Research article Special Issues

Positivity and monotonicity results for discrete fractional operators involving the exponential kernel


  • Received: 28 February 2022 Revised: 10 March 2022 Accepted: 16 March 2022 Published: 18 March 2022
  • This work deals with the construction and analysis of convexity and nabla positivity for discrete fractional models that includes singular (exponential) kernel. The discrete fractional differences are considered in the sense of Riemann and Liouville, and the $ \upsilon_{1} $-monotonicity formula is employed as our initial result to obtain the mixed order and composite results. The nabla positivity is discussed in detail for increasing discrete operators. Moreover, two examples with the specific values of the orders and starting points are considered to demonstrate the applicability and accuracy of our main results.

    Citation: Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Sarkhel Akbar Mahmood, Kamsing Nonlaopon, Khadijah M. Abualnaja, Y. S. Hamed. Positivity and monotonicity results for discrete fractional operators involving the exponential kernel[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 5120-5133. doi: 10.3934/mbe.2022239

    Related Papers:

  • This work deals with the construction and analysis of convexity and nabla positivity for discrete fractional models that includes singular (exponential) kernel. The discrete fractional differences are considered in the sense of Riemann and Liouville, and the $ \upsilon_{1} $-monotonicity formula is employed as our initial result to obtain the mixed order and composite results. The nabla positivity is discussed in detail for increasing discrete operators. Moreover, two examples with the specific values of the orders and starting points are considered to demonstrate the applicability and accuracy of our main results.



    加载中


    [1] C. Goodrich, A. C. Peterson, Discrete Fractional Calculus, Springer, New York, 2015. https://doi.org/10.1007/978-3-319-25562-0
    [2] T. Abdeljawad, Different type kernel $h$-fractional differences and their fractional $h$-sums, Chaos Solitons Fractals, 116 (2018), 146–156. https://doi.org/10.1016/j.chaos.2018.09.022 doi: 10.1016/j.chaos.2018.09.022
    [3] P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using h-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Methods Appl. Sci., (2020), 1–26. https://doi.org/10.1002/mma.7083 doi: 10.1002/mma.7083
    [4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 204 (2006). https://doi.org/10.1016/S0304-0208(06)80001-0 doi: 10.1016/S0304-0208(06)80001-0
    [5] R. Dahal, C. S. Goodrich, Theoretical and numerical analysis of monotonicity results for fractional difference operators, Appl. Math. Lett., 117 (2021), 107104. https://doi.org/10.1016/j.aml.2021.107104 doi: 10.1016/j.aml.2021.107104
    [6] L. Erbe, C. S. Goodrich, B. Jia, A. Peterson, Survey of the qualitative properties of fractional difference operators: monotonicity, convexity, and asymptotic behavior of solutions, Adv. Differ. Equations, 2016 (2016), 31. https://doi.org/10.1186/s13662-016-0760-3 doi: 10.1186/s13662-016-0760-3
    [7] R. A. C. Ferreira, D. F. M. Torres, Fractional h-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math., 5 (2011), 110–121. https://doi.org/10.2298/AADM110131002F doi: 10.2298/AADM110131002F
    [8] C. R. Chen, M. Bohner, B. G. Jia, Ulam-hyers stability of Caputo fractional difference equations, Math. Methods Appl. Sci., 42 (2019), 7461–7470. https://doi.org/10.1002/mma.5869 doi: 10.1002/mma.5869
    [9] G. Wu, D. Baleanu, Discrete chaos in fractional delayed logistic maps, Nonlinear Dyn., 80 (2015), 1697–1703. https://doi.org/10.1007/s11071-014-1250-3 doi: 10.1007/s11071-014-1250-3
    [10] F. Atici, S. Sengul, Modeling with discrete fractional equations, J. Math. Anal. Appl., 369 (2010), 1–9. https://doi.org/10.1016/j.jmaa.2010.02.009 doi: 10.1016/j.jmaa.2010.02.009
    [11] B. G. Jia, L. Erbe, A. Peterson, Monotonicity and convexity for nabla fractional q-differences, Dyn. Syst. Appl., 25 (2016), 47–60. Available from: http://www.dynamicpublishers.com/DSA/dsa2016pdf/DSA%20047-060.pdf.
    [12] C. S. Goodrich, C. Lizama, A transference principle for nonlocal operators using a convolution approach: fractional monotonicity and convexity, Israel J. Math., 236 (2020), 533–589. https://doi.org/10.1007/s11856-020-1991-2 doi: 10.1007/s11856-020-1991-2
    [13] C. S. Goodrich, A note on convexity, concavity, and growth conditions in discrete fractional calculus with delta difference, Math. Inequal. Appl., 19 (2016), 769–779. https://doi.org/10.7153/mia-19-57 doi: 10.7153/mia-19-57
    [14] H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Eng. Comput., 5 (2021), 135–166. http://dx.doi.org/10.55579/jaec.202153.340 doi: 10.55579/jaec.202153.340
    [15] C. S. Goodrich, Sharp monotonicity results for fractional nabla sequential differences, J. Differ. Equations Appl., 25 (2019), 801–814. https://doi.org/10.1080/10236198.2018.1542431 doi: 10.1080/10236198.2018.1542431
    [16] I. Suwan, S. Owies, T. Abdeljawad, Monotonicity results for h-discrete fractional operators and application, Adv. Differ. Equations, 2018 (2018), 207. https://doi.org/10.1186/s13662-018-1660-5 doi: 10.1186/s13662-018-1660-5
    [17] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Riemann-Liouville and Caputo fractional forward difference monotonicity analysis, Mathematics, 9 (2021), 1303. https://doi.org/10.3390/math9111303 doi: 10.3390/math9111303
    [18] R. Dahal, C. Goodrich, An almost sharp monotonicity result for discrete sequential fractional delta differences, J. Differ. Equations Appl., 23 (2017), 1190–1203. https://doi.org/10.1080/10236198.2017.1307351 doi: 10.1080/10236198.2017.1307351
    [19] T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equations, 2017 (2017), 78. https://doi.org/10.1186/s13662-017-1126-1 doi: 10.1186/s13662-017-1126-1
    [20] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Discrete delta Caputo-Fabrizio fractional operators and monotonicity analysis, Fractal Fract., 5 (2021), 116. https://doi.org/10.3390/fractalfract5030116 doi: 10.3390/fractalfract5030116
    [21] T. Abdeljawad, D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chaos Solitons Fractals, 116 (2017), 1–5. https://doi.org/10.1016/j.chaos.2017.04.006 doi: 10.1016/j.chaos.2017.04.006
    [22] I. Suwan, T. Abdeljawad, F. Jarad, Monotonicity analysis for nabla $h$-discrete fractional Atangana-Baleanu differences, Chaos Solitons Fractals, 117 (2018), 50–59. https://doi.org/10.1016/j.chaos.2018.10.010 doi: 10.1016/j.chaos.2018.10.010
    [23] P. O. Mohammed, F. K. Hamasalh, T. Abdeljawad, Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels, Adv. Differ. Equations, 2021 (2021), 213. https://doi.org/10.1186/s13662-021-03372-2 doi: 10.1186/s13662-021-03372-2
    [24] P. O. Mohammed, C. S. Goodrich, A. B. Brzo, Y. S. Hamed, New classifications of monotonicity investigation for discrete operators with Mittag-Leffler kernel, Math. Biosci. Eng., 19 (2022), 4062–4074. https://doi.org/10.3934/mbe.2022186 doi: 10.3934/mbe.2022186
    [25] R. Dahal, C. S. Goodrich, B. Lyons, Monotonicity results for sequential fractional differences of mixed orders with negative lower bound, J. Differ. Equations Appl., 27 (2021), 1574–1593. https://doi.org/10.1080/10236198.2021.1999434 doi: 10.1080/10236198.2021.1999434
    [26] P. O. Mohammed, O. Almutairi, R. P. Agarwal, Y. S. Hamed, On convexity, monotonicity and positivity analysis for discrete fractional operators defined using exponential kernels, Fractal Fract., 6 (2022), 55. https://doi.org/10.3390/fractalfract6020055 doi: 10.3390/fractalfract6020055
    [27] C. S. Goodrich, J. M. Jonnalagadda, Monotonicity results for CFC nabla fractional differences with negative lower bound, Analysis, 41 (2021), 221–229. https://doi.org/10.1515/anly-2021-0011 doi: 10.1515/anly-2021-0011
    [28] P. O. Mohammed, C. S. Goodrich, F. K. Hamasalh, A. Kashuri, Y. S. Hamed, On positivity and monotonicity analysis for discrete fractional operators with discrete Mittag-Leffler kernel, Math. Methods Appl. Sci., (2022), 1–20. https://doi.org/10.1002/mma.8176 doi: 10.1002/mma.8176
    [29] T. Abdeljawad, Q. M. Al-Mdallal, M. A. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Discrete Dyn. Nat. Soc., 2017 (2017). https://doi.org/10.1155/2017/4149320 doi: 10.1155/2017/4149320
    [30] C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1743) PDF downloads(77) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog