Review Special Issues

A scoping review on monitoring mental health using smart wearable devices

  • Academic editor: Hamid Reza Karimi
  • Received: 03 April 2022 Revised: 24 April 2022 Accepted: 25 April 2022 Published: 27 May 2022
  • With the continuous development of the times, social competition is becoming increasingly fierce, people are facing enormous pressure and mental health problems have become common. Long-term and persistent mental health problems can lead to severe mental disorders and even death in individuals. The real-time and accurate prediction of individual mental health has become an effective method to prevent the occurrence of mental health disorders. In recent years, smart wearable devices have been widely used for monitoring mental health and have played an important role. This paper provides a comprehensive review of the application fields, application mechanisms, common signals, common techniques and results of smart wearable devices for the detection of mental health problems, aiming to achieve more efficient and accurate prediction for individual mental health, and to achieve early identification, early prevention and early intervention to provide a reference for improving the level of individual mental health.

    Citation: Nannan Long, Yongxiang Lei, Lianhua Peng, Ping Xu, Ping Mao. A scoping review on monitoring mental health using smart wearable devices[J]. Mathematical Biosciences and Engineering, 2022, 19(8): 7899-7919. doi: 10.3934/mbe.2022369

    Related Papers:

  • With the continuous development of the times, social competition is becoming increasingly fierce, people are facing enormous pressure and mental health problems have become common. Long-term and persistent mental health problems can lead to severe mental disorders and even death in individuals. The real-time and accurate prediction of individual mental health has become an effective method to prevent the occurrence of mental health disorders. In recent years, smart wearable devices have been widely used for monitoring mental health and have played an important role. This paper provides a comprehensive review of the application fields, application mechanisms, common signals, common techniques and results of smart wearable devices for the detection of mental health problems, aiming to achieve more efficient and accurate prediction for individual mental health, and to achieve early identification, early prevention and early intervention to provide a reference for improving the level of individual mental health.



    加载中


    [1] L. Kesner, J. Horacek, Global adversities, the media, and mental health, Front. Psychiatry, 12 (2021), 809239. https://doi.org/10.3389/fpsyt.2021.809239 doi: 10.3389/fpsyt.2021.809239
    [2] E. D. Vecchia, M. M. Costa, E. Lau, Urgent mental health issues in adolescents, Lancet Child Adolesc. Health, 3 (2019), 218-219. https://doi.org/10.1016/S2352-4642(19)30069-0 doi: 10.1016/S2352-4642(19)30069-0
    [3] M. L. Wainberg, P. Scorza, J. M. Shultz, L. Helpman, J. J. Mootz, K. A. Johnson, et al., Challenges and opportunities in global mental health: A research-to-practice perspective, Curr. Psychiatry Rep., 19 (2017), 28. https://doi.org/10.1007/s11920-017-0780-z doi: 10.1007/s11920-017-0780-z
    [4] J. Vogel, A. Auinger, R. Riedl, H. Kindermann, M. Helfert, H. Ocenasek, Digitally enhanced recovery: Investigating the use of digital self-tracking for monitoring leisure time physical activity of cardiovascular disease (CVD) patients undergoing cardiac rehabilitation, PloS One, 12 (2017), e0186261. https://doi.org/10.1371/journal.pone.0186261 doi: 10.1371/journal.pone.0186261
    [5] F. B. Oliveira, M. R. C. Moreira, J. F. Lima, D. C. Nascimento, F. M. S. Silva, J. Antunes, Articulation of mental health public policies and solidarity economy-Generating initiatives of labour and income, Holos, 34 (2018), 130-140. https://doi.org/10.15628/holos.2018.5233 doi: 10.15628/holos.2018.5233
    [6] Report: Mental illness will cost the world $16 trillion (USD) by 2030, Mental Health Wkly., 28 (2018), 7-8. https://doi.org/10.1002/mhw.31630
    [7] E. Jovanov, A. O'Donnell Lords, D. Raskovic, P. G. Cox, R. Adhami, F. Andrasik, Stress monitoring using a distributed wireless intelligent sensor system, IEEE Eng. Med. Biol. Mag., 22 (2003), 49-55. https://doi.org/10.1109/MEMB.2003.1213626 doi: 10.1109/MEMB.2003.1213626
    [8] S. Gedam, S. Paul, A review on mental stress detection using wearable sensors and machine learning techniques, IEEE Access, 9 (2021), 84045-84066. https://doi.org/10.1109/ACCESS.2021.3085502 doi: 10.1109/ACCESS.2021.3085502
    [9] B. Pardamean, H. Soeparno, A. Budiarto, B, Mahesworo, J. Baurley, Quantified self-using consumer wearable device: Predicting physical and mental health, Healthcare Inf. Res., 26 (2020), 83-92. https://doi.org/10.4258/hir.2020.26.2.83 doi: 10.4258/hir.2020.26.2.83
    [10] M. Elgendi, C. Menon, Assessing anxiety disorders using wearable devices: Challenges and future directions, Brain Sci., 9 (2019), 50. https://doi.org/10.3390/brainsci9030050 doi: 10.3390/brainsci9030050
    [11] S. Lee, H. Kim, M. Park, H. J. Jeon, Current advances in wearable devices and their sensors in patients with depression, Front. Psychiatry, 12 (2021), 672347-672347. https://doi.org/10.3389/fpsyt.2021.672347 doi: 10.3389/fpsyt.2021.672347
    [12] H. Hunkin, D. L. King, I. T. Zajac, Wearable devices as adjuncts in the treatment of anxiety related symptoms: A narrative review of five device modalities and implications for clinical practice, Clin. Psychol., 26 (2019), e12290. https://doi.org/10.1111/cpsp.12290 doi: 10.1111/cpsp.12290
    [13] L. Sequeira, S. Perrotta, J. LaGrassa, K. Merikangas, D. Kreindler, D. Kundur, et al., Mobile and wearable technology for monitoring depressive symptoms in children and adolescents: A scoping review, J. Affective Disord., 265 (2020), 314-324. https://doi.org/10.1016/j.jad.2019.11.156 doi: 10.1016/j.jad.2019.11.156
    [14] M. Kang, K. Chai, Wearable sensing systems for monitoring mental health, Sensors, 22 (2022), 994. https://doi.org/10.3390/s22030994 doi: 10.3390/s22030994
    [15] B. A. Hickey, T. Chalmers, P. Newton, C. Lin, D. Sibbritt, C. S. McLachlan, et al., Smart devices and wearable technologies to detect and monitor mental health conditions and stress: A systematic review, Sensors, 21 (2021), 10. https://doi.org/10.3390/s21103461 doi: 10.3390/s21103461
    [16] C. Su, Z. Xu, J. Pathak, F. Wang, Deep learning in mental health outcome research: A scoping review, Trans. Psychiatry, 10 (2020), 116. https://doi.org/10.1038/s41398-020-0780-3 doi: 10.1038/s41398-020-0780-3
    [17] S. Patel, K. E. A. Saunders, Apps and wearables in the monitoring of mental health disorders, Br. J. Hosp. Med., 79 (2018), 672-675. https://doi.org/10.12968/hmed.2018.79.12.672 doi: 10.12968/hmed.2018.79.12.672
    [18] S. Betti, R. M. Lova, E. Rovini, G. Acerbi, L. Santarelli, M. Cabiati, et al., Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers, IEEE Trans. Biomed. Eng., 65 (2018), 1748-1758. https://doi.org/10.1109/TBME.2017.2764507 doi: 10.1109/TBME.2017.2764507
    [19] C. Goumopoulos, N. Potha, Mental fatigue detection using a wearable commodity device and machine learning. Journal of Ambient Intelligence and Humanized Computing, 261 (2022), 1-19. https://doi.org/10.1007/s12652-021-03674-z doi: 10.1007/s12652-021-03674-z
    [20] A. Sano, A. Phillips, A. Z. Yu, A. W. McHill, S. Taylor, N. Jaques, et al., Recognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones, in International Conference on Wearable and Implantable Body Sensor Networks, (2015), 1-6. https://doi.org/10.1109/BSN.2015.7299420
