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Abstract: The total variation (TV) method favors solutions with the piece-wise constant assumption 
of the desired image from sparse-view sampling, for example, simple geometric images with flat 
intensity. When the phantoms become more complex and contain complicated textures, for example, 
high-resolution phantom and lung CT images, the images reconstructed by TV regularization may 
lose their contrast and fine structures. One of the optimally sparse transforms for images, the shearlet 
transform, has C2 without discontinuities on C2 curves, giving excellent sensitive directional 
information as compared with other wavelet transform approaches. Here, we developed a 
Shearlet-Sparse Regularization (SSR) algorithm solved with the Alternating Direction Method of 
Multipliers (ADMM) to overcome this limitation. With the strengthened characteristics of SSR, we 
performed one simulation experiment and two real experiments using a NeuViz 64 X-ray CT 
scanning system to measure the performance and properties of proposed algorithm. The results 
demonstrate that the SSR method exhibits the advantage of providing high-quality directional 
information and contrast as compared with TV. 

Keywords: CT reconstruction; compressed sensing; shearlet regularization; ADMM; iterative 
reconstruction 
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1. Introduction  

To improve spatial resolution and reduce image artifacts and radiation dose in CT scanning [1–4], 
algorithms for iterative reconstruction have been proposed and developed. Regularization is an 
important type of iterative reconstruction algorithm that can create high-quality reconstructed 
images [5]. With the emergence of the compressed sensing theory [6], a regularization technique 
based on Total Variation (TV) minimization has demonstrated excellent performance for CT imaging 
with sparse-view scanning and interior tomography [7]. 

TV-based methods favor solutions with the hypothesis of the piece-wise constant of the 
expected image from few-view samplings, such as simple geometric images with flat intensity. For 
example, an innovative algorithm was formulated by Sidky et al. [8] using Projection Onto Convex 
Sets (POCS) with TV minimization. It has been reported that an algorithm with TV minimization 
can reconstruct normal-quality CT images from few-view projections without importing obvious 
artifacts [9]. A Penalized Weighted Least-Squares (PWLS) algorithm has been shown to maintain 
high-quality images with the regularization of Total Generalized Variation (TGV) [10]. The 
PWLS-TGV algorithm yields a more obvious increase in the spatial resolution and accuracy 
characteristics of the reconstructed images than algorithms based on TV regularization. Although TV 
minimization can reduce streaking artifacts, the patchy feature can be introduced into the images, 
potentially affecting medical diagnosis. Some experimental results indicate that at least 100 views 
are required for the realistic reconstruction of the human anatomy; therefore, TV minimization is 
unsuited to very low dose levels in CT reconstruction. Consequently, the key is to produce 
regularizers that offer an optimal sparse representation of medical images as compared with TV; 
wavelet transform is one of these sparse transforms. In comparison with the loss of soft edges 
following TV minimization, wavelet transformation permits the regularization to change the image 
using resolution scales. Haar wavelets are very similar to TV for piece-wise constant images. 
Garduno et al. [11] investigated the simplest possible wavelet, the Haar wavelet, for regularized CT 
reconstruction. Reconstruction with regularization using Haar transform is not more successful for 
CT reconstruction than that using the small TV value. Steidl et al. [12] found that for 
one-dimensional signals, Haar wavelet transform and TV regularization with a one-step spatial 
discrete are comparable for two pixel-pairs when a single scale is put into effect; therefore, 
regularization based on Haar transform does not exceed that with TV. Some regularization of 
ridgelets, shearlets [13] and curvelets [14] based on sparse wavelets and dictionaries of 
edge-preservation have been developed to overcome the limitation that images reconstructed by 
TV regularization may lose their contrast and fine structures and staircase artifacts may be 
produced. Curvelet transform demonstrates good performance in discontinuities along curves with 
bounded curvatures, while ridgelet transform demonstrates good performance in discontinuities 
along straight lines. 

There are a lot of benefits to using shearlets in image reconstruction [15]. Firstly, a lower 
redundant sparse tight frame representation can be allowed by shearlets as compared with that 
allowed by other related multiresolution representations; moreover, shearlets also offer shift 
invariance and analysis of direction. The basic functions of shearlet transform are matched with the 
streak artifacts of X-ray noise via directional analysis in the reconstructed images. The streak 
artifacts can then be reduced, which permits the stripes to be approached by unimportant coefficients. 
Secondly, a series of multi-scale spaces can be generated, into which Shearlet transform can 
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decompose the  of images. While the image edges are expressed quantitatively within the 
smaller subclass of functions of bounded variation (BV), other noticeable features from 
homogeneous regions to oscillatory patterns of noise or texture are included in the intermediate 

ranges from the small  to the large . 
The Alternating Direction Method of Multipliers (ADMM) was proposed for the design of a CT 

reconstruction algorithm to solve the problem of PWLS [16]. The split Bregman and ADMM are two 
important methods based on primal-dual splitting. When applied to X-ray CT reconstruction, the split 
Bregman method achieves the optimization solution by minimizing the cost function involving the 
fidelity of raw statistics. To solve a generic PWLS model for Low-dose CT image reconstruction, He 
et al. [17] parameterize a plug-and-play ADMM method. Then, the fundamental principle of Deep 
Learning is applied to optimize the parameters of the parameterized plug-and-play ADMM 
(3pADMM). The ADMM is used to create the suggested algorithm, sparsity-constrained angiography 
(SCAN), with a focus on the sparse character of the angiography imaging [18]. 

In the present paper, we designed a compressed sensing CT iterative reconstruction algorithm 
with Shearlet Sparse Regularization (SSR) based on ADMM minimization and verified the algorithm 
using simulation experiments and real data. The advantages and disadvantages of this method were 
expressed through numerical phantom and clinical datasets. Lung CT reconstruction experiments 
show that for lung CT images with rich texture details, Shearlet sparse regularization reconstruction 
images show an excellent display of texture details. For comparison, reconstruction images based on 
FBP and TV regularization are shown. In the experiments using real data, projections of a spiral CT 
were used to evaluate whether this method applies to this application. 

2. Methods 

The model of CT scanning and imaging is represented using a discrete linear system: 

  (1) 

where the matrix A is the system matrix representing X-ray transformation; the vector y represents 
the projection data; and the vector x denotes the image data; and  denotes the noise measuring the 
projection data. Generally, the number of pixels in a reconstructed image is greater than that of 
projecting samples in CT imaging; thus, Eq (1) is ill-posed. The goal of regularization is to introduce 
further regularity to the problem to make the solution unique and stable. Subsequently, for noiseless 
and under-determined systems, we applied the method of least-squares to minimize the cost function 
to solve x: 

  (2) 
Usually, we can solve the optimization problem (1) using the gradient descent algorithm. In 

practical CT imaging, the noise in the domain of projection makes minimizing (1) for x difficult, and 
even more difficult in sparse projection systems. Thus, we built the optimization problem based on 
the theory of Compress Sensing (CS). In CS, if the sparse transform vector  of an image x is 
given, image x can be accurately reconstructed with a higher possibility using fewer samples than 
demanded by the Nyquist criterion, since the elements of the vector  are mainly zeros. The  
norm of the vector  can express this sparsity. As a result, under the guidance of CS theory, we 
generated the optimization constrained minimization problem for CT reconstruction: 
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  (3) 
where ε represents the error between the measurement y and the projection of the image x, and  is 
the shearlet transform in our study, which is a linear sparse transform. 

For shearlet regularization, we gave , using  to imply the shearlet transform. For a 
two-dimensional space, the discrete shearlet system was expressed as follows: 

  (4) 
where A is the anisotropic expanding matrix and S is the shear matrix. The discrete shearlet 
transform was defined as follows: 

  (5) 

In the present study, the shearlet transform was implemented using the Matlab-coded shearlet toolkit. 
To solve Eq (3), the augmented Lagrangian function corresponding to the unconstrained 

optimization problem is: 

  (6) 

where the parameter  is the penalty parameter and  denotes a Lagrange multiplier. We can 
obtain the convenient formula of (7) by combining the last two terms inside the quadratic term as 
follows: 

  (7) 

Three subsequent steps finish one ADMM iteration: 

  (8) 

  (9) 

  (10) 

in this particular case, it produces: 

  (11) 

  (12) 

  (13) 

By solving the variables x, z, μ alternately, an exact solution was obtained after several iterations, 
and the x update was solved using 10 iterations of the steepest descent method. ADMM still 
converges even for this x. 
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Algorithm 1. Pseudo-code for ADMM-SSR algorithm. 

1: Initialize 0,  

2: repeat iteration 
3:  for i = 1 to k do 
4:    repeat iterations for gradient descent 

5:       

6:       
7:      for j = 1 to m do 

8:          

9:          

10:         

11:         

12:      end for 
13:      update Lagrange multiplier 
14:  end for 

For comparison, we simultaneously developed the TV regularization of anisotropy based on 
ADMM. For anisotropic TV, we set the sparse transform T = TV, where TV remains the discrete 
differential operator. For the other comparison method, we implemented the algorithm of the 
simultaneous algebraic reconstruction techniques (SART). In addition, this method uses a relaxing 
factor λ ∈ (0,2). 

