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Abstract: In this paper, we investigate the single-machine scheduling problem that considers due
date assignment and past-sequence-dependent setup times simultaneously. Under common (slack and
different) due date assignment, the objective is to find jointly the optimal sequence and optimal due
dates to minimize the weighted sum of lateness, number of early and delayed jobs, and due date
cost, where the weight only depends on it’s position in a sequence (i.e., a position-dependent weight).
Optimal properties of the problem are given and then the polynomial time algorithm is proposed to
obtain the optimal solution.
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1. Introduction

Scheduling models with setup times are widely used in manufacture and operational processes (see
Allahverdi et al. [1] and Allahverdi [2]). Koulamas and Kyparisis [3,4] and Biskup and Herrmann
[5] investigated single-machine scheduling with past-sequence-dependent setup times (p̃sdst). They
showed that several regular objective function minimizations remain polynomially solvable. Wang
[6] and Wang and Li [7] examined single-machine problems with learning effects and p̃sdst. Hsu et
al. [8] studied unrelated parallel machine scheduling problems with learning effects and p̃sdst. They
proved that the total completion time minimization remains polynomially solvable. Cheng et al. [9]
investigated scheduling problems with p̃sdst and deterioration effects in a single machine. Huang
et al. [10] and Wang and Wang [11] studied scheduling jobs with p̃sdst, learning and deterioration
effects. They showed that the single-machine makespan and the sum of the αth (α > 0) power of job
completion times minimizations remain polynomially solvable. Wang et al. [12] dealt with scheduling
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with p̃sdst and deterioration effects. Under job rejection, they showed that the the sum of scheduling
cost and rejection cost minimization can be solved in polynomial time.

In the real production scheduling, the jobs often have due dates (see Gordon et al. [13,14] and
the recent survey papers Rolim and Nagano [15], and Sterna [16]). Recently, Wang [17] and Wang
et al. [18] studied single-machine scheduling problems with p̃sdst and due-date assignment. Under
common, slack and different due-date assignment methods, Wang [17] proved that the linear weighted
sum of earliness-tardiness, number of early and delayed jobs, and due date penalty minimization can
be solved in polynomial time. Under common and slack due date assignment methods, Wang et al.
[18] showed that the weighted sum of earliness, tardiness and due date minimization can be solved
in polynomial time, where the weights are position-dependent weights. The real application of the
position-dependent weights can be found in production services and resource utilization (see Brucker
[19], Liu et al. [20] and Jiang et al. [21]). Hence, it would be interesting to investigate due date
assignment scheduling with p̃sdst and position-dependent weights. The purpose of this article is to
determine the optimal due dates and job sequence to minimize the weight sum of generalized earliness-
tardiness penalties, where the weights are position-dependent weights. The contributions of this study
are given as follows:

• We focus on the due date assignment single-machine scheduling problems with p̃sdst and
position-dependent weights;

•We provide an analysis for the non-regular objective function (including earliness, tardiness, num-
ber of early and delayed jobs, and due date cost);

•We derive the structural properties of the position-dependent weights and show that three due date
assignments can be solved in polynomial time, respectively.

The problem formulation is described in Section 2. Three due-date assignments are discussed in
Section 3. An example is presented in Section 4. In Section 5, the conclusions are given.

2. Problem definition

The symbols used throughout the article are introduced in Table 1.

Suppose there are N independent jobs Ṽ = {J1, J2, . . . , JN} need to be processed on a single-
machine. The p̃sdst setup time s[l] of job J[l] is s[l] = β

∑l−1
j=1 p[ j], where β ≥ 0 is a normalizing

constant, s[1] = 0, and β
∑l−1

j=1 p[ j] + p[l] is the total processing requirement of job J[l]. Let Ll = Cl − dl

denote the lateness of job Jl, Ul (Vl) be earliness (tardiness) indicator viable of job Jl, i.e., if Cl < dl,
Ul = 1, otherwise, Ul = 0; if Cl > dl, Vl = 1, otherwise, Vl = 0.

For the common (c̃on) due date assignment, dl = d (l = 1, 2, . . . ,N) and d is a decision variable.
For the slack (s̃lk) due date assignment, dl = sl + pl + q and q is a decision variable. For the different
due date (d̃i f ) assignment, dl is a decision variable for l = 1, 2, . . . ,N. The target is to determine dl and
a sequence % such that is minimized.