    [21] J. Costa, M. F. Jung, M. Czerwinski, F. Guimbretière, T. Le, T. Choudhury, Regulating feelings during interpersonal conflicts by changing voice self-perception, in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, (2018), 1-13. https://doi.org/10.1145/3173574.3174205
    [22] S. Rotenberg, J. J. McGrath, Inter-relation between autonomic and HPA axis activity in children and adolescents, Biol. Psychol., 117 (2016), 16-25. https://doi.org/10.1016/j.biopsycho.2016.01.015 doi: 10.1016/j.biopsycho.2016.01.015
    [23] A. E. Draghici, J. A. Taylor, The physiological basis and measurement of heart rate variability in humans, J. Physiol. Anthropol., 35 (2016), 22. https://doi.org/10.1186/s40101-016-0113-7 doi: 10.1186/s40101-016-0113-7
    [24] J. M. Karemaker, An introduction into autonomic nervous function, Physiol. Meas., 38 (2017), R89. https://doi.org/10.1088/1361-6579/aa6782 doi: 10.1088/1361-6579/aa6782
    [25] P. Rajasekaran, G. Doddington, J. Picone, Recognition of speech under stress and in noise, in IEEE International Conference on Acoustics, Speech, and Signal Processing, (1986), 733-736. https://doi.org/10.1109/ICASSP.1986.1169207
    [26] N. C. Andreasen, W. M. Grove, Thought, language, and communication in schizophrenia: Diagnosis and prognosis, Schizophr. Bull., 12 (1986), 348-359. https://doi.org/10.1093/schbul/12.3.348 doi: 10.1093/schbul/12.3.348
    [27] C. M. Corcoran, F. Carrillo, D. Fernández-Slezak, G. Bedi, C. Klim, D. C. Javitt, et al., Prediction of psychosis across protocols and risk cohorts using automated language analysis, World Psychiatry, 17 (2018), 67-75. https://doi.org/10.1002/wps.20491 doi: 10.1002/wps.20491
    [28] V. J. Madhuri, M. R. Mohan, R. Kaavya, Stress management using artificial intelligence, in 2013 Third International Conference on Advances in Computing and Communications, (2013), 54-57. https://doi.org/10.1109/ICACC.2013.97
    [29] S. Graham, C. Depp, E. E. Lee, C. Nebeker, X. Tu, H. Kim, et al., Artificial intelligence for mental health and mental illnesses: An overview, Curr. Psychiatry Rep., 21 (2019), 116. https://doi.org/10.1007/s11920-019-1094-0 doi: 10.1007/s11920-019-1094-0
    [30] P. Welch, The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Trans. Audio Electroacoust., 15 (1967), 70-73. https://doi.org/10.1109/TAU.1967.1161901 doi: 10.1109/TAU.1967.1161901
    [31] Q. Shi, H. Zhang, Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets, IEEE Trans. Ind. Electron., 68 (2021), 6248-6256. https://doi.org/10.1109/TIE.2020.2994868 doi: 10.1109/TIE.2020.2994868
    [32] P. Kokoszka, T. Mikosch, The periodogram at the Fourier frequencies, Stochastic Processes Their Appl., 86 (2000), 49-79. https://doi.org/10.1016/S0304-4149(99)00086-1 doi: 10.1016/S0304-4149(99)00086-1
    [33] S. Sriramprakash, V. D. Prasanna, O. V. R. Murthy, Stress detection in working people, Procedia Comput. Sci., 115 (2017), 359-366. https://doi.org/10.1016/j.procs.2017.09.090 doi: 10.1016/j.procs.2017.09.090
    [34] J. R. Parker, Evaluating classifier combination using simulated classifiers, Department of Computer Science, University of Calgary, Res. Rep., 2000 (2000). http://dx.doi.org/10.11575/PRISM/30938
    [35] B. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction, IEEE Trans. Autom. Control, 26 (1981), 17-23. https://doi.org/10.1109/TAC.1981.1102568 doi: 10.1109/TAC.1981.1102568
    [36] A. Fernández-Caballero, E. Navarro, P. Fernández-Sotos, P. González, J. J. Ricarte, J. Latorre, et al., Human-avatar symbiosis for the treatment of auditory verbal hallucinations in schizophrenia through virtual/augmented reality and brain-computer interfaces, Front. Neuroinform., 11 (2017), 64. https://doi.org/10.3389/fninf.2017.00064 doi: 10.3389/fninf.2017.00064