3. Experiments 

3.1. Data simulation 

Firstly, we studied the FORBILD [19] high contrast resolution numerical phantom developed by 
Siemens Healthcare. The high contrast numerical phantom is a proposed algorithm for measuring 
performance and nature. The true image size of the phantom is 256 × 256 and the pixel value range 
is [0,1]. The projection data of the phantom were simulated using Matlab’s fanbeam routine with 360 
projections over 360º. We added white Gaussian noise to the projection data using the standard 
deviation of 1% after forwarding projection. 
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3.2. Experimental data acquisition 

Due to the advantages of the algorithm SSR, we designed three experiments using a Neusoft 
NeuViz 64 X-ray CT scanning system to measure its performance and features. The CTP528 high 
contrast phantom contains 21 line pairs along the radius, with diameters ranging from 0.24 to 5 mm. The 
last dataset was projections of a human lung containing textural features. Data were collected using a 
diagnostic scanner (NeuViz 64 X-ray CT, Neusoft Chinese Medical Systems, Shenyang, Liaoning, 
China). The scanning radius was 570 mm; the detector had 64 rows; the row height was 0.625 mm; each 
row had 672 channels, and the fan angle was 52º. There were 1160 uniform scanning views over 360º. 
The size of the reconstructed image was 256 × 256. For the three scanning experiments, the tube 
voltages were 120 and 140 kV, and the tube currents were 300 and 150 mA. 

3.3. Parameter setting 

The ADMM algorithm includes two parameters, the regularization parameter λ and the coupling 
parameter ρ. In the case of the numerical phantom, we evaluated the reconstructed images using the 
mean squared error (MSE) since we had the ground truth. For the real datasets, there were no true 
images; consequently, the metric Q could be used. A non-reference metric is proposed by the metric 
Q, which provides a quantitative measure of the image quality and content using single value 
decomposition for local image gradient. Zhu and Milanfar [20] developed a tool for the metric Q to 
select parameters in image processing and showed that it displays excellent performance in image 

denoising. In Zhu and Milanfar’s method, the image  is divided into disjoint patches of  

. The gradient matrix  for each patch is computed. The image content metric  is 

defined as follows: 

  (14) 

where  and  represent single values of the gradient matrix . In addition, formula (14) 

satisfies , wherein the coherence  is also defined as: 

  (15) 

In the end, the final metric Q is computed as follows: 

  (16) 

where  is the index set of patches that are more than the thresholding. We used  

pixel patch given in the reference. Additionally, we also computed a contrast to noise ratio (CNR) 
and compared the reconstruction images with those based on shearlets and TV. The CNR formula 
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that we adapted is defined as follows [21]: 

  (17) 

where  and  denote the mean and standard deviation within a region of interest (ROI), and  

and  denote these values of the ROI over the background region. 

3.4. Implementation details 

All datasets were reconstructed by SART, ADMM using isotropic TV regularization 
(ADMM-TV), and ADMM using sparse shearlet regularization (SSR) in MATLAB. All methods 
were executed on a workstation in which the CPU was an Intel Xeon E5-2623. The ADMM was 
initialized with a zero matrix. 

4. Results and discussion 

4.1. Data simulation 

The first experiment for evaluation was designed to reconstruct the Forbild high contrast 
simulation phantom, for which ground truth data were available as shown in Figure 1. Figure 1(a)−(c) 
shows the full image reconstruction for SSR, ADMM-TV and SART. Zoomed images of the region 
of interest (ROI), marked with a red square, are shown in Figure 1(e) for the ground truth; Figure 1(f) 
for SSR; and Figure 1(g) for ADMM-TV and Figure 1(h) for SART. Figure 1 also shows the CNR of 
the three reconstructed images. Figure 2(a),(b) shows the profile of marked red lines on the images 
reconstructed using the three methods and the true image. We selected the coupling parameter ρ and 
the regularization parameter λ according to the parameter of MSE because the ground truth image 
was available. For the Forbild simulation phantom dataset, we computed the MSE in the range of 

 and . Figure 2(b) shows the MSE profiles for a series of 
values for the regularization parameter λ based on SSR and TV, and we chose coupling parameter ρ 
in terms of the MSE minimum value. We selected the optimal parameters ρ = 10, λ = 70 for SSR and 
ρ = 10, λ = 40 for TV. The plots of metric Q over the regularization parameter  for SSR and 
ADMM-TV are also shown in Figure 2(b). In comparison with the plots of MSE, the optimal 

regularization parameter  varied by 20 for SSR, while it varied by 30 for ADMM-TV. For the 
selection of the iteration i, the metric Q search was performed in the range . Figure 2(b) 
shows the profiles of metric Q for iteration i for SSR, ADMM-TV, and SART. The chosen optimal 
iterations according to metric Q for the Forbild simulation phantom were i = 9 for SSR and 
ADMM-TV, and i = 500 for SART. 

We used the FORBILD high contrast simulation phantom dataset to show the advantages of the 
shearlet regularization method. Figure 1(e)−(h) indicates that in the same window, for SSR method, 
the gray value of the holes is small and the other parts of the image are smoother than the results of 
the ADMM-TV method. For the SART method, although the gray values of the holes are lower than 
those for the SSR method, the noise of the reconstruction image is too high. We selected holes of 1.3 
mm, which is the location of the line profile (Figure 2(a)), to compare the results of the three 
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reconstruction methods. Figure 2(a) indicates that SSR reconstructed the Forbild high contrast 
features more precisely than ADMM-TV, while the results of SART are better than those of SSR. For 
the piece-wise constant region (the middle circle), the line profile of which is shown in Figure 2(b), 
the variation in the values on the line profile for the SSR method was lower than that for ADMM-TV 
and SART, and the variation of the SART method was large. The value of CNR for SSR was 
minimum, followed by ADMM-TV and SART. Figure 2(b) shows that the minimum MSE for SSR 
was less than that for ADMM-TV, and the maximum metric Q for SSR was greater than that for 
ADMM-TV. 

    

(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 1. Results of the Forbild simulation phantom dataset. (a) The true image of the 
Forbild phantom. (b)−(d) Images of the entire phantom reconstruction using SH, TV 
regularization, and SART windowed to [0 1.21]. One ROI is marked with a red square. 
Two red lines mark the location of the line profiles. (e)−(h) Zoomed images of the ROI. 
(e) True; (f) SSR [CNR: 9.25]; (g) TV [CNR: 8.4]; (h) SART [CNR: 1.73]. 

4.2. The high contrast phantom dataset 

For the high contrast phantom dataset, the images reconstructed using the three algorithms are 
shown in Figure 3(a)−(c). The red rectangle range is an ROI, which is zoomed and indicated in 
Figure 3(d)−(f) with a red line marking the position of the line profiles. In the reconstructed images, 
the high contrast resolution was 16, 18 and 20 cm/lp followed by the line marked in red, as shown in 
Figure 3(a)−(c) from top to bottom. Additionally, the CNRs of all images are shown. Figure 3(h) 
shows the curve of the pixel value followed by the line marked in red using different reconstruction 
algorithms. This time, since there was no ground truth, we selected ADMM parameters using the 
metric Q for the range  and . Figure 3(g) shows the results of 
plotting the metric Q curve according to the  with SSR and ADMM-TV, while the coupling 
parameter  was chosen according to the maximal value over all reconstructions. For the SSR 
method, we selected the optimal parameters with ρ = 1, λ = 100; for the ADMM-TV method, we 



11848 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 11840–11853. 

selected the optimal parameters with ρ = 10, λ = 160. The plots of the metric Q over the iteration i 
varying in the range  are shown in Figure 3(c). The chosen optimal iterations were i=9 
in the case of SSR, i = 30 in the case of ADMM-TV, and i = 500 in the case of SART. 

The high contrast phantom is usually used to evaluate the spatial resolution for spiral CT. The 
zoomed ROI in Figure 3(d)−(f) containing three spatial resolutions, 16, 18 and 20 cm/lp, shows that 
the three-line pairs for the SSR method were more apparent than those for the ADMM-TV and SART 
methods, while the other parts of the ROI for the ADMM-TV method were smoother than those for 
the SSR and SART methods. In addition, the CNR value for the TV method was larger than that for 
the SSR and SART methods. 

  
(a) (b) 

Figure 2. Results of the Forbild phantom dataset. (a) Line profiles of one of the high 
contrast holes and the middle line of the center circle. (b) Plot of the MSE and metric Q 
over λ (ρ = 90 for SSR and ρ = 160 for TV). The optimal values of  are marked by 
crosses and dashed vertical lines. 

4.3. The lung dataset 

For the lung CT experiments, Figure 4(a)−(c) shows the images reconstructed using the three 
methods. We marked the three ROIs with red rectangles (right, middle, and bottom) and used a red 
line for the line profiles. The labels in each figure indicate the CNR, and the zoomed ROIs are shown 
in Figure 4(d)–(f) for the three methods. Additionally, Figure 4(h) shows the line profile of the red 
marks. We selected parameters using the metric Q as a metric. ρ was varied in the range 

, while λ was varied in the range . Figure 4(f) shows the metric Q 

plots. The optimal parameters for SSR were ρ = 140, λ = 26, while those for ADMM-TV were ρ = 220, 
λ = 24 according to the maximum metric Q value. The iteration parameters were varied in the range 

. The optimal iterations were i = 100 for SSR, i = 29 for ADMM-TV, and i = 500 for 
SART according to the metric Q plot shown in Figure 4(g). 
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(a) (b) (c) 

   
(d) (e) (f) 

  

(g) (h) 

Figure 3. Results of the high contrast phantom dataset. (a)−(c) Images of the entire 
reconstruction using SH, TV and SART windowed to [0 66]. An ROI is marked with a 
red rectangle; the red line marks the location of the line profiles. (d)−(f) Zoomed image 
of the ROI. (a) SSR [CNR: 18.28]; (b) TV [CNR: 35.23]; (c) SART [CNR: 11.43]. (g) 
Metric Q plot over the regularization parameter. (h) Line profiles of the ROI. 
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(a) (b) (c) 

   

(d) (e) (f) 

 
 

(g) (h) 

Figure 4. Results of the lung dataset. (a)−(c) Images of the entire reconstruction using 
SSR, TV and SART windowed to [0 66]. An ROI is marked with a red rectangle; the red 
line marks the location of the line profiles. (d)−(f) Zoomed image of the ROI. (g) Metric 
Q plot over the regularization parameter. (h) Line profiles of the ROI. (a) SSR [CNR: 
121]; (b) TV [CNR: 122]; (c) SART [CNR: 123]. 
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In the lung CT dataset (see Figure 4), the reconstructed images for SSR and ADMM-TV have 
similar edge characteristics; however, when the ADMM parameters were selected by the matrix Q 
for ADMM-TV, the noise increased significantly. This is because the metric Q selected the low 
iterations. The CNR values for the three reconstruction methods also indicate the characteristics. For 
the zoomed ROI images (see Figure 4(a)−(c) and (d)−(e)), it is again obvious that SSR has fewer 
block images as compared with ADMM-TV. Simultaneously, around the bone in Figure 5(d)−(e), 
SSR better preserves the features of the edges, while ADMM-TV introduces the familiar staircase 
artifacts. However, we found that SSR can strengthen the linear artifacts in all directions, as indicated 
by the arrows in Figure 4(h)−(j), while ADMM-TV can reduce these artifacts. This is due to the 
characteristics of shearlet transform, which provide optimally sparse representations for all 
directionality controlled by shear matrices. Normally, the value of the sparse image is set to zero 
through each iteration of the soft thresholding step of ADMM, making it below the threshold. The 
ADMM-TV method eliminates noise if the gradients of that noise are below the threshold. As a result, 
ADMM-TV sets the low gradients to zero. On the contrary, the coefficients of the noise characteristic 
edges are few because of the directionality of the shear frame. Therefore, SSR can strongly eliminate 
noise while preserving elongated characteristics and texture. The reconstructed image used the SSR 
method to better retain the edges than the ADMM-TV method, especially in the case of high noise 
(e.g., low-dose scanning), when we scanned phantoms that contained some information regarding 
edges or elongated features. The regularization parameter λ and the coupling parameter ρ involved in 
the ADMM algorithm can significantly impact the reconstruction properties; thus, parameter 
selection plays an equally important role. For real datasets, we employed the metric Q because there 
was no true image. To verify the accuracy of the metric Q, we drew the curves of the MSE and the 
metric Q in the same figure to compare the results of parameter selection (see Figure 4(g)). Although 
the value of the optimal parameter using MSE was not the same as that using the metric Q, these two 
quality measures were very similar. 

In the present paper, the shearlet is limited to two dimensions. The expansion of 
three-dimensional iterative CT reconstruction is required in future work. Although the shearlet 
method can be directly extended to three dimensions, its calculation is relatively large. Future work 
should include the acceleration of the SSR method using GPU and the application of these developed 
techniques to different datasets to compare different regularization strategies. 

5. Conclusions 

We propose an ADMM-based algorithm to perform iterative CT reconstruction using shearlet 
regularization. We investigated SSR and compared its results with those of ADMM-TV and SART on 
three phantoms: the FORBILD simulation phantom, the real high contrast phantom, and lung 
datasets. The results demonstrate that the SSR method exhibits the advantages of high directionality 
and contrast as compared with ADMM-TV. On the contrary, the ADMM-TV method had a better 
reconstruction effect in the piece-wise constant region. 
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