The total variation (TV) method favors solutions with the piece-wise constant assumption of the desired image from sparse-view sampling, for example, simple geometric images with flat intensity. When the phantoms become more complex and contain complicated textures, for example, high-resolution phantom and lung CT images, the images reconstructed by TV regularization may lose their contrast and fine structures. One of the optimally sparse transforms for images, the shearlet transform, has C2 without discontinuities on C2 curves, giving excellent sensitive directional information as compared with other wavelet transform approaches. Here, we developed a Shearlet-Sparse Regularization (SSR) algorithm solved with the Alternating Direction Method of Multipliers (ADMM) to overcome this limitation. With the strengthened characteristics of SSR, we performed one simulation experiment and two real experiments using a NeuViz 64 X-ray CT scanning system to measure the performance and properties of proposed algorithm. The results demonstrate that the SSR method exhibits the advantage of providing high-quality directional information and contrast as compared with TV.
Citation: Dayu Xiao, Jianhua Li, Ruotong Zhao, Shouliang Qi, Yan Kang. Iterative CT reconstruction based on ADMM using shearlet sparse regularization[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 11840-11853. doi: 10.3934/mbe.2022552
The total variation (TV) method favors solutions with the piece-wise constant assumption of the desired image from sparse-view sampling, for example, simple geometric images with flat intensity. When the phantoms become more complex and contain complicated textures, for example, high-resolution phantom and lung CT images, the images reconstructed by TV regularization may lose their contrast and fine structures. One of the optimally sparse transforms for images, the shearlet transform, has C2 without discontinuities on C2 curves, giving excellent sensitive directional information as compared with other wavelet transform approaches. Here, we developed a Shearlet-Sparse Regularization (SSR) algorithm solved with the Alternating Direction Method of Multipliers (ADMM) to overcome this limitation. With the strengthened characteristics of SSR, we performed one simulation experiment and two real experiments using a NeuViz 64 X-ray CT scanning system to measure the performance and properties of proposed algorithm. The results demonstrate that the SSR method exhibits the advantage of providing high-quality directional information and contrast as compared with TV.
[1] | J. Nuyts, B. D. Man, P. Dupont, M. Defrise, P. Suetens, L. Mortelmans, Iterative reconstruction for helical CT: a simulation study, Phys. Med. Biol., 43(1998), 729–737. https://doi.org/10.1088/0031-9155/43/4/003 doi: 10.1088/0031-9155/43/4/003 |
[2] | J. B. Thibault, K. D. Sauer, C. A. Bouman, J. Hsieh, A three-dimensional statistical approach to improved image quality for multislice helical CT, Med. Phys., 34(2007), 4526–4544. https://doi.org/10.1118/1.2789499 doi: 10.1118/1.2789499 |
[3] | I. A. Elbakri, J. A. Fessler, Statistical image reconstruction for polyenergetic X-Ray computed tomography, IEEE Trans. Med. Imaging, 21(2002), 89–99. https://doi.org/10.1109/42.993128 doi: 10.1109/42.993128 |
[4] | G. Wang, D. L. Snyder, J. A. O'Sullivan, M. W. Vannier, Iterative deblurring for CT metal artifact reduction, IEEE Trans. Med. Imaging, 15(1996), 657–664. https://doi.org/10.1109/42.538943 doi: 10.1109/42.538943 |
[5] | Y. Liu, Z. Liang, J. Ma, H. Lu, K. Wang, H. Zhang, et al., Total variation-stokes strategy for sparse-view X-ray CT image reconstruction [J]. IEEE Trans. Med. Imaging, 33(2014), 749–763. https://doi.org/10.1109/TMI.2013.2295738 doi: 10.1109/TMI.2013.2295738 |
[6] | D. L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, 52(2006), 1289–1306. https://doi.org/10.1109/TIT.2006.871582 doi: 10.1109/TIT.2006.871582 |
[7] | H. Yu, G. Wang, Compressed sensing based interior tomography, Phys. Med. Biol., 54(2009): 2791–2805. https://doi.org/10.1088/0031-9155/54/9/014 doi: 10.1088/0031-9155/54/9/014 |
[8] | E. Sidky, X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Phys. Med. Biol., 53(2008), 4777–4807. https://doi.org/10.1088/0031-9155/53/17/021 doi: 10.1088/0031-9155/53/17/021 |
[9] | T. Niu, L. Zhu, TU-A-213CD-10: Accelerated barrier optimization compressed sensing (ABOCS) reconstruction for Cone-Beam CT, Med. Phys., 39(2012), 3892–3893. https://doi.org/10.1118/1.4735889 doi: 10.1118/1.4735889 |
[10] | S. Niu, Y. Gao, Z. Bian, J. Huang, W. Chen, G. Yu, et al., Sparse-view x-ray CT reconstruction via total generalized variation regularization, Phys. Med. Biol., 59(2014), 2997–3017. https://doi.org/10.1088/0031-9155/59/12/2997 doi: 10.1088/0031-9155/59/12/2997 |
[11] | E. Garduno, G. T. Herman, R. Davidi, Reconstruction from a few projections by l(1)-Minimization of the haar transform, Inverse. Probl., 27(2011), 055006. https://doi.org/10.1088/0266-5611/27/5/055006 doi: 10.1088/0266-5611/27/5/055006 |
[12] | G. Steidl, J. Weickert, T. Brox, P. Mrazek, M. Welk, On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs, SIAM J. Numer. Anal., 42(2004), 686–713. |
[13] | K. Guo, D. Labate, Optimally sparse multidimensional representation using shearlets, SIAM J. Math. Anal., 39 (2007), 298–318. https://doi.org/10.1137/060649781 doi: 10.1137/060649781 |
[14] | E. Candès, L. Demanet, D. Donoho, L. Ying, Fast discrete curvelet transforms, Multiscale Modell. Simul., 5(2006), 861–899. https://doi.org/10.1137/05064182X doi: 10.1137/05064182X |
[15] | G. Easley, D. Labate, W. Q. Lim, Sparse directional image representations using the discrete shearlet transform, Appl. Comput. Harmonic Anal., 25(2008), 25–46. https://doi.org/10.1016/j.acha.2007.09.003 doi: 10.1016/j.acha.2007.09.003 |
[16] | S. Ramani, J. A. Fessler, A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction, IEEE Trans. Med. Imaging, 31 (2012), 677–688. https://doi.org/10.1109/TMI.2011.2175233 doi: 10.1109/TMI.2011.2175233 |
[17] | J. He, Y. Yang, Y. Wang, D. Zeng, Z. Bian, H. Zhang, et al., Optimizing a parameterized plug-and-play ADMM for iterative low-dose CT reconstruction, IEEE Trans. Med. Imaging, 38 (2019), 371–382. https://doi.org/10.1109/TMI.2018.2865202 doi: 10.1109/TMI.2018.2865202 |
[18] | E. A. Rashed, M. al-Shatouri, H. Kudo, Sparsity-constrained three-dimensional image reconstruction for C-arm angiography, Comput. Biol. Med., 62 (2015), 141–153. https://doi.org/10.1016/j.compbiomed.2015.04.014 doi: 10.1016/j.compbiomed.2015.04.014 |
[19] | M. Kachelrieß, The FORBILD CT–simulation phantoms, in Proceeding of the 1999 Int. Meeting on Fully 3D Image Reconstruction, (1999), 383. |
[20] | X. Zhu, P. Milanfar, Automatic parameter selection for denoising algorithms using a no-reference measure of image content, IEEE Trans. Image Process., 19(2010), 3116–3132. https://doi.org/10.1109/TIP.2010.2052820 doi: 10.1109/TIP.2010.2052820 |
[21] | J. Bian, J. H. Siewerdsen, X. Han, E. Y. Sidky, J. L. Prince, C. A. Pelizzari, Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT, Phys. Med. Biol., 55 (2010), 6575. https://doi.org/10.1088/0031-9155/55/22/001 doi: 10.1088/0031-9155/55/22/001 |