    [37] Y. Lei, H. R. Karimi, L. Cen, X. Chen, Y. Xie, Processes soft modeling based on stacked autoencoders and wavelet extreme learning machine for aluminum plant-wide application, Control Eng. Prac., 108 (2021), 104706. https://doi.org/10.1016/j.conengprac.2020.104706 doi: 10.1016/j.conengprac.2020.104706
    [38] X. Qiu, F. Tian, Q. Shi, Q. Zhao, B. Hu, Designing and application of wearable fatigue detection system based on multimodal physiological signals, in 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), (2020), 716-722. https://doi.org/10.1109/BIBM49941.2020.9313129
    [39] M. Gjoreski, M. Luštrek, M. Gams, H. Gjoreski, Monitoring stress with a wrist device using context, J. Biomed. Inf., 73 (2017), 159-170. https://doi.org/10.1016/j.jbi.2017.08.006 doi: 10.1016/j.jbi.2017.08.006
    [40] B. Egilmez, E. Poyraz, W. Zhou, G. Memik, P. Dinda, N. Alshurafa, UStress: Understanding college student subjective stress using wrist-based passive sensing, in 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), (2017), 673-678. https://doi.org/10.1109/PERCOMW.2017.7917644
    [41] P. Bobade, M. Vani, Stress detection with machine learning and deep learning using multimodal physiological data, in 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), (2020), 51-57. https://doi.org/10.1109/ICIRCA48905.2020.9183244
    [42] J. Kim, J. Park, J. Park, Development of a statistical model to classify driving stress levels using galvanic skin responses, Hum. Factors Ergon. Manuf. Serv. Ind., 30 (2020), 321-328. https://doi.org/10.1002/hfm.20843 doi: 10.1002/hfm.20843
    [43] A. Tiwari, R. Cassani, S. Narayanan, T. H. Falk, A comparative study of stress and anxiety estimation in ecological settings using a smart-shirt and a smart-bracelet, in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), (2019), 2213. https://doi.org/10.1109/EMBC.2019.8857890.
    [44] W. Wen, G. Liu, Z. Mao, W. Huang, X. Zhang, H. Hu, et al., Toward constructing a real-time social anxiety evaluation system: Exploring effective heart rate features, IEEE Trans. Affect. Comput., 11 (2020), 100-110. https://doi.org/10.1109/TAFFC.2018.2792000 doi: 10.1109/TAFFC.2018.2792000
    [45] L. A. Zanella-Calzada, C. E. Galvan-Tejada, N. M. Chavez-Lamas, M. del Carmen Gracia-Cortes, R. Magallanes-Quintanar, J. M. Celaya-Padilla, et al., Feature extraction in motor activity signal: Towards a depression episodes detection in unipolar and bipolar patients, Diagnostics, 9 (2019), 8. https://doi.org/10.3390/diagnostics9010008 doi: 10.3390/diagnostics9010008
    [46] W. Zheng, W. Liu, Y. Lu, B. Lu, A. Cichocki, EmotionMeter: A multimodal framework for recognizing human emotions, IEEE Trans. Cybern., 49 (2019), 1110-1122. https://doi.org/10.1109/TCYB.2018.2797176 doi: 10.1109/TCYB.2018.2797176
    [47] F. P. Akbulut, B. Ikitimur, A. Akan, Wearable sensor-based evaluation of psychosocial stress in patients with metabolic syndrome, Artif. Intell. Med., 104 (2020), 101824. https://doi.org/10.1016/j.artmed.2020.101824 doi: 10.1016/j.artmed.2020.101824
    [48] H. J. Han, S. Labbaf, J. L. Borelli, N. Dutt, A. M. Rahmani, Objective stress monitoring based on wearable sensors in everyday settings, J. Med. Eng. Technol., 44 (2020), 177-189. https://doi.org/10.1080/03091902.2020.1759707 doi: 10.1080/03091902.2020.1759707
    [49] E. Silva, J. Aguiar, L. P. Reis, J. O. Sá, J. Gonçalves, V. Carvalho, Stress among Portuguese medical students: The EuStress solution, J. Med. Syst., 44 (2020), 45-45. https://doi.org/10.1007/s10916-019-1520-1 doi: 10.1007/s10916-019-1520-1
