorem 1.2 (Global stability). Let the assumptions in Theorem 1.1 hold. Then, the following results hold.
(1) Let a1>a3. If ξ and χ satisfy
ξ2<Γ(Φ+√Φ2−e2) and χ2<Ψmaxy∈[a,b](Γy−ξ2)(−y2+2Φy−e2)y, |
where a=max{ξ2Γ,Φ−√Φ2−e2},b=Φ+√Φ2−e2, then there exist some constants T∗, C, α>0 such that the solution (u,v,w) obtained in Theorem 1.1 satisfies for all t⩾T∗
‖u(⋅,t)−u∗‖L∞(Ω)+‖v(⋅,t)−v∗‖L∞(Ω)+‖w(⋅,t)−w∗‖L∞(Ω)⩽Ce−αt. |
(2) Let a1⩽a3, If ξ and χ satisfy
ξ2<4dea2a1andχ2<D(A+B−2√AB), |
then there exist some constants T∗, C, β>0 such that the solution (u,v,w) obtained in Theorem 1.1 satisfies, for all t⩾T∗,
‖u(⋅,t)‖L∞(Ω)+‖v(⋅,t)−1‖L∞(Ω)+‖w(⋅,t)‖L∞(Ω)⩽{Ce−βt if a1<a3,C(t+1)−1 if a1=a3. |
Remark 1.1. In the biological view, the relative sizes of a1 and a2 determine the coexistence of the system. The results indicated that a large a1a2 facilitates the coexistence of the species.
The rest of this paper is organized as follows. In Section 2, we state the local existence of solutions to (1.1) with extensibility conditions. Then, we deduce some a priori estimates and prove Theorem 1.1 in Section 3. Finally, we show the global convergence to the constant steady states and prove Theorem 1.2 in Section 4.
For convenience, in what follows we shall use Ci(i=1,2,⋯) to denote a generic positive constant which may vary from line to line. For simplicity, we abbreviate ∫t0∫Ωf(⋅,s)dxds and ∫Ωf(⋅,t)dx as ∫t0∫Ωf and ∫Ωf, respectively. The local existence and extensibility result of problem (1.1) can be directly established by the well-known Amman's theory for triangular parabolic systems (cf. [27,28]). Below, we shall present the local existence theorem without proof for brevity, and we refer to [21] for the proof in one dimension as a reference.
Lemma 2.1 (Local existence and extensibility). Let Ω⊂Rn be a bounded domain with smooth boundary. The parameters d, η, χ, ξ, a1, a2, a3, e, ρ, r, γ are positive. Then, for the initial data (u0,v0,w0) satisfying (1.2), there exists Tmax∈(0,∞] such that the system (1.1) admits a unique classicalsolution (u,v,w) satisfying
u, v, w∈C0(¯Ω×[0,Tmax))∩C2,1(¯Ω×(0,Tmax)), |
and u,v,w>0 in Ω×(0,Tmax). Moreover, we have
either Tmax=+∞ or lim supt↗Tmax(‖u(⋅,t)‖W1,∞(Ω)+‖v(⋅,t)‖L∞(Ω)+‖w(⋅,t)‖W1,∞(Ω))=+∞. |
We recall some well-known results which will be used later frequently. The first one is an uniform Grönwall inequality [29].
Lemma 2.2. Let Tmax>0, τ∈(0,Tmax). Suppose that c1, c2, y are three positive locally integrable functions on (0,Tmax) such that y′ is locally integrable on (0,Tmax) and satisfies
y′(t)⩽c1(t)y(t)+c2(t)for all t∈(0,Tmax). |
If
∫t+τtc1⩽C1,∫t+τtc2⩽C2, ∫t+τty⩽C3for all t∈[0,Tmax−τ), |
where Ci(i=1,2,3) are positive constants, then
y(t)⩽(C3τ+C2)eC1for all t∈[τ,Tmax). |
Next, we recall a basic inequality [30].
Lemma 2.3. Let p∈[1,∞). Then, the following inequality holds:
∫Ω|∇u|2(p+1)⩽2(4p2+n)‖u‖2L∞(Ω)∫Ω|∇u|2(p−1)|D2u|2 |
for any u∈C2(ˉΩ) satisfying ∂u∂ν=0 on ∂Ω, where D2u denotes the Hessian of u.
The last one is a Gagliardo-Nirenberg type inequality shown in [31,Lemma 2.5].
Lemma 2.4. Let Ω be a bounded domain in R2 with smooth boundary. Then, for any φ∈W2,2(Ω) satisfying ∂φ∂ν|∂Ω=0, there exists a positive constant C depending only on Ω such that
‖∇φ‖L4(Ω)≤C(‖Δφ‖12L2(Ω)‖∇φ‖12L2(Ω)+‖∇φ‖L2(Ω)). | (2.1) |
In this section, we establish the global boundedness of solutions to the system (1.1). To this end, we will proceed with several steps to derive a priori estimates for the solution of the system (1.1). The first one is the uniform-in-time L∞(Ω) boundedness of u.
Lemma 3.1. Let (u,v,w) be the solution of (1.1) and K1 be as defined in (1.3). Then, we have
‖u‖L∞(Ω)⩽K1for all t∈(0,Tmax). |
Furthermore, there is a constant C>0 such that for any 0<τ<min{Tmax,1}, it follows that
∫t+τt|∇u|2≤C for all t∈(0,Tmax−τ). |
Proof. The result is a direct consequence of the maximum principle applied to the first equation in (1.1). Indeed, if we let ˉu=max{a1a2,‖u0‖L∞(Ω)}, then ˉu satisfies
{ˉut⩾dΔˉu+ˉu(a1−a2ˉu−a3v),x∈Ω,t>0,∇ˉu⋅ν=0,x∈∂Ω,t>0,ˉu(x,0)⩾u0(x),x∈Ω. |
Apparently, the comparison principle of parabolic equations gives u⩽ˉu on Ω×(0,Tmax).
Next, we multiply the first equation of (1.1) by u and integrate the result to get
ddt∫Ωu2+d∫Ω|∇u|2=a1∫Ωu2−∫Ωu(a2u+a3v)≤a1K21|Ω|. |
Then, the integration of the above inequality with respect to t over (t,t+τ) completes the proof by noting that ∫Ωu20 is bounded.
Having at hand the uniform-in-time L∞(Ω) boundedness of u, the a priori estimate of w follows immediately.
Lemma 3.2. Let (u,v,w) be the solution of (1.1). We can find a constant C>0 satisfying
‖w‖W1,∞(Ω)⩽Cfor all t∈(0,Tmax). |
Proof. Noting the boundedness of ‖u‖L∞(Ω) from Lemma 3.1, we get the desired result from the third equation of (1.1) and the regularity theorem [32,Lemma 1].
Now, the a priori estimate of v can be obtained as below.
Lemma 3.3. Let (u,v,w) be the solution of (1.1). Then, there exists a constant C>0 such that
∫Ωv⩽Cfor all t∈(0,Tmax), | (3.1) |
and
∫t+τt∫Ωv2⩽Cfor all t∈(0,Tmax−τ), | (3.2) |
where τ is a constant such that 0<τ<min{Tmax,1}.
Proof. Integrating the second equation of (1.1) over Ω by parts, using Young's inequality and Lemma 3.1, we find some constant C1>0 such that
ddt∫Ωv=ρ∫Ωv−ρ∫Ωv2+ea3∫Ωuv⩽(ρ+ea3supt∈(0,Tmax)‖u‖L∞(Ω))∫Ωv−ρ∫Ωv2⩽−∫Ωv−ρ2∫Ωv2+C1for all t∈(0,Tmax). | (3.3) |
Hence, (3.1) is obtained by the Grönwall inequality. Integrating (3.3) over (t,t+τ), we get (3.2) immediately.
Due to the estimates of u and v obtained in Lemmas 3.1 and 3.3 respectively, we have the following improved uniform-in-time L2(Ω) boundedness of ∇u and the space-time L2 boundedness of Δu when n=2.
Lemma 3.4. Let (u,v,w) be the solution of (1.1). If n=2, then we can find a constant C>0 such that
∫Ω|∇u|2⩽Cfor all t∈(0,Tmax) | (3.4) |
and
∫t+τt∫Ω|Δu|2⩽Cfor all t∈(0,Tmax−τ), | (3.5) |
where τ is defined in Lemma 3.3.
Proof. Integrating the first equation of (1.1) by parts and using Lemma 3.1, we find a constant C1>0 such that
ddt∫Ω|∇u|2=2∫Ω∇u⋅∇ut=−2∫ΩutΔu=−2∫ΩΔu(dΔu+a1u−a2u2−a3uv)⩽−2d∫Ω|Δu|2+C1∫Ω(v+1)|Δu|for all t∈(0,Tmax). | (3.6) |
The Gagliardo-Nirenberg inequality in Lemma 2.4, Young's inequality and Lemma 3.1 yield some constants C2,C3>0 satisfying
∫Ω|∇u|2=‖∇u‖2L2(Ω)⩽C2(‖Δu‖L2(Ω)‖u‖L2(Ω)+‖u‖2L∞(Ω))⩽d2∫Ω|Δu|2+C3 |
and
C1∫Ω(v+1)|Δu|⩽d2∫Ω|Δu|2+C3∫Ωv2+C3for all t∈(0,Tmax), |
which along with (3.6) imply
ddt∫Ω|∇u|2+∫Ω|∇u|2+d∫Ω|Δu|2⩽C3∫Ωv2+2C3for all t∈(0,Tmax). | (3.7) |
Then, applications of Lemma 2.2, 3.1 and 3.3 give (3.4). Finally, (3.5) can be obtained by integrating (3.7) over (t,t+τ).
Now, the uniform-in-time boundedness of v in L2(Ω) can be established when n=2.
Lemma 3.5. Let (u,v,w) be the solution of (1.1). If n=2, then there exists a constant C>0 such that
∫Ωv2⩽Cfor all t∈(0,Tmax). |
Proof. Multiplying the second equation of (1.1) by v, integrating the result by parts and using Young's inequality, we have
ddt∫Ωv2+2∫Ω|∇v|2=−2χ∫Ωv∇v⋅∇w+2ξ∫Ωv∇u⋅∇v+2ρ∫Ωv2−2ρ∫Ωv3+2ea3∫Ωuv2⩽∫Ω|∇v|2+2χ2‖∇w‖2L∞(Ω)∫Ωv2+2ξ2∫Ωv2|∇u|2+2ρ∫Ωv2−2ρ∫Ωv3+2ea3‖u‖L∞(Ω)∫Ωv2, |
which along with Lemma 3.1 and Lemma 3.2 gives some constant C1>0 such that
ddt∫Ωv2+∫Ω|∇v|2⩽2ξ2∫Ωv2|∇u|2+C1∫Ωv2−2ρ∫Ωv3for all t∈(0,Tmax). | (3.8) |
Using Lemmas 3.1 and 3.3, Hölder's inequality, Lemma 2.4 and Young's inequality, we find some constants C2,C3,C4>0 such that
2ξ∫Ωv2|∇u|2⩽2ξ‖v‖2L4(Ω)‖∇u‖2L4(Ω)⩽C2(‖∇v‖12L2(Ω)‖v‖12L2(Ω)+‖v‖L2(Ω))2(‖Δu‖12L2(Ω)‖u‖12L∞(Ω)+‖u‖L∞(Ω))2⩽C3(‖∇v‖L2(Ω)‖v‖L2(Ω)‖Δu‖L2(Ω)+‖∇v‖L2(Ω)‖v‖L2(Ω)+‖Δu‖L2(Ω)‖v‖2L2(Ω)+‖v‖2L2(Ω))⩽‖∇v‖2L2(Ω)+C4(1+‖Δu‖2L2(Ω))‖v‖2L2(Ω)for all t∈(0,Tmax). | (3.9) |
Furthermore, Young's inequality yields some constant C5>0 such that
C1∫Ωv2−2ρ∫Ωv3⩽C5for all t∈(0,Tmax). | (3.10) |
Substituting (3.9) and (3.10) into (3.8), we get
ddt∫Ωv2⩽C4(1+‖Δu‖2L2(Ω))‖v‖2L2(Ω)+C5for all t∈(0,Tmax), |
which alongside Lemma 2.2, Lemma 3.3 and Lemma 3.4 completes the proof.
To get the global existence of solutions in any dimensions, we derive the following functional inequality which gives an a priori estimate on ∇u.
Lemma 3.6. Let (u,v,w) be the solution of (1.1) and q⩾2. If n⩾1, then there exists a constant C>0 such that
ddt∫Ω|∇u|2q+dq∫Ω|∇u|2(q−1)|D2u|2⩽q(n+2(q−1))K22d∫Ω(v2+1)|∇u|2(q−1)+Cfor all t∈(0,Tmax), |
where K2 is defined in (1.3).
Proof. From the first equation of (1.1) and the fact 2∇u⋅∇Δu=Δ|∇u|2−2|D2u|2, it follows that
ddt∫Ω|∇u|2q=2q∫Ω|∇u|2(q−1)∇u⋅∇ut=2q∫Ω|∇u|2(q−1)∇u⋅∇(dΔu+a1u−a2u2−a3uv)=dq∫Ω|∇u|2(q−1)Δ|∇u|2−2dq∫Ω|∇u|2(q−1)|D2u|2+2q∫Ω|∇u|2(q−1)∇u⋅∇(a1u−a2u2−a3uv) |
which implies
ddt∫Ω|∇u|2q+2dq∫Ω|∇u|2(q−1)|D2u|2=dq∫Ω|∇u|2(q−1)Δ|∇u|2+2q∫Ω|∇u|2(q−1)∇u⋅∇(a1u−a2u2−a3uv)=:I1+I2for all t∈(0,Tmax). | (3.11) |
Now, we estimate the right hand side of (3.11). Choosing s∈(0,12) and
θ=12−s+12n−q12−1n−q∈(0,1), |
we get
12−s+12n=θ(12−1n)+(1−θ)q, |
which, along with the Gagliardo-Nirenberg inequality, Young's inequality and the embedding
Ws+12,2(Ω)⊂Ws,2(∂Ω)⊂L2(∂Ω), |
gives some constants C1, C2, C3, C4>0 such that
∫∂Ω|∇u|2(q−1)∂|∇u|2∂ν⩽C1∫∂Ω|∇u|2q=C1‖|∇u|q‖2L2(∂Ω)⩽C2‖|∇u|q‖2Ws+12,2(Ω)⩽C3‖∇|∇u|q‖2θL2(Ω)‖|∇u|q‖2(1−θ)L1q(Ω)+C3‖|∇u|q‖2L1q(Ω)⩽2(q−1)q2‖∇|∇u|q‖2L2(Ω)+C4for all t∈(0,Tmax). |
Therefore, it holds that
I1=dq∫∂Ω|∇u|2(q−1)∂|∇u|2∂ν−dq∫Ω∇|∇u|2(q−1)⋅∇|∇u|2⩽2d(q−1)q∫Ω|∇|∇u|q|2+C4dq−4d(q−1)q∫Ω|∇|∇u|q|2⩽−2d(q−1)q∫Ω|∇|∇u|q|2+C4dqfor all t∈(0,Tmax). |
Owning to the fact |Δu|⩽√n|D2u|, Young's inequality and Lemma 3.1, we have
I2=−2q(q−1)∫Ω(a1u−a2u2−a3uv)|∇u|2(q−2)∇|∇u|2⋅∇u−2q∫Ω(a1u−a2u2−a3uv)|∇u|2(q−1)Δu⩽2q(q−1)K2∫Ω(v+1)|∇u|2(q−2)|∇|∇u|2||∇u|+2q√nK2∫Ω(v+1)|∇u|2(q−1)|D2u|⩽qd(q−1)2∫Ω|∇u|2(q−2)|∇|∇u|2|2+2q(q−1)K22d∫Ω(v2+1)|∇u|2(q−1)+dq∫Ω|∇u|2(q−1)|D2u|2+qnK22d∫Ω(v2+1)|∇u|2(q−1)=2d(q−1)q∫Ω|∇|∇u|q|2+dq∫Ω|∇u|2(q−1)|D2u|2+q(n+2(q−1))K22d∫Ω(v2+1)|∇u|2(q−1)for all t∈(0,Tmax), |
where K2 is defined in (1.3). Hence, substituting the estimates I1 and I2 into (3.11), we finish the proof of the lemma.
Now, we show the following functional inequality to derive the a priori estimate on v in any dimensions.
Lemma 3.7. Let (u,v,w) be the solution of (1.1) and q⩾2. If n⩾1, we can find a constant C>0 such that
ddt∫Ωvq+2(q−1)q∫Ω|∇vq2|2+ρq∫Ωvq+1⩽q(q−1)ξ2∫Ωvq|∇u|2+C∫Ωvq |
for all t∈(0,Tmax).
Proof. Utilizing the second equation of (1.1) and integration by parts, we get
ddt∫Ωvq=q∫Ωvq−1vt=q∫Ωvq−1(∇⋅(∇v+χv∇w−ξv∇u)+v(ρ(1−v)+ea3u))=−q(q−1)∫Ωvq−2|∇v|2−χq(q−1)∫Ωvq−1∇w⋅∇v+ξq(q−1)∫Ωvq−1∇u⋅∇v+ρq∫Ωvq−ρq∫Ωvq+1+ea3q∫Ωuvq. | (3.12) |
Now, we estimate the right hand side of (3.12). An application of Young's inequality and Lemma 3.2 yields some constant C1>0 such that
−χq(q−1)∫Ωvq−1∇w⋅∇v⩽χq(q−1)supt∈(0,Tmax)‖∇w‖L∞(Ω)∫Ωvq−1|∇v|⩽q(q−1)4∫Ωvq−2|∇v|2+C1∫Ωvq |
and
ξq(q−1)∫Ωvq−1∇u⋅∇v⩽q(q−1)4∫Ωvq−2|∇v|2+q(q−1)ξ2∫Ωvq|∇u|2, |
which along with (3.12), Lemma 3.1 and the fact
vq−2|∇v|2=4q2|∇vq2|2 |
gives a constant C2>0 such that
ddt∫Ωvq+2(q−1)q∫Ω|∇vq2|2⩽q(q−1)ξ2∫Ωvq|∇u|2+(ρq+C1)∫Ωvq−ρq∫Ωvq+1+ea3q∫Ωuvq⩽q(q−1)ξ2∫Ωvq|∇u|2−ρq∫Ωvq+1+C2∫Ωvqfor all t∈(0,Tmax). |
Hence, we finish the proof of the lemma.
Combining Lemmas 3.6 and 3.7, we have the following inequality which can help us to achieve the global existence of solutions in any dimensions.
Lemma 3.8. Let (u,v,w) be the solution of (1.1) and p⩾2. If n⩾1, we can find a constant C>0 such that
ddt(∫Ω|∇u|2p+∫Ωvp)+2(p−1)p∫Ω|∇vp2|2+∫Ω|∇u|2p+∫Ωvp⩽(K3(p)−ρp2)∫Ωvp+1+Cfor all t∈(0,Tmax), |
where K3(p) is defined in (1.4).
Proof. Combining Lemmas 3.6 and 3.7, we see for any p=q⩾2 there exists a constant C1>0 such that for all t∈(0,Tmax)
ddt(∫Ω|∇u|2p+∫Ωvp)+2(p−1)p∫Ω|∇vp2|2+dp∫Ω|∇u|2(p−1)|D2u|2+ρp∫Ωvp+1⩽p(n+2(p−1))K22d∫Ωv2|∇u|2(p−1)+p(p−1)ξ2∫Ωvp|∇u|2+C1∫Ω|∇u|2(p−1)+C1∫Ωvp+C1. | (3.13) |
Now, we estimate the right hand side of the above inequality. Indeed, owing to Lemma 2.3 and Young's inequality, for all t∈(0,Tmax), we have
p(n+2(p−1))K22d∫Ωv2|∇u|2(p−1)⩽dp8(4p2+n)‖u‖2L∞(Ω)∫Ω|∇u|2(p+1)+2p+1(dp(p+1)8(p−1)(4p2+n)‖u‖2L∞(Ω))−p−12(p(n+2(p−1))K22d)p+12∫Ωvp+1⩽dp4∫Ω|∇u|2(p−1)|D2u|2+23p−12pdp(n+2(p−1)K22p+1)p+12((p−1)(4p2+n)K21)p−12∫Ωvp+1 |
and
p(p−1)ξ2∫Ωvp|∇u|2⩽dp8(4p2+n)‖u‖2L∞(Ω)∫Ω|∇u|2(p+1)+pp+1(dp(p+1)8(4p2+n)‖u‖2L∞(Ω))−1p(p(p−1)ξ2)p+1p∫Ωvp+1⩽dp4∫Ω|∇u|2(p−1)|D2u|2+23pp2d1p((p−1)ξ2p+1)p+1p((4p2+n)K21)1p∫Ωvp+1, |
where K1 and K2 are defined in (1.3). Similarly, we can find a constant C2>0 such that
C1∫Ω|∇u|2(p−1)⩽dp8(4p2+n)‖u‖2L∞(Ω)∫Ω|∇u|2(p+1)+C2⩽dp4∫Ω|∇u|2(p−1)|D2u|2+C2for all t∈(0,Tmax). |
Substituting the above estimates into (3.13), we get
ddt(∫Ω|∇u|2p+∫Ωvp)+2(p−1)p∫Ω|∇vp2|2+dp4∫Ω|∇u|2(p−1)|D2u|2+ρp∫Ωvp+1⩽K3(p)∫Ωvp+1+C1∫Ωvp+C1+C2for all t∈(0,Tmax), | (3.14) |
where K3(p) is given in (1.4). Furthermore, we can use Young's inequality and Lemma 2.3 to get a constant C3>0 such that
(C1+1)∫Ωvp⩽ρp2∫Ωvp+1+C3, |
and
∫Ω|∇u|2p⩽dp8(4p2+n)‖u‖2L∞(Ω)∫Ω|∇u|2(p+1)+C3⩽dp4∫Ω|∇u|2(p−1)|D2u|2+C3for all t∈(0,Tmax), |
which together with (3.14) finishes the proof.
Next, we shall deduce a criterion of global boundedness of solutions for the system (1.1) inspired by an idea of [33].
Lemma 3.9. Let n⩾1. If there exist M>0 and p0>n2 such that
∫Ωvp0⩽Mfor all t∈(0,Tmax), | (3.15) |
then Tmax=+∞. Moreover, there exists C>0 such that
‖u(⋅,t)‖W1,∞(Ω)+‖v(⋅,t)‖L∞(Ω)+‖w(⋅,t)‖W1,∞(Ω)⩽Cfor all t>0. |
Proof. We divide the proof into two steps.
Step 1: We claim that there exists a constant C1>0 such that
∫Ωv2p0⩽C1for all t∈(0,Tmax). |
Indeed, due to Lemma 3.8, for any p=2p0, there exists a constant C2>0 such that
ddt(∫Ω|∇u|4p0+∫Ωv2p0)+2p0−1p0∫Ω|∇vp0|2+∫Ω|∇u|4p0+∫Ωv2p0⩽(K3(2p0)−ρp0)∫Ωv2p0+1+C2for all t∈(0,Tmax). | (3.16) |
Let
θ=nn+22p0+22p0+1∈(0,1). |
Then, 2p0+12p0θ<1 due to p0>n2. By the Gagliardo-Nirenberg inequality, Young's inequality and (3.15), we can find some constants C3,C4>0 such that
(K3(2p0)−ρp0)∫Ωv2p0+1=(K3(2p0)−ρp0)‖vp0‖2p0+1p0L2p0+1p0(Ω)⩽C3(‖vp0‖2p0+1p0(1−θ)L1(Ω)‖∇vp0‖2p0+1p0θL2(Ω)+‖vp0‖2p0+1p0L1(Ω))⩽C3(M2p0+1p0(1−θ)‖∇vp0‖2p0+1p0θL2(Ω)+M2p0+1p0)⩽2p0−1p0∫Ω|∇vp0|2+C4for all t∈(0,Tmax), |
which along with (3.16) implies
ddt(∫Ω|∇u|4p0+∫Ωv2p0)+∫Ω|∇u|4p0+∫Ωv2p0⩽C2+C4for all t∈(0,Tmax). |
Therefore, the claim follows from the Grönwall inequality applied to the above inequality.
Step 2: Thanks to the regularity theorem [32,Lemma 1], we can find a constant C5>0 such that ‖∇u‖L∞(Ω)⩽C5 due to 2p0>n. With (3.12) and Lemmas 3.1 and 3.2, we get a constant C6>0 such that for any p⩾2
ddt∫Ωvp+p(p−1)∫Ωvp−2|∇v|2⩽p(p−1)(C6χ+C5ξ)∫Ωvp−1|∇v|+p(ρ+ea3K1)∫Ωvp. | (3.17) |
Thanks to Young's inequality, we find a constant C7>0 such that
p(p−1)(C6χ+C5ξ)∫Ωvp−1|∇v|⩽p(p−1)2∫Ωvp−2|∇v|2+C7p(p−1)∫Ωvp, |
which together with (3.17) implies
ddt∫Ωvp+p(p−1)∫Ωvp+2(p−1)p∫Ω|∇vp2|2⩽p(p−1)C8∫Ωvp, | (3.18) |
with C8=C7+ρ+ea3K1+1. Applying 1+pn⩽(1+p)n and the following inequality [34]
‖f‖2L2⩽ε‖∇f‖2L2+C9(1+ε−n2)‖f‖2L1, |
with f=vp2 and ε=2p2C8, we find a constant C10>0 such that
p(p−1)C8∫Ωup⩽2(p−1)p∫Ω|∇up2|2+C10p(p−1)(1+pn)(∫Ωup2)2. | (3.19) |
Substituting (3.19) into (3.18), we have
ddt∫Ωup+p(p−1)∫Ωup⩽C10p(p−1)(1+p)n(∫Ωup2)2. |
Then, employing the standard Moser iteration in [35] or a similar argument as in [34], we can prove that there exists a constant C11>0 such that
‖v‖L∞(Ω)⩽C11for all t∈(0,Tmax). |
Thus, with the help of Lemma 3.2, we finish the proof.
Now, utilizing the criterion in Lemma 3.9, we prove the global existence and boundedness of solutions for the system (1.1).
Proof of Theorem 1.1. If n⩽2, then the conclusion of the theorem can be obtained by Lemmas 3.3, 3.5 and 3.9. If n⩾3 and
ρ⩾2K3([n2]+1)[n2]+1, |
then according to Lemma 3.8, by fixing p=[n2]+1 we can find a constant C1>0 such that
ddt(∫Ω|∇u|2[n2]+2+∫Ωv[n2]+1)+∫Ω|∇u|2[n2]+2+∫Ωv[n2]+1⩽C1for all t∈(0,Tmax), |
which along with the Grönwall inequality gives a constant C2>0,
∫Ωv[n2]+1⩽C2for all t∈(0,Tmax). |
Together with Lemma 3.9, we finish the proof by Lemma 2.1.
In this section, we will employ suitable Lyapunov functionals to study the large-time behavior of u, v and w. We first improve the regularity of the solution.
Lemma 4.1. There exist constants θ1,θ2,θ3∈(0,1) and C>0 such that
‖u‖C2+θ1,1+θ12(¯Ω×[t,t+1])+‖v‖C2+θ2,1+θ22(¯Ω×[t,t+1])+‖w‖C2+θ3,1+θ32(¯Ω×[t,t+1])⩽Cfor all t>1. |
In particular, one can find C>0 such that
‖∇u‖L∞(Ω)+‖∇v‖L∞(Ω)+‖∇w‖L∞(Ω)⩽Cfor all t>1. |
Proof. The conclusion is a consequence of the regularity of parabolic equations in [36].
We split our analysis into two cases: a1>a3 and a1⩽a3.
We know that there are four homogeneous equilibria (0,0,0), (0,1,0), (a1a2,0,ra1γa2) and (u∗,v∗,w∗) when a1>a3, where u∗,v∗ and w∗ are defined in (1.5). In this case, we shall prove the coexistence steady state (u∗,v∗,w∗) is globally exponentially stable under certain conditions. Define an energy functional for (1.1) as follows:
F(t)=ε1∫Ω(u−u∗−u∗lnuu∗)+∫Ω(v−v∗−v∗lnvv∗)+ε22∫Ω(w−w∗)2, |
where ε1 and ε2 are to be determined below.
Proof of Theorem 1.2–(1). We complete the proof in four steps.
Step 1: The parameters ε1 and ε2 can be chosen in the following way. First, we recall from (1.5) and (1.6) that
Γ=4du∗K21v∗,Φ=2a2ρa23+e,Ψ=γηa23K21dρ2r2u∗. | (4.1) |
Let
f(y)=Ψ(Γy−ξ2)(−y2+2Φy−e2)y,y>0. |
It is clear that f∈C0((0,+∞)). Then, if
ξ2Γ<Φ+√Φ2−e2, |
the following holds:
ξ2K21v∗4du∗<2a2ρa23+e+2a3√a2ρ(a2ρa23+e). | (4.2) |
Under (4.2), we let a=max{ξ2Γ,Φ−√Φ2−e2} and b=Φ+√Φ2−e2 with a<b. Then, f(y) is continuous on [a,b] with f(a)=f(b)=0, and consequently f(y) must attain the maximum at some point, say ε1, in (a,b), namely f(ε1)=maxy∈[a,b]f(y). Then, a<ε1<b, or equivalently (see (4.1))
max{ξ2u2v∗4du∗,2a2ρa23+e−2a3√a2ρ(a2ρa23+e)}<ε1<2a2ρa23+e+2a3√a2ρ(a2ρa23+e). | (4.3) |
Next, we assume χ>0 is suitably small such that
χ2<f(ε1)=γηa23K21dρr2u∗ε1(4du∗ε1v∗K21−ξ2)(−ε21+2(2a2ρa23+e)ε1−e2)=4γηdρr2u∗v∗ε1(4du∗ε1−ξ2v∗K21)(a2ρε1−a23(ε1−e)24), |
which implies
dχ2u∗v2∗ε1η(4du∗v∗ε1−ξ2v2∗K21)<4γρr2(a2ρε1−a23(ε1−e)24). |
Hence, there exists a constant ε2>0 such that
dχ2u∗v2∗ε1η(4du∗v∗ε1−ξ2v2∗K21)<ε2<4γρr2(a2ρε1−a23(ε1−e)24) |
which along with Lemma 3.1 yields
dχ2u∗v2∗ε1η(4du∗v∗ε1−ξ2v2∗u2)<ε2<4γρr2(a2ρε1−a23(ε1−e)24). | (4.4) |
Step 2: We claim
‖u−u∗‖L∞(Ω)+‖v−v∗‖L∞(Ω)+‖w−w∗‖L∞(Ω)→0as t→+∞. |
Indeed, using the equations in system (1.1) along with integration by parts, we have
ddt∫Ω(u−u∗−u∗lnuu∗)=∫Ωu−u∗uut=−du∗∫Ω|∇u|2u2+∫Ω(u−u∗)(a1−a2u−a3v)=−du∗∫Ω|∇u|2u2−a2∫Ω(u−u∗)2−a3∫Ω(u−u∗)(v−v∗). |
Similarly, we obtain
ddt∫Ω(v−v∗−v∗lnvv∗)=∫Ωv−v∗vvt=−v∗∫Ω|∇v|2v2−χv∗∫Ω∇v⋅∇wv+ξv∗∫Ω∇u⋅∇vv+∫Ω(v−v∗)(ρ−ρv+ea3u)=−v∗∫Ω|∇v|2v2−χv∗∫Ω∇v⋅∇wv+ξv∗∫Ω∇u⋅∇vv−ρ∫Ω(v−v∗)2+ea3∫Ω(u−u∗)(v−v∗) |
and
ddt∫Ω(w−w∗)2=2∫Ω(w−w∗)wt=2∫Ω(w−w∗)(ηΔw+ru−γw)=−2η∫Ω|∇w|2+2r∫Ω(u−u∗)(w−w∗)−2γ∫Ω(w−w∗)2for all t>0. |
Then, it follows that
ddtF(t)=−du∗ε1∫Ω|∇u|2u2−v∗∫Ω|∇v|2v2−ηε2∫Ω|∇w|2−χv∗∫Ω∇v⋅∇wv+ξv∗∫Ω∇u⋅∇vv−a2ε1∫Ω(u−u∗)2−ρ∫Ω(v−v∗)2−γε2∫Ω(w−w∗)2−a3(ε1−e)∫Ω(u−u∗)(v−v∗)+rε2∫Ω(u−u∗)(w−w∗)=:−XTSX−YTTY, |
where X=(∇u,∇v,∇w), Y=(u−u∗,v−v∗,w−w∗), and
S=[du∗ε1u2−ξv∗2v0−ξv∗2vv∗v2χv∗2v0χv∗2vηε2],T=[a2ε1a3(ε1−e)2−rε22a3(ε1−e)2ρ0−rε220γε2]. |
Note that (4.3) yields
\frac{du_*v_*\varepsilon_1}{u^2v^2}-\frac{\xi^2v_*^2}{4v^2} > \frac{v_*^2}{4v^2}\bigg(\frac{4d u_*\varepsilon}{K_1^2}-\xi^2\bigg) > 0, |
and (4.4) gives
\frac{\eta du_*v_*\varepsilon_1\varepsilon_2}{u^2v^2}-\frac{d\chi^2u_*v_*^2\varepsilon_1}{4u^2v^2}-\frac{\eta \xi^2v_*^2\varepsilon_2}{4v^2} > 0. |
The above results indicate that matrix S is positive definite. Using (4.3) and (4.4) again, we observe that
a_2\rho\varepsilon_1-\frac{a_3^2(\varepsilon_1-e)^2}{4} > 0, |
and
a_2\rho\gamma\varepsilon_1\varepsilon_2-\frac{\rho r^2\varepsilon_2^2}{4}-\frac{a_3^2\gamma(\varepsilon_1-e)^2\varepsilon_2}{4} > 0, |
which imply that matrix T is positive definite. Therefore, one can choose a constant C_1 > 0 such that
\begin{equation} \frac{d}{dt}\mathcal{F}(t)\leqslant-C_1\left(\int_\Omega(u-u_*)^2+\int_\Omega(v-v_*)^2+\int_\Omega(w-w_*)^2\right)\quad\text{for all}\ t > 0. \end{equation} | (4.5) |
Integrating the above inequality with respect to time, we get a constant C_2 > 0 satisfying
\int_{1}^{+\infty}\int_\Omega(u-u_*)^2+\int_{1}^{+\infty}\int_\Omega(v-v_*)^2+\int_{1}^{+\infty}\int_\Omega(w-w_*)^2\leqslant C_2, |
which together with the uniform continuity of u, v and w due to Lemma 4.1 yields
\begin{equation} \int_\Omega(u-u_*)^2+\int_\Omega(v-v_*)^2+\int_\Omega(w-w_*)^2\rightarrow0, \quad\text{as}\ t\rightarrow +\infty. \end{equation} | (4.6) |
By the Gagliardo-Nirenberg inequality, we can find a constant C_3 > 0 such that
\begin{equation} \|u-u_*\|_{L^{\infty}(\Omega)} \leqslant C_3\|u-u_*\|_{W^{1, \infty}(\Omega)}^{\frac{n}{n+2}}\|u-u_*\|_{L^{2}(\Omega)}^{\frac{2}{n+2}}, \end{equation} | (4.7) |
\begin{equation} \|v-v_*\|_{L^{\infty}(\Omega)} \leqslant C_3\|v-v_*\|_{W^{1, \infty}(\Omega)}^{\frac{n}{n+2}}\|v-v_*\|_{L^{2}(\Omega)}^{\frac{2}{n+2}} \end{equation} | (4.8) |
and
\begin{equation} \|w-w_*\|_{L^{\infty}(\Omega)} \leqslant C_3\|w-w_*\|_{W^{1, \infty}(\Omega)}^{\frac{n}{n+2}}\|w-w_*\|_{L^{2}(\Omega)}^{\frac{2}{n+2}}\quad\text{for all}\ t > 1, \end{equation} | (4.9) |
which along with (4.6) and Lemma 4.1 prove the claim.
Step 3: From the L'Hôpital rule, it holds that for any s_0 > 0
\lim\limits_{s\rightarrow s_0}\frac{s-s_0-s_0\ln\frac{s}{s_0}}{(s-s_0)^2} = \lim\limits_{s\rightarrow s_0}\frac{1-\frac{s_0}{s}}{2(s-s_0)} = \lim\limits_{s\rightarrow s_0}\frac{1}{2s} = \frac{1}{2s_0}, |
which gives a constant \eta > 0 such that for all |s-s_0|\leqslant\eta
\begin{equation} \frac{1}{4s_0}(s-s_0)^2\leqslant s-s_0-s_0\ln\frac{s}{s_0}\leqslant\frac{1}{s_0}(s-s_0)^2. \end{equation} | (4.10) |
By (4.6), there exists T_1 > 1 such that
\begin{equation*} \|u-u_*\|_{L^\infty(\Omega)}+\|v-v_*\|_{L^\infty(\Omega)}+\|w-w_*\|_{L^\infty(\Omega)}\leqslant\eta\quad\text{for all}\ t\geqslant T_1. \end{equation*} |
Therefore, by (4.10), we get
\begin{equation} \frac{1}{4u_*}\int_\Omega(u-u_*)^2\leqslant\int_\Omega \left(u-u_*-u_*\ln\frac{u}{u_*}\right)\leqslant\frac{1}{u_*}\int_\Omega(u-u_*)^2\quad\text{for all}\ t\geqslant T_1 \end{equation} | (4.11) |
and
\begin{equation} \frac{1}{4v_*}\int_\Omega(v-v_*)^2\leqslant\int_\Omega \left(v-v_*-v_*\ln\frac{v}{v_*}\right)\leqslant\frac{1}{v_*}\int_\Omega(v-v_*)^2\quad\text{for all}\ t\geqslant T_1. \end{equation} | (4.12) |
Step 4: From (4.11) and (4.12), it follows that
\mathcal{F}(t)\leqslant\max\left\{\frac{\varepsilon_1}{u_*}, \frac{1}{v_*}, \frac{\varepsilon_2}{2}\right\}\left(\int_\Omega(u-u_*)^2+\int_\Omega(v-v_*)^2+\int_\Omega(w-w_*)^2\right), |
which alongside (4.5) yields a constant C_4 > 0 such that
\frac d{dt}\mathcal{F}(t)\leqslant-C_4\mathcal{F}(t)\quad\text{for all}\ t\geqslant T_1. |
This immediately gives a constant C_5 > 0 such that
\begin{equation*} \mathcal{F}(t)\leqslant C_5e^{-C_4 t}\quad\text{for all}\ t\geqslant T_1. \end{equation*} |
Hence, utilizing (4.11) and (4.12) again, one obtains a constant C_6 > 0 such that
\begin{equation*} \int_\Omega(u-u_*)^2+\int_\Omega(v-v_*)^2+\int_\Omega(w-w_*)^2\leqslant C_6e^{-C_4 t}\quad\text{for all}\ t\geqslant T_1. \end{equation*} |
Finally, by (4.7)–(4.9) and Lemma 4.1, we get the decay rates of \|u-u_*\|_{L^\infty(\Omega)} , \|v-v_*\|_{L^\infty(\Omega)} and \|w-w_*\|_{L^\infty(\Omega)} , as claimed in Theorem 1.2–(1).
In this case, there are three homogeneous equilibria (0, 0, 0) , (0, 1, 0) and \left(\frac{a_1}{a_2}, 0, \frac{ra_1}{\gamma a_2}\right) , and we shall show that the steady state (0, 1, 0) is global asymptotically stable, where the convergence rate is exponential if a_1 < a_3 and algebraic if a_1 = a_3 . Define an energy functional for (1.1) as follows:
G(t) = e\int_\Omega u+\frac{\zeta_1}{2}\int_\Omega u^2+\int_\Omega\left(v-1-\ln v\right)+\frac{\zeta_2}{2}\int_\Omega w^2, |
where \zeta_1 and \zeta_2 will be determined below.
Proof of Theorem 1.2–(2). We divide the proof into five steps.
Step 1: We shall choose the appropriate parameters \zeta_1 and \zeta_2 . By the definitions of A and B in (1.7), since A < B , we have
\begin{equation} \left(\frac{\xi^2}{4d}\right)^2 < \frac{\xi^2ea_2}{4da_1} < \left(\frac{ea_2}{a_1}\right)^2. \end{equation} | (4.13) |
Let
g(y) = \frac{16\eta\gamma}{dr^2}\frac{(dy-\frac{\xi^2}{4})(ea_2-a_1y)}{y}, \quad \frac{\xi^2}{4d} < y < \frac{ea_2}{a_1}. |
Then, g\in C^1\left(\left(\frac{\xi^2}{4d}, \frac{ea_2}{a_1}\right)\right) , and g(y) > 0 in \left(\frac{\xi^2}{4d}, \frac{ea_2}{a_1}\right) . We further observe that
g\left(\frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}\right) = D\left(A+B-2\sqrt{AB}\right) |
which along with \chi^2 < D\left(A+B-2\sqrt{AB}\right) implies
\chi^2 < g\left(\frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}\right). |
By the definition of g , one has
g'(y_0) = \frac{16\eta\gamma}{dr^2}\left(-da_1+\frac{\xi^2ea_2}{4y_0^2}\right) = 0, |
which alongside (4.13) gives y_0 = \frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}\in\left(\frac{\xi^2}{4d}, \frac{ea_2}{a_1}\right) . Thus, g(y) is increasing in \left(\frac{\xi^2}{4d}, \frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}\right) and decreasing in \left(\frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}, \frac{ea_2}{a_1}\right) . We can find a constant \zeta_1 > 0 such that
\begin{equation} \frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}} < \zeta_1 < \frac{ea_2}{a_1} \end{equation} | (4.14) |
and
0 = g\left(\frac{ea_2}{a_1}\right) < \chi^2 < g(\zeta_1) < g\left(\frac{\xi}{2}\sqrt{\frac{ea_2}{da_1}}\right). |
With the definition of g , we get
\frac{d\chi^2\zeta_1}{4\eta(d\zeta_1-\frac{\xi^2}{4})} < \frac{4\gamma}{r^2}(ea_2-a_1\zeta_1), |
which implies that there exists \zeta_2 > 0 such that
\begin{equation} \frac{d\chi^2\zeta_1}{4\eta(d\zeta_1-\frac{\xi^2}{4})} < \zeta_2 < \frac{4\gamma}{r^2}(ea_2-a_1\zeta_1). \end{equation} | (4.15) |
One can verify that
\begin{equation} \eta d\zeta_1\zeta_2-\frac{d\chi^2}{4}\zeta_1-\frac{\eta \xi^2}{4}\zeta_2 > 0, \end{equation} | (4.16) |
and
\begin{equation} (ea_2-a_1\zeta_1)\rho\gamma\zeta_2-\frac{\rho r^2}{4}\zeta_2^2 > 0. \end{equation} | (4.17) |
Thanks to (4.13) and (4.14), one obtains
\begin{equation} \frac{\xi^2}{4d} < \zeta_1 < \frac{ea_2}{a_1}. \end{equation} | (4.18) |
Step 2: We claim
\begin{equation} \|u\|_{L^{\infty}(\Omega)}+\|v-1\|_{L^{\infty}(\Omega)}+\|w\|_{L^{\infty}(\Omega)} \rightarrow0\quad\text{as}\ t\rightarrow +\infty. \end{equation} | (4.19) |
Indeed, if (u, v, w) is the solution of system (1.1), then we get
\begin{gather} \frac{d}{dt}\int_\Omega u = a_1\int_\Omega u-a_2\int_\Omega u^2-a_3\int_\Omega uv, \end{gather} | (4.20) |
\begin{gather} \frac{d}{dt}\int_\Omega u^2 = 2\int_\Omega uu_t = -2d\int_\Omega|\nabla u|^2+2a_1\int_\Omega u^2-2a_2\int_\Omega u^3-2a_3\int_\Omega u^2v, \end{gather} | (4.21) |
\begin{gather} \begin{aligned} &\frac{d}{dt}\int_\Omega\left(v-1-\ln v\right) = \int_\Omega \frac{v-1}{v}v_t\\ = &-\int_\Omega\frac{|\nabla v|^2}{v^2}-\chi \int_\Omega\frac{\nabla v\cdot\nabla w}{v}+\xi \int_\Omega\frac{\nabla u\cdot\nabla v}{v}+\int_\Omega(v-1)(\rho-\rho v+ea_3u)\\ = &-\int_\Omega\frac{|\nabla v|^2}{v^2}-\chi \int_\Omega\frac{\nabla v\cdot\nabla w}{v}+\xi\int_\Omega\frac{\nabla u\cdot\nabla v}{v}-\rho\int_\Omega(v-1)^2+ea_3\int_\Omega uv-ea_3\int_\Omega u \end{aligned} \end{gather} | (4.22) |
and
\begin{equation} \frac{d}{dt}\int_\Omega w^2 = 2\int_\Omega ww_t = -2\eta\int_\Omega|\nabla w|^2+2r\int_\Omega uw-2\gamma\int_\Omega w^2\quad\text{for all}\ t > 0. \end{equation} | (4.23) |
Then, combining (4.20), (4.21), (4.22) and (4.23), we have from the definition of G(t) that
\begin{equation} \begin{aligned} \frac{d}{dt}G(t)\leqslant&-d\zeta_1\int_\Omega|\nabla u|^2-\int_\Omega\frac{|\nabla v|^2}{v^2}-\eta\zeta_2\int_\Omega|\nabla w|^2\\ &\quad-\chi \int_\Omega\frac{\nabla v\cdot\nabla w}{v}+\xi\int_\Omega\frac{\nabla u\cdot\nabla v}{v}+e(a_1-a_3)\int_\Omega u\\ &\quad-(ea_2-a_1\zeta_1)\int_\Omega u^2-\rho\int_\Omega(v-1)^2-\gamma\zeta_2\int_\Omega w^2+r\zeta_2\int_\Omega uw\\ = &:-X^TPX-Y^TQY+e(a_1-a_3)\int_\Omega u, \end{aligned} \end{equation} | (4.24) |
where X = (\nabla u, \nabla v, \nabla w) , Y = (u, v-1, w) ,
P = \left[\begin{array}{ccc} d\zeta_1 & -\frac{\xi}{2v} & 0\\ -\frac{\xi}{2v} & \frac{1}{v^2} & \frac{\chi}{2v}\\ 0 & \frac{\chi}{2v} & \eta\zeta_2 \end{array}\right]\quad\text{and}\quad Q = \left[\begin{array}{ccc} ea_2-a_1\zeta_1 & 0 & -\frac{r\zeta_2}{2}\\ 0 & \rho & 0\\ -\frac{r\zeta_2}{2} & 0 & \gamma\zeta_2 \end{array}\right]. |
It can be checked that (4.16) and (4.18) ensure that the matrix P is positive definite while (4.17) and (4.18) guarantee that the matrix Q is positive definite. Thus, there is a constant C_1 > 0 such that if a_1 < a_3 , then
\begin{equation} \frac{d}{dt}G(t)\leqslant-C_1\left(\int_\Omega u+\int_\Omega u^2+\int_\Omega(v-1)^2+\int_\Omega w^2\right)\quad\text{for all}\ t > 0, \end{equation} | (4.25) |
and if a_1 = a_3 , then
\begin{equation} \frac{d}{dt}G(t)\leqslant-C_1\left(\int_\Omega u^2+\int_\Omega(v-1)^2+\int_\Omega w^2\right)\quad\text{for all}\ t > 0. \end{equation} | (4.26) |
Integrating the above inequalities with respect to time, we find a constant C_2 > 0 satisfying
\int_1^{+\infty}\int_\Omega u^2+\int_1^{+\infty}\int_\Omega(v-1)^2+\int_1^{+\infty}\int_\Omega w^2\leqslant C_2, |
which together with the uniform continuity of u, v and w due to Lemma 4.1 yields
\begin{equation} \int_\Omega u^2+\int_\Omega(v-1)^2+\int_\Omega w^2\rightarrow0, \quad\text{as}\ t\rightarrow +\infty. \end{equation} | (4.27) |
Thus, (4.19) is obtained by the Gagliardo-Nirenberg inequality and Lemma 4.1.
Step 3: By the L'Hôpital rule, we get
\lim\limits_{s\rightarrow 1}\frac{s-1-\ln s}{(s-1)^2} = \lim\limits_{s\rightarrow 1}\frac{1-\frac{1}{s}}{2(s-1)} = \lim\limits_{s\rightarrow 1}\frac{1}{2s} = \frac{1}{2}, |
which gives a constant \varepsilon > 0 such that
\begin{equation} \frac{1}{4}(s-1)^2\leqslant s-1-\ln s\leqslant(s-1)^2 \ \ \text{for all}\ \ |s-1|\leqslant\varepsilon. \end{equation} | (4.28) |
By (4.19), there exists T_1 > 0 such that
\begin{equation} \|u\|_{L^\infty(\Omega)}+\|v-1\|_{L^\infty(\Omega)}+\|w\|_{L^\infty(\Omega)}\leqslant\varepsilon\quad\text{for all}\ t\geqslant T_1. \end{equation} | (4.29) |
Therefore, it follows from (4.28) that
\begin{equation} \frac{1}{4}\int_\Omega(v-1)^2\leqslant\int_\Omega (v-1-\ln v)\leqslant \int_\Omega(v-1)^2\quad\text{for all}\ t\geqslant T_1. \end{equation} | (4.30) |
Step 4: If a_1 < a_3 , from the definition of G(t) and (4.30), one has
G(t)\leqslant\max\left\{e, \frac{\zeta_1}{2}, \frac{\zeta_2}{2}, 1\right\}\left(\int_\Omega u+\int_\Omega u^2+\int_\Omega(v-1)^2+\int_\Omega w^2\right), |
which along with (4.25) yields a constant C_3 > 0 such that
\frac d{dt}G(t)\leqslant-C_3G(t)\quad\text{for all}\ t\geqslant T_1. |
This gives a constant C_4 > 0 such that
\begin{equation*} G(t)\leqslant C_4e^{-C_3 t}\quad\text{for all}\ t\geqslant T_1. \end{equation*} |
Hence, utilizing (4.30) again, we find a constant C_5 > 0 such that
\begin{equation*} \int_\Omega u^2+\int_\Omega(v-1)^2+\int_\Omega w^2\leqslant C_5e^{-C_3 t}\quad\text{for all}\ t\geqslant T_1. \end{equation*} |
Then, by the Gagliardo-Nirenberg inequality and Lemma 4.1, we get the exponential convergence for \|u\|_{L^{\infty}(\Omega)}+\|v-1\|_{L^{\infty}(\Omega)}+\|w\|_{L^{\infty}(\Omega)} .
Step 5: If a_1 = a_3 , we use (4.29), (4.30) and Young's inequality to find a constant C_6 > 0 :
\begin{align*} G^2(t)\leqslant& C_6\left(\int_\Omega u+\int_\Omega u^2+\int_\Omega(v-1)^2+\int_\Omega w^2\right)^2\\ \leqslant&C_6(\varepsilon+1)^2\left(\int_\Omega u+\int_\Omega(v-1)+\int_\Omega w \right)^2\\ \leqslant&3C_6(\varepsilon+1)^2|\Omega|\left(\int_\Omega u^2+\int_\Omega(v-1)^2+\int_\Omega w^2 \right)\quad\text{for all}\ t\geqslant T_1, \end{align*} |
which alongside (4.26) implies some constant C_7 > 0
\frac{d}{dt}G(t)\leqslant-C_7G^2(t)\quad\text{for all}\ t\geqslant T_1. |
Solving the above inequality directly yields a constant C_8 > 0 such that
G(t)\leqslant C_8(t+1)^{-1}\quad\text{for all}\ t\geqslant T_1. |
Similar to the case a_1 < a_3 , we can use (4.30), the Gagliardo-Nirenberg inequality and Lemma 4.1 to get the convergence rate of \|u\|_{L^{\infty}(\Omega)}+\|v-1\|_{L^{\infty}(\Omega)}+\|w\|_{L^{\infty}(\Omega)} .
The author warmly thanks the reviewers for several inspiring comments and helpful suggestions. The research of the author was supported by the National Nature Science Foundation of China (Grant No. 12101377) and the Nature Science Foundation of Shanxi Province (Grant No. 20210302124080).
The author declares there is no conflict of interest.
[1] |
Y. Shao, J. C. W. Lin, G. Srivastava, A. Jolfaei, D. Guo, Y. Hu, Self-attention-based conditional random fields latent variables model for sequence labeling, Pattern Recognit. Lett., 145 (2021), 157–164. https://doi.org/10.1016/j.patrec.2021.02.008 doi: 10.1016/j.patrec.2021.02.008
![]() |
[2] |
J. C. W. Lin, Y. Shao, Y. Djenouri, U. Yun, ASRNN: A recurrent neural network with an attention model for sequence labeling, Knowl. Based Syst., 212 (2021), 106548. https://doi.org/10.1016/j.knosys.2020.106548 doi: 10.1016/j.knosys.2020.106548
![]() |
[3] |
Y. Djenouri, G. Srivastava, J. C. W. Lin, Fast and accurate convolution neural network for detecting manufacturing data, IEEE Trans. Ind. Inf., 17 (2021), 2947–2955. https://doi.org/10.1109/TII.2020.300149 doi: 10.1109/TII.2020.300149
![]() |
[4] |
Y. Shao, J. C. W. Lin, G. Srivastava, D. Guo, H. Zhang, H. Yi, et al., Multi-objective neural evolutionary algorithm for combinatorial optimization problems, IEEE Trans. Neural Networks Learn. Syst., 2021 (2021), 1–11. https://doi.org/10.1109/TNNLS.2021.3105937 doi: 10.1109/TNNLS.2021.3105937
![]() |
[5] | K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, preprint, arXiv: 1409.1556. |
[6] | C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., Going deeper with convolutions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2014), 1–9. https://doi.org/10.48550/arXiv.1409.4842 |
[7] | K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 770–778. https://doi.org/10.48550/arXiv.1512.03385 |
[8] | S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transformations for deep neural networks, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 5987–5995. https://doi.org/10.1109/CVPR.2017.634 |
[9] | G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger, Densely connected convolutional networks, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 2261–2269. https://doi.org/10.1109/CVPR.2017.243 |
[10] | J. Hu, L. Shen, G. Sun, Squeeze-and-Excitation networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 7132–7141. https://doi.org/10.1109/CVPR.2018.00745 |
[11] | B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learning transferable architectures for scalable image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 8697–8710. https://doi.org/10.48550/arXiv.1707.07012 |
[12] | C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. J. Li, et al., Progressive neural architecture search, in Proceedings of the European Conference on Computer Vision (ECCV), (2018), 19–34. https://doi.org/10.48550/arXiv.1712.00559 |
[13] | E. Real, A. Aggarwal, Y. Huang, Q. V. Le, Regularized evolution for image classifier architecture search, in Proceedings of the AAAI Conference on Artificial Intelligence, 33 (2019), 4780–4789. https://doi.org/10.1609/aaai.v33i01.33014780 |
[14] | A. Banitalebi-Dehkordi, Knowledge distillation for low-power object detection: A simple technique and its extensions for training compact models using unlabeled data, in 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), (2021), 769–778. https://doi.org/10.1109/ICCVW54120.2021.00091. |
[15] | A. Goel, C. Tung, Y. H. Lu, G. K. Thiruvathukal, A Survey of methods for low-power deep learning and computer vision, in 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), (2020), 1–6. https://doi.org/10.1109/WF-IoT48130.2020.9221198 |
[16] | F. Chollet, Xception: Deep learning with depthwise separable convolutions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2017), 1251–1258. https://doi.org/10.48550/arXiv.1610.02357 |
[17] | A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, et al., Mobilenets: Efficient convolutional neural networks for mobile vision applications, preprint, arXiv: 170404861. |
[18] | M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. C. Chen, Mobilenetv2: Inverted residuals and linear bottlenecks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 4510–4520. https://doi.org/10.48550/arXiv.1801.04381 |
[19] | F. Zhang, Q. Li, Y. Ren, H. Xu, Y. Song, S. Liu, An expression recognition method on robots based on mobilenet V2-SSD, in 2019 6th International Conference on Systems and Informatics (ICSAI), IEEE, (2019), 118–122. https://doi.org/10.1109/ICSAI48974.2019.9010173 |
[20] | X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely efficient convolutional neural network for mobile devices, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 6848–6856. https://doi.org/10.1109/CVPR.2018.00716 |
[21] | N. Ma, X. Zhang, H. T. Zheng, J. Sun, Shufflenet v2: Practical guidelines for efficient CNN architecture design, in Proceedings of the European Conference on Computer Vision (ECCV), (2018), 116–131. https://doi.org/10.48550/arXiv.1807.11164 |
[22] | G. Huang, S. Liu, L. Van der Maaten, K. Q. Weinberger, Condensenet: An efficient densenet using learned group convolutions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 2752–2761. https://doi.org/10.48550/arXiv.1807.11164 |
[23] |
R. Zhang, F. Zhu, J. Liu, G. Liu, Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based steganalysis, IEEE Trans. Inf. Forensics Secur., 15 (2020), 1138–1150. https://doi.org/10.1109/TIFS.2019.2936913. doi: 10.1109/TIFS.2019.2936913
![]() |
[24] | S. Han, H. Mao, W. J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding, preprint, arXiv: 151000149. |
[25] | H. Lin, A. Kadav, I. Durdanovic, H. Samet, H. P. Graf, Pruning filters for efficient convnets, preprint, arXiv: 1608.08710. |
[26] | Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang, Learning efficient convolutional networks through network slimming, in Proceedings of the IEEE International Conference on Computer Vision, (2017), 2736–2744. https://doi.org/10.48550/arXiv.1708.06519 |
[27] | Y. He, P. Liu, Z. Wang, Z. Hu, Y. Yang, Filter pruning via geometric median for deep convolutional neural networks acceleration, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2019), 4340–4349. https://doi.org/10.48550/arXiv.1811.00250 |
[28] | M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: ImageNet classification using binary convolutional neural networks, in European Conference on Computer Vision, (2016), 525–542. https://doi.org/10.1007/978-3-319-46493-0_32 |
[29] | Y. Jiao, S. Li, X. Huo, Y. K. Li, Synchronous weight quantization-compression for low-bit quantized neural network, in 2021 International Joint Conference on Neural Networks (IJCNN), IEEE, (2021), 1–8. https://doi.org/10.1109/IJCNN52387.2021.9533393 |
[30] | H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, et al., Exploring the regularity of sparse structure in convolutional neural networks, preprint, arXiv: 170508922. |
[31] | W. Yin, G. Dong, Y. Zhao, R. Li, Coresets application in channel pruning for fast neural network slimming, in 2021 International Joint Conference on Neural Networks (IJCNN), (2021), 1–8. https://doi.org/10.1109/IJCNN52387.2021.9533343 |
1. | Luis E. Ayala-Hernández, Gabriela Rosales-Muñoz, Armando Gallegos, María L. Miranda-Beltrán, Jorge E. Macías-Díaz, On a deterministic mathematical model which efficiently predicts the protective effect of a plant extract mixture in cirrhotic rats, 2023, 21, 1551-0018, 237, 10.3934/mbe.2024011 | |
2. | Rinaldo M. Colombo, Paola Goatin, Elena Rossi, A Hyperbolic–parabolic framework to manage traffic generated pollution, 2025, 85, 14681218, 104361, 10.1016/j.nonrwa.2025.104361 |