M =

N∑
l=1

(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
, (1)
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Table 1. Symbols used in this article.
Symbol Meaning
N number of jobs
Jl index of job
pl processing time of Jl

p̃sdst past-sequence-dependent setup times
sl setup time of p̃sdst of Jl

Cl completion time of Jl

β a normalizing constant
dl due date of Jl

d common due date
q common flow allowance
[l] lth position in a sequence
Ll = Cl − dl lateness of Jl

Ul earliness indicator viable of Jl

Vl tardiness indicator viable of job Jl

ζl positional-dependent weight of lateness cost
ηl (θl) positional-dependent weight of earliness (tardiness) indicator viable
ϑl positional-dependent weight of due date cost
% sequence of all jobs
c̃on (s̃lk, d̃i f ) common (slack, different) due date

where ζl ≥ 0, ηl ≥ 0, ηl ≥ 0 and δl ≥ 0 are given positional-dependent weight constants. From Pinedo
[22], the problem can be defined as:

1| p̃sdst,H|
N∑

l=1

(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
, (2)

where H ∈ {c̃on, s̃lk, d̃i f }. The literature review related to the scheduling problems with p̃sdst and due
date assignment is given in Table 2. For a given sequence % = (J[1], J[2], . . . , J[N]), from (Wang [17]),
we have

C[l] =

l∑
j=1

(s[ j] + p[ j]) =

l∑
j=1

[
1 + β(l − j)

]
p[ j], l = 1, 2, . . . ,N. (3)
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Table 2. Problems with p̃sdst and due date assignment.
Problem Complexity Reference
1| p̃sdst, c̃on|

∑N
l=1

(
α̃El + δ̃Tl + η̃lUl + θ̃lVl + ϑ̃d

)
O(N4) Wang [17]

1| p̃sdst, c̃on|
∑N

l=1

(
α̃El + δ̃Tl + ϑ̃d

)
O(N log N) Wang [17]

1| p̃sdst, s̃lk|
∑N

l=1

(
α̃El + δ̃Tl + η̃lUl + θ̃lVl + ϑ̃q

)
O(N4) Wang [17]

1| p̃sdst, s̃lk|
∑N

l=1

(
α̃El + δ̃Tl + ϑ̃q

)
O(N log N) Wang [17]

1| p̃sdst, d̃i f |
∑N

l=1

(
α̃El + δ̃Tl + η̃lUl + θ̃lVl + ϑ̃d j

)
O(N log N) Wang [17]

1| p̃sdst, c̃on|
∑N

l=1 ζl|L[l]| + ϑ̃d O(N log N) Wang et al. [18]
1| p̃sdst, s̃lk|

∑N
l=1 ζl|L[l]| + ϑ̃q O(N log N) Wang et al. [18]

1| p̃sdst, c̃on|
∑N

l=1
(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
O(N4) This paper

1| p̃sdst, c̃on|
∑N

l=1
(
ζl|L[l]| + ϑld[l]

)
O(N log N) This paper

1| p̃sdst, s̃lk|
∑N

l=1
(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
O(N4) This paper

1|p̃sdst, s̃lk|
∑N

l=1
(
ζl|L[l]| + ϑld[l]

)
O(N log N) This paper

1|p̃sdst, d̃i f |
∑N

l=1
(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
O(N log N) This paper

where α̃, δ̃, ϑ̃ are given constants, η̃l (θ̃l) is the earliness (tardiness) penalty of job Jl, El = max{0, dl−Cl}

(Tl = max{0,Cl − dl}) is the earliness (tardiness) of job Jl.

3. Main results

Lemma 1. For 1| p̃sdst,H|
∑N

l=1
(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
(H ∈ {c̃on, s̃lk, d̃i f }), an optimal se-

quence exists such that the first job is processed at time zero and contains no machine idle time.

Proof. The result is obvious (see Brucker [19] and Liu et al. [20]).

3.1. The 1| p̃sdst, c̃on|
∑N

l=1
(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
Lemma 2. For any given sequence %, the optimal d is equal to the completion time of some job, i.e.,
d = C[a], a = 1, 2, . . . ,N.

Proof. For any given sequence % = (J[1], J[2], . . . , J[N]), suppose that d is not equal to the completion
time of some job, i.e., C[a] < d < C[a+1], 0 ≤ a < n, C[0] = 0, we have

M =

a∑
l=1

ζl(d −C[l]) +

N∑
l=a+1

ζl(C[l] − d) +

a∑
j=1

ηl +

n∑
j=a+1

θl +

N∑
l=1

dϑl.

(i) When d = C[a], we have

M1 =

a∑
l=1

ζl(C[a] −C[l]) +

N∑
l=a+1

ζl(C[l] −C[a]) +

a−1∑
l=1

ηl +

n∑
l=a+1

θl +

N∑
l=1

C[a]ϑl.

(ii) When d = C[a+1], we have

M2 =

a∑
l=1

ζl(C[a+1] −C[l]) +

N∑
l=a+1

ζl(C[l] −C[a+1]) +

a∑
l=1

ηl +

n∑
l=a+2

θl +

N∑
l=1

C[a+1]ϑl,
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M − M1 =

a∑
l=1

ζl(d −C[a]) −
N∑

l=a+1

ζl(d −C[a]) + ηa +

N∑
l=1

ϑl(d −C[a])

=

 a∑
l=1

ζl −

N∑
l=a+1

ζl +

N∑
l=1

ϑl

 (d −C[a]) + ηa

and

M − M2 =

a∑
l=1

ζl(d −C[a+1]) −
N∑

l=a+1

ζl(d −C[a+1]) + θa+1 +

N∑
l=1

ϑl(d −C[a+1])

=

 a∑
l=1

ζl −

N∑
l=a+1

ζl +

N∑
l=1

ϑl

 (d −C[a+1]) + θa+1.

If
∑a

l=1 ζl−
∑N

l=a+1 ζl+
∑N

l=1 ϑl ≥ 0 and C[a] < d < C[a+1], then M−M1 ≥ 0; If
∑a

l=1 ζl−
∑N

l=a+1 ζl+
∑N

l=1 ϑl ≤

0 and C[a] < d < C[a+1], then M − M2 ≥ 0. Therefore, d is the completion time of some job.

Lemma 3. For any given sequence % = (J[1], J[2], . . . , J[N]), if θl = ϑl = 0 (l = 1, 2, . . .N), there exists
an optimal common due date d = C[a], where a is determined by

a−1∑
l=1

ζl −

N∑
l=a

ζl +

N∑
l=1

ϑl ≤ 0 (4)

and
a∑

l=1

ζl −

N∑
l=a+1

ζl +

N∑
l=1

ϑl ≥ 0. (5)

Proof. From Lemma 2, when d = C[a], we have

M =

a−1∑
l=1

ζl(C[a] −C[l]) +

N∑
l=a+1

ζl(C[l] −C[a]) +

N∑
l=1

C[a]ϑl.

(i) When d reduces ε (i.e., d = C[a] − ε), we have

M′ =

a−1∑
l=1

ζl(C[a] − ε −C[l]) +

N∑
l=a

ζl(C[l] −C[a] + ε) +

N∑
l=1

(C[a] − ε)ϑl.

(ii) When d increases ε (i.e., d = C[a] + ε), we have

M′′ =

a∑
l=1

ζl(C[a] + ε −C[l]) +

N∑
l=a+1

ζl(C[l] −C[a] − ε) +

N∑
l=1

(C[a] + ε)ϑl.

Hence, we have

M − M′ = ε

 a−1∑
l=1

ζl −

N∑
l=a

ζl +

N∑
l=1

ϑl

 ≤ 0

M − M′′ = −ε

 a∑
l=1

ζl −

N∑
l=a+1

ζl +

N∑
l=1

ϑl

 ≤ 0,
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i.e., a is determined by
∑a−1

l=1 ζl −
∑N

l=a ζl +
∑N

l=1 ϑl ≤ 0 and
∑a

l=1 ζl −
∑N

l=a+1 ζl +
∑N

l=1 ϑl ≥ 0.
From Lemma 2, if d = C[a], the objective function is:

M =

N∑
l=1

(
ζl|L[l]| + ηlU[l] + θlV[l] + dϑl

)
=

a−1∑
l=1

ζl(C[a] −C[l]) +

N∑
l=a+1

ζl(C[l] −C[a]) +

a−1∑
l=1

ηl +

N∑
l=a+1

θl +

N∑
l=1

C[a]ϑl

=

a−1∑
l=1

ζl

 a∑
j=1

[
1 + β(a − j)

]
p[ j] −

l∑
j=1

[
1 + β(l − j)

]
p[ j]


+

N∑
l=a+1

ζl

 l∑
j=1

[
1 + β(l − j)

]
p[ j] −

a∑
j=1

[
1 + β(a − j)

]
p[ j]


+

a−1∑
l=1

ηl +

N∑
l=a+1

θl +

N∑
l=1

ϑl

 a∑
j=1

[
1 + β(a − j)

]
p[ j]


=

N∑
l=1

Ψl p[l] +

a−1∑
l=1

ηl +

N∑
l=a+1

θl, (6)

where

Ψl =



β(a − 1)ζ1 + β(a − 2)ζ2 + β(a − 3)ζ3 + . . . + βζa−1

+βζa+1 + 2βζa+2 + . . . + β(N − a)ζN + [1 + β(a − 1)]
∑N

j=1 ϑ j, l = 1,
(1 + β(a − 2))ζ1 + β(a − 2)ζ2 + β(a − 3)ζ3 + . . . + βζa−1

+βζa+1 + 2βζa+2 + . . . + β(N − a)ζN + [1 + β(a − 2)]
∑N

j=1 ϑ j, l = 2,
(1 + β(a − 3))(ζ1 + ζ2) + β(a − 3)ζ3 . . . + βζa−1

+βζa+1 + 2βζa+2 + . . . + β(N − a)ζN + [1 + β(a − 3)]
∑N

j=1 ϑ j, l = 3,
. . . . . .

(1 + β)(ζ1 + ζ2 + . . . + ζa−2) + βζa−1

+βζa+1 + 2βζa+2 + . . . + β(N − a)ζN + (1 + β)
∑N

j=1 ϑ j, l = a − 1,
ζ1 + ζ2 + . . . + ζa−1

+βζa+1 + 2βζa+2 + . . . + β(N − a)ζN +
∑N

j=1 ϑ j, l = a,
ζa+1 + (1 + β)ζa+2 + (1 + 2β)ζa+3 + . . . + (1 + β(N − a − 1))ζN , l = a + 1,
ζa+2 + (1 + β)ζa+3 + (1 + 2β)ζa+4 + . . . + (1 + β(N − a − 2))ζN , l = a + 2,
. . . . . .

ζN−1 + (1 + β)ζN , N − 1,
ζN , N.

(7)

Let xl,r = 1 if Jl is placed in rth position, and xl,r = 0; otherwise. From Eq (6), the optimal sequence
of 1| p̃sdst, c̃on|

∑N
l=1

(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
can be formulated as the following assignment

problem:

Min
N∑

l=1

N∑
r=1

Θl,r xl,r (8)
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s.t.


∑N

h=1 xl,r = 1, r = 1, 2, ...,N,∑N
r=1 xl,r = 1, l = 1, 2, ...,N,

xl,r = 0 or 1,
(9)

where

Θl,r =


Ψr pl + ηr, r = 1, 2, ..., a − 1,
Ψr pl, r = a,
Ψr pl + θr, r = a + 1, a + 2, ...,N,

(10)

and Ψr is given by Eq (7).
Based on the above analysis, to solve 1| p̃sdst, c̃on|

∑N
l=1

(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
, Algo-

rithm 1 was summarized as follows:

Algorithm 1

Require: β, pl, ζl, ηl, θl, ϑl for 1 ≤ l ≤ N.
Ensure: An optimal sequence %∗, optimal common due date d∗.
Step 1. For each a (a = 1, 2, . . . ,N), calculate Ψr (see Eq (7)) and Θl,r (see Eq (10)), to solve the
assignment problem (8)–(10), a suboptimal sequence %(a) and objective function value M(a) can be
obtained.
Step 2. The (global) optimal sequence (i.e., %∗) is the one with the minimum value

M∗ = min {M(a)|a = 1, 2, . . . ,N} .

Step 3. Set d∗ = C[a].

Theorem 1. The 1| p̃sdst, c̃on|
∑N

l=1
(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
can be solved by Algorithm 1, and

time complexity was O(N4).

Proof. The correctness of Algorithm 1 follows the above analysis. In Step 1, for each a, solving the
assignment problem needs O(N3) time; Steps 2 and 3 require O(N) time; a = 1, 2, . . . ,N. Therefore,
the total time complexity was O(N4).

Lemma 4. (Hardy et al. [23]). “The sum of products
∑N

l=1 albl is minimized if sequence a1, a2, . . . , aN

is ordered nondecreasingly and sequence b1, b2, . . . , bN is ordered nonincreasingly or vice versa.”

If ηl = θl = 0, a can be determined by Lemma 3 (see Eqs (4) and (5)), We

M =

N∑
l=1

(
ζl|L[l]| + ϑld[l]

)
=

N∑
l=1

Ψl p[l], (11)

where Ω j is given by Eq (6).
Equation (11) can be minimized by Lemma 4 in O(N log N) time (i.e., al = Ψl, bl = pl), hence, to

solve 1|p̃sdst, c̃on|
∑N

l=1
(
ζl|L[l]| + ϑld[l]

)
, the following algorithm was summarized as follows:
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Algorithm 2

Require: β, pl, ζl, ϑl for 1 ≤ l ≤ N.
Ensure: An optimal sequence %∗, optimal common due date d∗.
Step 1. Calculate a by Lemma 3 (see Eqs (4) and (5)).
Step 2. By using Lemma 4 (let al = Ψl, bl = pl) to determine the optimal job sequence (i.e., %∗), i.e.,
place the largest pl at the smallest Ψl position, place the second largest pl at the second smallest Ψl

position, etc.
Step 3. Set d∗ = C[a].

Theorem 2. The 1|p̃sdst, c̃on|
∑N

l=1
(
ζl|L[l]| + ϑld[l]

)
can be solved by Algorithm 2, and time complexity

was O(N log N).

3.2. The 1|p̃sdst, s̃lk|
∑N

l=1
(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
Similarly, we have

Lemma 5. For any given sequence % of 1| p̃sdst, s̃lk|
∑N

l=1
(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
, an optimal

sequence exists in which
1) C[l] ≤ d[l] implies C[l−1] ≤ d[l−1] and C[l] ≥ d[l] implies C[l+1] ≥ d[l+1] for all l;
2) the optimal q is equal to the completion time of some job, i.e., q = C[b−1], b = 1, 2, . . . ,N.

Lemma 6. For any given sequence % = (J[1], J[2], . . . , J[N]), if θl = ϑl = 0 (l = 1, 2, . . .N), there exists
an optimal common due date q = C[b−1], where b is determined by

b−1∑
l=1

ζl −

N∑
l=b

ζl +

N∑
l=1

ϑl ≤ 0 (12)

and
b∑

l=1

ζl −

N∑
l=b+1

ζl +

N∑
l=1

ϑl ≥ 0. (13)

Proof. From Lemma 5, when q = C[b−1], we have

M =

b−1∑
l=1

ζl(s[b] + p[b] + C[b−1] −C[l]) +

N∑
l=b+1

ζl(C[l] − s[b] − p[b] −C[b−1]) +

N∑
l=1

ϑl(s[b] + p[b] + C[b−1]).

(i) When q reduces ε (i.e., q = C[b−1] − ε), we have

M′ =

b−1∑
l=1

ζl(s[b] + p[b] +C[b−1]−ε−C[l])+

N∑
l=b

ζl(C[l]− s[b]− p[b]−C[b−1] +ε)+

N∑
l=1

(s[b] + p[b] +C[b−1]−ε)ϑl.
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(ii) When q increases ε (i.e., q = C[b−1] + ε), we have

M′′ =

b∑
l=1

ζl(s[b] + p[b] +C[b−1] +ε−C[l])+

N∑
l=b+1

ζl(C[l]− s[b]− p[b]−C[b−1]−ε)+

N∑
l=1

(s[b] + p[b] +C[b−1] +ε)ϑl.

Hence, we have

M − M′ = ε

 b−1∑
l=1

ζl −

N∑
l=b

ζl +

N∑
l=1

ϑl

 ≤ 0

M − M′′ = −ε

 b∑
l=1

ζl −

N∑
l=b+1

ζl +

N∑
l=1

ϑl

 ≤ 0,

i.e., b is determined by
∑b−1

l=1 ζl −
∑N

l=b ζl +
∑N

l=1 ϑl ≤ 0 and
∑b

l=1 ζl −
∑N

l=b+1 ζl +
∑N

l=1 ϑl ≥ 0.

From Lemma 5, if q = C[b−1] (i.e., d[l] = s[l] + p[l] + C[b−1]), the objective function is:

M =

N∑
l=1

(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
=

b−1∑
l=1

ζl(s[l] + p[l] + C[b−1] −C[l]) +

N∑
l=b+1

ζl(C[l] − s[l] − p[l] −C[b−1])

+

b−1∑
l=1

ηl +

N∑
l=b+1

θl +

N∑
l=1

(s[l] + p[l] + C[b−1])ϑl

=

b−1∑
l=1

ζl(C[b−1] −C[l−1]) +

N∑
l=b+1

ζl(C[l−1] −C[b−1]) +

b−1∑
l=1

ηl +

N∑
l=b+1

θl

+

N∑
l=1

(s[l] + p[l])ϑl +

N∑
l=1

C[b−1]ϑl

=

b−1∑
l=1

ζl

 b−1∑
j=1

[
1 + β(b − 1 − j)

]
p[ j] −

l−1∑
j=1

[
1 + β(l − 1 − j)

]
p[ j]


+

N∑
l=b+1

ζl

 l−1∑
j=1

[
1 + β(l − 1 − j)

]
p[ j] −

b−1∑
j=1

[
1 + β(b − 1 − j)

]
p[ j]


+

b−1∑
l=1

ηl +

N∑
l=b+1

θl +

N∑
l=1

β l−1∑
j=1

p[ j] + p[l]

ϑl +

N∑
l=1

ϑl

 b−1∑
j=1

[
1 + β(b − 1 − j)

]
p[ j]


=

N∑
l=1

Φl p[l] +

b−1∑
l=1

ηl +

N∑
l=b+1

θl, (14)
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where

Φl =



(1 + β(b − 2))ζ1 + β(b − 2)ζ2 + β(b − 3)ζ3 + . . . + βζb−1

+βζb+1 + 2βζb+2 + . . . + β(N − b)ζN + [1 + β(b − 2)]
∑N

j=1 ϑ j

+ϑ1 + β
∑N

j=2 ϑ j, l = 1,
(1 + β(b − 3))(ζ1 + ζ2) + β(b − 3)ζ3 + β(b − 4)ζ4 + . . . + βζb−1

+βζb+1 + 2βζb+2 + . . . + β(N − b)ζN + [1 + β(b − 3)]
∑N

j=1 ϑ j

+ϑ2 + β
∑N

j=3 ϑ j, l = 2,
(1 + β(b − 4))(ζ1 + ζ2 + ζ3) + β(b − 4)ζ4 + . . . + βζb−1

+βζb+1 + 2βζb+2 + . . . + β(N − b)ζN + [1 + β(b − 4)]
∑N

j=1 ϑ j

+ϑ3 + β
∑N

j=4 ϑ j, l = 3,
. . . . . .

(1 + β)(ζ1 + ζ2 + . . . + ζb−2) + βζb−1

+βζb+1 + 2βζb+2 + . . . + β(N − b)ζN + (1 + β)
∑N

j=1 ϑ j

+ϑb−2 + β
∑N

j=b−1 ϑ j, l = b − 2,
ζ1 + ζ2 + . . . + ζb−1

+βζb+1 + 2βζb+2 + . . . + β(N − b)ζN +
∑N

j=1 ϑ j + ϑb−1 + β
∑N

j=b ϑ j, l = b − 1,
ζb+1 + (1 + β)ζb+2 + (1 + 2β)ζb+3 + . . . + (1 + β(N − b − 1))ζN

+ϑb + β
∑N

j=b+1 ϑ j, l = b,
ζb+2 + (1 + β)ζb+3 + (1 + 2β)ζb+4 + . . . + (1 + β(N − b − 2))ζN

+ϑb+1 + β
∑N

j=b+2 ϑ j, l = b + 1,
. . . . . .

ζN + ϑN−1 + βϑN , N − 1,
ϑN , N.

(15)

Similarly, from Eq (14), the optimal sequence of 1| p̃sdst, s̃lk|
∑N

l=1
(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
can be obtained as follows:

Min
N∑

l=1

N∑
r=1

Ξl,r xl,r (16)

s.t.


∑N

h=1 xl,r = 1, r = 1, 2, ...,N,∑N
r=1 xl,r = 1, l = 1, 2, ...,N,

xl,r = 0 or 1,
(17)

where

Ξl,r =


Φr pl + ηr, r = 1, 2, ..., b − 1,
Φr pl, r = b,
Φr pl + θr, r = b + 1, b + 2, ...,N,

(18)

and Φr is given by (15).
Similarly, to solve 1|p̃sdst, s̃lk|

∑N
l=1

(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
, the following algorithm can

be proposed:
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Algorithm 3

Require: β, pl, ζl, ηl, θl, ϑl for 1 ≤ l ≤ N.
Ensure: An optimal sequence %∗, optimal common flow allowance q∗.
Step 1. For each b (b = 1, 2, . . . ,N), calculate Φr (see Eq (15)) and Ξl,r (see Eq (18)), to solve the
assignment problem (16)–(18), a suboptimal sequence %(b) and objective function value M(b) can be
obtained.
Step 2. The (global) optimal sequence (i.e., %∗) is the one with the minimum value

M∗ = min {M(b)|b = 1, 2, . . . ,N} .

Step 3. Set q∗ = C[b−1].

Theorem 3. The 1|p̃sdst, s̃lk|
∑N

l=1
(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
can be solved by Algorithm 3, and

time complexity was O(N4).

Similarly, if ηl = θl = 0, we have

Theorem 4. The problem 1|p̃sdst, s̃lk|
∑N

l=1
(
ζl|L[l]| + ϑld[l]

)
can be solved in O(N log N) time.

3.3. The 1|p̃sdst, d̃i f |
∑N

l=1
(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
Lemma 7. For a given sequence π of 1| p̃sdst, d̃i f |

∑N
l=1

(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
, an optimal

solution exists such that d[l] ≤ C[l].

Proof. For a given sequence %, the objective function for job J[l] was:

M[l] = ζl|C[l] − d[l]| + ηlU[l] + θlV[l] + ϑld[l]. (19)

If d[l] > C[l] (i.e., the job J[l] is an early job), it follows that

M[l] = ζl(d[l] −C[l]) + ηlU[l] + ϑld[l].

Move d[l] to the left such that d[l] = C[l], we have

M′
[l] = ϑld[l] = ϑlC[l] < M[l],

therefore, d[l] ≤ C[l].

Lemma 8. For a given sequence %, if ϑl ≥ ζl, d[l] = 0; otherwise d[l] = C[l] (l = 1, 2, . . . ,N).

Proof. For a given sequence %, from Lemma 7, we have d[l] ≤ C[l] and

M[l] = ζl(C[l] − d[l]) + θlV[l] + ϑld[l] = ζlC[l] + θl + (ϑl − ζl)d[l]. (20)

From Eq (20), when ϑl − ζl ≥ 0, d[l] was equal to 0; otherwise, then d[l] was equal to C[l].
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From Lemma 8, if ϑl ≥ ζl, we have d[l] = 0 and

M =

N∑
l=1

(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
=

N∑
l=1

ζlC[l] +

N∑
l=1

θl. (21)

If ϑl < ζl, we have d[l] = C[l] and

M =

N∑
l=1

(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
=

N∑
l=1

ϑlC[l]. (22)

From Eqs (21) and (22), minimizing
∑N

l=1
(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
is equal to minimizing

the expression

M =

N∑
l=1

min{ϑl, ζl}C[l] =

N∑
l=1

min{ϑl, ζl}

l∑
j=1

[
1 + β(l − j)

]
p[ j] =

N∑
l=1

Υl p[l], (23)

where

Υl =



min{ϑ1, ζ1} + (1 + β) min{ϑ2, ζ2} + . . . + (1 + (N − 1)β) min{ϑN , ζN}, l = 1,
min{ϑ2, ζ2} + (1 + β) min{ϑ3, ζ3} + . . . + (1 + (N − 2)β) min{ϑN , ζN}, l = 2,
. . . . . .

min{ϑN−1, ζN−1} + (1 + β) min{ϑN , ζN}, N − 1,
min{ϑN , ζN}, N,

(24)

i.e.,

Υl =

N∑
j=l

[1 + β( j − l)] min{ϑ j, ζ j}, l = 1, 2, . . . ,N. (24′)

Obviously, Eq (23) can be minimized by Lemma 4.

Algorithm 4

Require: β, pl, ζl, ηl, θl, ϑl for 1 ≤ l ≤ N.
Ensure: An optimal sequence %∗, optimal common due date d∗l .
Step 1. By using Lemma 4 (let al = Υl, bl = pl) to determine the optimal job sequence (i.e., %∗), i.e.,
place the largest pl at the smallest Υl position, place the second largest pl at the second smallest Υl

position, etc.
Step 2. If ϑl ≥ ζl, d∗[l] = 0; otherwise d∗[l] = C[l] (l = 1, 2, . . . ,N).

Theorem 5. The 1| p̃sdst, d̃i f |
∑N

l=1
(
ζl|L[l]| + ηlU[l] + θlV[l] + ϑld[l]

)
can be solved by Algorithm 4, and

time complexity was O(N log N).
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4. Numerical example

We present an example to illustrate the calculation steps and results of the three due date assign-
ments.

Example 1. Consider a 6-job problem, where β = 1, p1 = 7, p2 = 9, p3 = 4, p4 = 6, p5 = 8, p6 = 5,
ζl, ηl, θl and ϑl are given in Table 3.

Table 3. Values of ζl, ηl, θl and ϑl.

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6
ζl 6 8 14 3 15 7
ηl 8 4 9 10 12 5
θl 10 8 6 5 14 17
ϑl 12 16 7 13 8 9

From Algorithm 1, For the c̃on assignment, if a = 1, the values Ψ1 = 205,Ψ2 = 140,Ψ3 =

93,Ψ4 = 54,Ψ5 = 29,Ψ6 = 7, (see Eqs (7) or (7’)) and Θl,r (see Eq (10)) are given in Table 4. By
the assignment problems (8)–(10), the sequence is %(1) = (J3, J6, J4, J1, J5, J2) and M(1) = 2801.
Similarly, for a = 2, 3, 4, 5, 6, the results are shown in Table 5. From Table 5, the optimal sequence is
%∗ = (J3, J6, J4, J1, J5, J2), M∗ = 2801 and d∗ = C[2] = 14.

Table 4. Values Θl,r for a = 1.

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6
J1 1435 988 657 383 217 66
J2 1845 1268 843 491 275 80
J3 820 568 378 221 130 45
J4 1230 848 564 329 188 59
J5 1640 1128 750 437 246 73
J6 1025 708 471 275 159 52

Table 5. Results for c̃on.

a %(a) M(a)
1 (J3, J6, J4, J1, J5, J2) 2801
2 (J3, J6, J4, J1, J5, J2) 3017
3 (J3, J6, J4, J1, J5, J2) 3615
4 (J3, J6, J4, J1, J5, J2) 5335
5 (J3, J6, J4, J1, J5, J2) 7451
6 (J3, J6, J4, J1, J5, J2) 11,382

For the s̃lk assignment, the results are shown in Table 6. From Table 6, the optimal sequence is
%∗ = (J3, J6, J4, J1, J5, J2), M∗ = 2832 and q∗ = C[0] = 0.
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Table 6. Results for s̃lk.

b %(b) M(b)
1 (J3, J6, J4, J1, J5, J2) 2832
2 (J3, J6, J4, J1, J5, J2) 2928
3 (J3, J6, J4, J1, J5, J2) 3286
4 (J3, J6, J4, J1, J5, J2) 4310
5 (J3, J6, J4, J1, J5, J2) 5934
6 (J3, J6, J4, J1, J5, J2) 9049

For the d̃i f assignment, Υ1 = 137,Υ2 = 98,Υ3 = 65,Υ4 = 40,Υ5 = 22,Υ6 = 7, the optimal
sequence is %∗ = (J3, J6, J4, J1, J5, J2), M∗ = 1987, d∗3 = 0, d∗6 = 0, d∗4 = C4 = 28, d∗1 = 0, d∗5 = C5 = 80
and d∗2 = 0.

5. Conclusions

Under c̃on, s̃lk and d̃i f assignments, the single-machine scheduling problem with p̃sdst and
position-dependent weights had been addressed. The goal was to minimize the weighted sum of
lateness, number of early and delayed jobs and due date cost. Here we showed that the prob-
lem remains polynomially solvable. If the due dates are given, from Brucker [19], the problem
1|p̃sdst|

∑N
l=1

(
ζl|L[l]| + ηlU[l] + θlV[l]

)
is NP-dard. For future research, we suggest some interesting top-

ics as follows:
1) Considering the problem 1| p̃sdst|

∑N
l=1

(
ζl|L[l]| + ηlU[l] + θlV[l]

)
;

2) Investigating the problem in a flow shop setting;
3) Studying the group technology problem with learning effects (deterioration effects) and/or re-

source allocation (see Wang et al. [24], Huang [25] and Liu and Xiong [26]);
4) Investigating scenario-dependent processing times (see Wu et al. [27] and Wu et al. [28]).
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