    [50] W. Wu, S. Pirbhulal, H. Zhang, S. Mukhopadhyay, Quantitative assessment for self-tracking of acute stress based on triangulation principle in a wearable sensor system, IEEE J. Biomed. Health Inf., 23 (2019), 703-713. https://doi.org/10.1109/JBHI.2018.2832069 doi: 10.1109/JBHI.2018.2832069
    [51] Y. S. Can, N. Chalabianloo, D. Ekiz, C. Ersoy, Continuous stress detection using wearable sensors in real life: Algorithmic programming contest case study, Sensors, 19 (2019), 1849. https://doi.org/10.3390/s19081849 doi: 10.3390/s19081849
    [52] J. W. Ahn, Y. Ku, H. C. Kim, A novel wearable EEG and ECG recording system for stress assessment, Sensors, 19 (2019), 1991. https://doi.org/10.3390/s19091991 doi: 10.3390/s19091991
    [53] S. Jesmin, M. S. Kaiser, M. Mahmud, Towards artificial intelligence driven stress monitoring for mental wellbeing tracking during COVID-19, in 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), (2020), 845-851. https://doi.org/10.1109/WⅡAT50758.2020.00130
    [54] A. Sano, S. Taylor, A. W. McHill, A. J. K. Phillips, L. K. Barger, E. Klerman, et al., Identifying objective physiological markers and modifiable behaviors for self-reported stress and mental health status using wearable sensors and mobile phones: Observational study, J. Med. Int. Res., 20 (2018), e9410. https://doi.org/10.2196/jmir.9410 doi: 10.2196/jmir.9410
    [55] C. Gentili, G. Valenza, M. Nardelli, A. Lanatà, G. Bertschy, L. Weiner, et al., Longitudinal monitoring of heartbeat dynamics predicts mood changes in bipolar patients: A pilot study, J. Affect. Disord., 209 (2017), 30-38. https://doi.org/10.1016/j.jad.2016.11.008 doi: 10.1016/j.jad.2016.11.008
    [56] J. T. O'Brien, P. Gallagher, D. Stow, N. Hammerla, T. Ploetz, M. Firbank, et al., A study of wrist-worn activity measurement as a potential real-world biomarker for late-life depression, Psychol. Med., 47 (2017), 93-102. https://doi.org/10.1017/S0033291716002166 doi: 10.1017/S0033291716002166
    [57] U. Rashid, I. K. Niazi, N. Signal, D. Taylor, An EEG experimental study evaluating the performance of Texas Instruments ADS1299, Sensors, 18 (2018), 3721. https://doi.org/10.3390/s18113721 doi: 10.3390/s18113721
    [58] M. M. Sani, H. Norhazman, H. A. Omar, N. Zaini, S. A. Ghani, Support vector machine for classification of stress subjects using EEG signals, in 2014 IEEE Conference on Systems, Process and Control, (2014), 127-131. https://doi.org/10.1109/SPC.2014.7086243
    [59] R. Costin, C. Rotariu, A. Pasarica, Mental stress detection using heart rate variability and morphologic variability of EeG signals, in 2012 International Conference and Exposition on Electrical and Power Engineering, (2012), 591-596. https://doi.org/10.1109/ICEPE.2012.6463870
    [60] H. G. Kim, E. J. Cheon, D. Bai, Y. H. Lee, B. Koo, Stress and heart rate variability: A meta-analysis and review of the literature, Psychiatry Investig., 15 (2018), 235-245. https://doi.org/10.30773/pi.2017.08.17 doi: 10.30773/pi.2017.08.17
    [61] W. Boucsein, D. C. Fowles, S. Grimnes, G. Shakhar, W. T. Roth, M. E. Dawson, et al., Publication recommendations for electrodermal measurements, Psychophysiology, 49 (2012), 1017-1034. https://doi.org/10.1111/j.1469-8986.2012.01384.x doi: 10.1111/j.1469-8986.2012.01384.x
    [62] A. Tonacci, L. Billeci, E. Burrai, F. Sansone, R. Conte, Comparative evaluation of the autonomic response to cognitive and sensory stimulations through wearable sensors, Sensors, 19 (2019), 4661. https://doi.org/10.3390/s19214661 doi: 10.3390/s19214661
    [63] K. T. Johnson, R. W. Picard, Advancing neuroscience through wearable devices, Neuron, 108 (2020), 8-12. https://doi.org/10.1016/j.neuron.2020.09.030 doi: 10.1016/j.neuron.2020.09.030
    [64] L. Hardesty, Researchers amplify variations in video, making the invisible visible. Available from http://web.mit.edu/newsoffice/2012/amplifying-invisible-video-0622.html.
    [65] L. Fraiwan, T. Basmaji, O. Hassanin, A mobile mental health monitoring system: A smart glove, in 2018 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), (2018), 235-240. https://doi.org/10.1109/SITIS.2018.00043
    [66] A. Engelniederhammer, G. Papastefanou, L. Xiang, Crowding density in urban environment and its effects on emotional responding of pedestrians: Using wearable device technology with sensors capturing proximity and psychophysiological emotion responses while walking in the street, J. Hum. Behav, Social Environ., 29 (2019), 630-646. https://doi.org/10.1080/10911359.2019.1579149 doi: 10.1080/10911359.2019.1579149
    [67] N. Narziev, H. Goh, K. Toshnazarov, S. Lee, K. Chung, Y. Noh, STDD: Short-term depression detection with passive sensing, Sensors, 20 (2020), 1396. https://doi.org/10.3390/s20051396 doi: 10.3390/s20051396
    [68] Y. Chen, B. Gao, L. Jiang, K. Yin, J. Gu, W. Woo, Transfer learning for wearable long-term social speech evaluations, IEEE Access, 6 (2018), 61305-61316. https://doi.org/10.1109/ACCESS.2018.2876122 doi: 10.1109/ACCESS.2018.2876122
    [69] Z. Wu, H. R. Karimi, C. Dang, A deterministic annealing neural network algorithm for the minimum concave cost transportation problem, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 4354-4366. https://doi.org/10.1109/TNNLS.2019.2955137 doi: 10.1109/TNNLS.2019.2955137
    [70] Z. Wu, H. R. Karimi, C. Dang, An approximation algorithm for graph partitioning via deterministic annealing neural network, Neural Networks, 117 (2019), 191-200. https://doi.org/10.1016/j.neunet.2019.05.010 doi: 10.1016/j.neunet.2019.05.010
    [71] S. Lawrence, C. L. Giles, A. C. Tsoi, A. D. Back, Face recognition: A convolutional neural-network approach, IEEE Trans. Neural Networks, 8 (1997), 98-113. https://doi.org/10.1109/72.554195 doi: 10.1109/72.554195
    [72] T. Durand, N. Thome, M. Cord, Weldon: Weakly supervised learning of deep convolutional neural networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 4743-4752. https://doi.org/10.1109/CVPR.2016.513
    [73] Y. Lei, X. Chen, M. Min, Y. Xie, A semi-supervised Laplacian extreme learning machine and feature fusion with CNN for industrial superheat identification, Neurocomputing, 381 (2020), 186-195. https://doi.org/10.1016/j.neucom.2019.11.012 doi: 10.1016/j.neucom.2019.11.012
    [74] Z. Wu, B. Jiang, H. R. Karimi, A logarithmic descent direction algorithm for the quadratic knapsack problem, Appl. Math. Comput., 369 (2020), 124854. https://doi.org/10.1016/j.amc.2019.124854 doi: 10.1016/j.amc.2019.124854
    [75] Y. Lei, L. Cen, X. Chen, Y. Xie, A hybrid regularization semi-supervised extreme learning machine method and its application, IEEE Access, 7 (2019), 30102-30111. https://doi.org/10.1109/ACCESS.2019.2900267 doi: 10.1109/ACCESS.2019.2900267
    [76] Y. Lei, F. Liu, H. R. Karimi, X. Chen, Manifold semi-supervised learning for aluminum electrolysis temperature identification based on regularized hierarchical extreme learning machine, Proc. Inst. Mech. Eng., 236 (2022), 1109-1118. https://doi.org/10.1177/09596518221082857 doi: 10.1177/09596518221082857
    [77] D. Rumelhart, G. Hinton, R. Williams, Learning representations by back-propagating errors, Nature, 323 (1986), 533-536. https://doi.org/10.1038/323533a0 doi: 10.1038/323533a0
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5281) PDF downloads(428) Cited by(27)

Article outline

Figures and Tables

Figures(4)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog