Research article Special Issues

Due date assignment scheduling with positional-dependent weights and proportional setup times


  • Received: 20 January 2022 Revised: 10 March 2022 Accepted: 13 March 2022 Published: 18 March 2022
  • In this paper, we investigate the single-machine scheduling problem that considers due date assignment and past-sequence-dependent setup times simultaneously. Under common (slack and different) due date assignment, the objective is to find jointly the optimal sequence and optimal due dates to minimize the weighted sum of lateness, number of early and delayed jobs, and due date cost, where the weight only depends on it's position in a sequence (i.e., a position-dependent weight). Optimal properties of the problem are given and then the polynomial time algorithm is proposed to obtain the optimal solution.

    Citation: Xuyin Wang, Weiguo Liu, Lu Li, Peizhen Zhao, Ruifeng Zhang. Due date assignment scheduling with positional-dependent weights and proportional setup times[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 5104-5119. doi: 10.3934/mbe.2022238

    Related Papers:

  • In this paper, we investigate the single-machine scheduling problem that considers due date assignment and past-sequence-dependent setup times simultaneously. Under common (slack and different) due date assignment, the objective is to find jointly the optimal sequence and optimal due dates to minimize the weighted sum of lateness, number of early and delayed jobs, and due date cost, where the weight only depends on it's position in a sequence (i.e., a position-dependent weight). Optimal properties of the problem are given and then the polynomial time algorithm is proposed to obtain the optimal solution.



    加载中


    [1] A. Allahverdi, C. T. Ng, T. C. E. Cheng, M. Y. Kovalyov, A survey of scheduling problems with setup times or costs, Eur. J. Oper. Res., 187 (2008), 985–1032. https://doi.org/10.1016/j.ejor.2006.06.060 doi: 10.1016/j.ejor.2006.06.060
    [2] A. Allahverdi, The third comprehensive survey on scheduling problems with setup times/costs, Eur. J. Oper. Res., 246 (2015), 345–378. https://doi.org/10.1016/j.ejor.2015.04.004 doi: 10.1016/j.ejor.2015.04.004
    [3] C. Koulamas, G. J. Kyparisis, Single-machine scheduling problems with past-sequence-dependent setup times, Eur. J. Oper. Res., 187 (2008), 1045–1049. https://doi.org/10.1016/j.ejor.2006.03.066 doi: 10.1016/j.ejor.2006.03.066
    [4] C. Koulamas, G. J. Kyparisis, New results for single-machine scheduling with past-sequence-dependent setup times and due date-related objectives, Eur. J. Oper. Res., 278 (2019), 149–159. https://doi.org/10.1016/j.ejor.2019.04.022 doi: 10.1016/j.ejor.2019.04.022
    [5] D. Biskup, J. Herrmann, Single-machine scheduling against due dates with past-sequence-dependent setup times, Eur. J. Oper. Res., 191 (2008), 587–592. https://doi.org/10.1016/j.ejor.2007.08.028 doi: 10.1016/j.ejor.2007.08.028
    [6] J. B. Wang, Single-machine scheduling with past-sequence-dependent setup times and time-dependent learning effect, Comput. Ind. Eng., 55 (2008), 584–591. https://doi.org/10.1016/j.cie.2008.01.017 doi: 10.1016/j.cie.2008.01.017
    [7] J. B. Wang, J. X. Li, Single machine past-sequence-dependent setup times scheduling with general position-dependent and time-dependent learning effects, Appl. Math. Modell., 35 (2011), 1388–1395. https://doi.org/10.1016/j.apm.2010.09.017 doi: 10.1016/j.apm.2010.09.017
    [8] C. J. Hsu, W. H. Kuo, D. L. Yang, Unrelated parallel machine scheduling with past-sequence-dependent setup time and learning effects, Appl. Math. Modell., 35 (2011), 1492–1496. https://doi.org/10.1016/j.apm.2010.09.026 doi: 10.1016/j.apm.2010.09.026
    [9] T. C. E. Cheng, W. C. Lee, C. C. Wu, Single-machine scheduling with deteriorating jobs and past-sequence-dependent setup times, Appl. Math. Modell., 35 (2011), 1861–1867. https://doi.org/10.1016/j.apm.2010.10.015 doi: 10.1016/j.apm.2010.10.015
    [10] X. Huang, G. Li, Y. Huo, P. Ji, Single machine scheduling with general time-dependent deterioration, position-dependent learning and past sequence-dependent setup times, Optim. Lett., 7 (2013), 1793–1804. https://doi.org/10.1007/s11590-012-0522-4 doi: 10.1007/s11590-012-0522-4
    [11] X. Y. Wang, J. J. Wang, Scheduling problems with past-sequence-dependent setup times and general effects of deterioration and learning, Appl. Math. Modell., 37 (2013), 4905–4914. http://dx.doi.org/10.1016/j.apm.2012.09.044 doi: 10.1016/j.apm.2012.09.044
    [12] J. B. Wang, J. X. Xu, F. Guo, M. Liu, Single-machine scheduling problems with job rejection, deterioration effects and past-sequence-dependent setup times, Eng. Optim., 54 (2022), 471–486. https://doi.org/10.1080/0305215X.2021.1876041 doi: 10.1080/0305215X.2021.1876041
    [13] V. S. Gordon, J. M. Proth, C. B. Chu, A survey of the state of-the-art of common due date assignment and scheduling research, Eur. J. Oper. Res., 139 (2002), 1–25. https://doi.org/10.1016/S0377-2217(01)00181-3 doi: 10.1016/S0377-2217(01)00181-3
    [14] V. S. Gordon, J. M. Proth, C. B. Chu, Due date assignment and scheduling: SLK, TWK and other due date assignment models, Prod. Plan. Control, 13 (2002), 117–132. https://doi.org/10.1080/09537280110069621 doi: 10.1080/09537280110069621
    [15] G. A. Rolim, M. S. Nagano, Structural properties and algorithms for earliness and tardiness scheduling against common due dates and windows: A review, Comput. Ind. Eng., 149 (2020), 106803. https://doi.org/10.1016/j.cie.2020.106803 doi: 10.1016/j.cie.2020.106803
    [16] M. Sterna, Late and early work scheduling: A survey, Omega, 104 (2021), 102453. https://doi.org/10.1016/j.omega.2021.102453 doi: 10.1016/j.omega.2021.102453
    [17] W. Wang, Single-machine due-date assignment scheduling with generalized earliness-tardiness penalties including proportional setup times, J. Appl. Math. Comput., 2021 (2021), 1–19. https://doi.org/10.1007/s12190-021-01555-4 doi: 10.1007/s12190-021-01555-4
    [18] L. Y. Wang, X. Huang, W. W. Liu, Y. B. Wu, J. B. Wang, Scheduling with position-dependent weights, due-date assignment and past-sequence-dependent setup times, RAIRO Oper. Res., 55 (2021), S2747–S2758. https://doi.org/10.1051/ro/2020117 doi: 10.1051/ro/2020117
    [19] P. Brucker, Scheduling Algorithms, 3rd edition, Springer-Berlin, 2007. https://link.springer.com/book/10.1007/978-3-540-69516-5
    [20] W. Liu, X. Hu, X. Y. Wang, Single machine scheduling with slack due dates assignment, Eng. Optim., 49 (2017), 709–717. https://doi.org/10.1080/0305215X.2016.1197611 doi: 10.1080/0305215X.2016.1197611
    [21] C. Jiang, D. Zou, D. Bai, J. B. Wang, Proportionate flowshop scheduling with position-dependent weights, Eng. Optim., 52 (2020), 37–52. https://doi.org/10.1080/0305215X.2019.1573898 doi: 10.1080/0305215X.2019.1573898
    [22] M. Pinedo, Scheduling theory, algorithms, and systems, Prentice Hall, New Jersey, 2016. https://doi.org/10.1007/978-3-319-26580-3
    [23] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, 1988. https://doi.org/10.1017/s0025557200143451
    [24] X. Y. Wang, Z. Zhou, X. Zhang, P. Ji, J. B. Wang, Several flow shop scheduling problems with truncated position-based learning effect, Comput. Oper. Res., 40 (2013), 2906–2929. http://dx.doi.org/10.1016/j.cor.2013.07.001 doi: 10.1016/j.cor.2013.07.001
    [25] X. Huang, Bicriterion scheduling with group technology and deterioration effect, J. Appl. Math. Comput., 60 (2019), 455–464. https://doi.org/10.1007/s12190-018-01222-1 doi: 10.1007/s12190-018-01222-1
    [26] C. Liu, C. Xiong, Single machine resource allocation scheduling problems with deterioration effect and general positional effect, Math. Biosci. Eng., 18 (2021), 2562–2578. https://doi.org/10.3934/mbe.2021130 doi: 10.3934/mbe.2021130
    [27] C. C. Wu, D. Bai, X. Zhang, S. R. Cheng, J. C. Lin, Z. L. Wu, et al., A robust customer order scheduling problem along with scenario-dependent component processing times and due dates, J. Manuf. Syst., 58 (2021), 291–305. https://doi.org/10.1016/j.jmsy.2020.12.013 doi: 10.1016/j.jmsy.2020.12.013
    [28] C. C. Wu, D. Y. Bai, J. H. Chen, W. C. Lin, L. Xing, J. C. Lin, et al., Several variants of simulated annealing hyper-heuristic for a single-machine scheduling with two-scenario-based dependent processing times, Swarm Evol. Comput., 60 (2021), 100765. https://doi.org/10.1016/j.swevo.2020.100765 doi: 10.1016/j.swevo.2020.100765
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1617) PDF downloads(73) Cited by(8)

Article outline

Figures and Tables

Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog