Research article

Cascaded robust control of mechanical ventilator using fractional order sliding mode control


  • Received: 07 October 2021 Accepted: 22 November 2021 Published: 03 December 2021
  • A mechanical ventilator is an important medical equipment that assists patients who have breathing difficulties. In recent times a huge percentage of COVID-19 infected patients suffered from respiratory system failure. In order to ensure the abundant availability of mechanical ventilators during COVID-19 pandemic, most of the manufacturers around the globe utilized open source designs. Patients safety is of utmost importance while using mechanical ventilators for assisting them in breathing. Closed loop feedback control system plays vital role in ensuring the stability and reliability of dynamical systems such as mechanical ventilators. Ideal characteristics of mechanical ventilators include safety of patients, reliability, quick and smooth air pressure buildup and release.Unfortunately most of the open source designs and mechanical ventilator units with classical control loops cannot achieve the above mentioned ideal characteristics under system uncertainties. This article proposes a cascaded approach to formulate robust control system for regulating the states of ventilator unit using blower model reduction techniques. Model reduction allows to cascade the blower dynamics in the main controller design for airway pressure. The proposed controller is derived based on both integer and non integer calculus and the stability of the closed loop is ensured using Lyapunov theorems. The effectiveness of the proposed control method is demonstrated using extensive numerical simulations.

    Citation: Nasim Ullah, Al-sharef Mohammad. Cascaded robust control of mechanical ventilator using fractional order sliding mode control[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1332-1354. doi: 10.3934/mbe.2022061

    Related Papers:

  • A mechanical ventilator is an important medical equipment that assists patients who have breathing difficulties. In recent times a huge percentage of COVID-19 infected patients suffered from respiratory system failure. In order to ensure the abundant availability of mechanical ventilators during COVID-19 pandemic, most of the manufacturers around the globe utilized open source designs. Patients safety is of utmost importance while using mechanical ventilators for assisting them in breathing. Closed loop feedback control system plays vital role in ensuring the stability and reliability of dynamical systems such as mechanical ventilators. Ideal characteristics of mechanical ventilators include safety of patients, reliability, quick and smooth air pressure buildup and release.Unfortunately most of the open source designs and mechanical ventilator units with classical control loops cannot achieve the above mentioned ideal characteristics under system uncertainties. This article proposes a cascaded approach to formulate robust control system for regulating the states of ventilator unit using blower model reduction techniques. Model reduction allows to cascade the blower dynamics in the main controller design for airway pressure. The proposed controller is derived based on both integer and non integer calculus and the stability of the closed loop is ensured using Lyapunov theorems. The effectiveness of the proposed control method is demonstrated using extensive numerical simulations.



    加载中


    [1] C. Wu, X. Chen, Y. Cai, J. Xia, X. Zhou, S. Xu, et al., Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China, JAMA Intern. Med., 180 (2020), 934–943. doi:10.1001/jamainternmed.2020.0994. doi: 10.1001/jamainternmed.2020.0994
    [2] MIT, MIT emergency ventilator project, 2021. Available from: https://emergency-vent.mit.edu.
    [3] T. Dillon, C. Ozturk, K. Mendez, L. Rosalia, S. D. Gollob, K. Kempf, et al., Computational modeling of a low-cost fluidic oscillator for use in an educational respiratory simulator, Adv. NanoBiomed Res., 2021 (2021), 2000112. doi: 10.1002/anbr.202000112. doi: 10.1002/anbr.202000112
    [4] S. M. Mirvakili, D. Sim, R. Langer, Inverse pneumatic artificial muscles for application in low-cost ventilators, Adv. Intell. Syst., 3 (2021), 1–11. doi: 10.1002/aisy.202000200. doi: 10.1002/aisy.202000200
    [5] M. Borrello, Modeling and control of systems for critical care ventilation, in IEEE Proceedings of the 2005, American Control Conference, 3 (2005), 2166–2180. doi: 10.1109/ACC.2005.1470291.
    [6] M. Walter, S. Leonhardt, Control applications in artificial ventilation, IEEE Mediterr. Conf. Control Automation, 2007 (2007), 1–6. doi: 10.1109/MED.2007.4433762. doi: 10.1109/MED.2007.4433762
    [7] K. B. Ohlson, D. R. Westenskow, W. S. Jordan, A microprocessor based feedback controller for mechanical ventilation, Ann. Biomed. Eng., 10 (1982), 35–48. doi: 10.1007/BF02584213. doi: 10.1007/BF02584213
    [8] M. Borrello, Adaptive control of a proportional flow valve for critical care ventilators, in ACC Annual American Control Conference, (2018), 104–109. doi: 10.23919/ACC.2018.8431425.
    [9] Y. Xu, L. Li, J. Yan, Y. Luo, An optimized controller for bi-level positive airway pressure ventilator, in International Conference on Future Computer and Communication Engineering, 149 (2014), 149–152. doi: 10.2991/icfcce-14.2014.37.
    [10] D. Acharya, D. K. Das, Swarm optimization approach to design PID controller for artificially ventilated human respiratory system, Comput. Methods Programs Biomed., 198 (2021), 105776. doi: 10.1016/j.cmpb.2020.105776. doi: 10.1016/j.cmpb.2020.105776
    [11] E. Martinoni, C. A. Pfister, K. Stadler, P. Schumacher, D. Leibundgut, T. Bouillon, et al., Model-based control of mechanical ventilation: design and clinical validation, Br. J. Anaesth., 92 (2004), 800–807. doi: 10.1093/bja/aeh145. doi: 10.1093/bja/aeh145
    [12] M. Scheel, T. Schauer, A. Berndt, O. Simanski, Model-based control approach for a cpap-device considering patient's breathing effort, IFAC Papers OnLine, 50 (2017), 9948–9953. doi: 10.1016/j.ifacol.2017.08.1572. doi: 10.1016/j.ifacol.2017.08.1572
    [13] S. Korrapati, J. S. Yang, Adaptive inverse dynamics control for a two compartment respiratory system, in IEEE International Conference on Consumer Electronics-Taiwan, (2016), 1–2. doi: 10.1109/ICCE-TW.2016.7521037.
    [14] H. Li, W. M. Haddad, Model predictive control for a multi compartment respiratory system, IEEE Trans. Control Syst. Technol., 21 (2012), 1988–1995. doi: 10.1109/TCST.2012.2210956. doi: 10.1109/TCST.2012.2210956
    [15] B. Hunnekens, S. Kamps, N. Van De Wouw, Variable-gain control for respiratory systems, IEEE Trans. Control Syst. Technol., 28 (2020), 163–171. doi: 10.1109/TCST.2018.2871002. doi: 10.1109/TCST.2018.2871002
    [16] J. Reinders, R. Verkade, B. Hunnekens, N. van de Wouw, T. Oomen, Improving mechanical ventilation for patient care through repetitive control, in 21st IFAC World Congress, (2020), 1441–1446. doi: 10.1016/j.ifacol.2020.12.1906.
    [17] H. Zhang, L. Cui, X. Zhang, Y. Luo, Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method, IEEE Trans. Neural Netw., 22 (2011), 2226–2236. doi: 10.1109/TNN.2011.2168538. doi: 10.1109/TNN.2011.2168538
    [18] Y. Pan, J. Wang, Model predictive control of unknown nonlinear dynamical systems based on recurrent neural networks, IEEE Trans. Ind. Electron., 59 (2011), 3089–3101. doi: 10.1109/TIE.2011.2169636. doi: 10.1109/TIE.2011.2169636
    [19] J. J. E. Slotine, W. Li, Applied nonlinear control, Englewood Cliffs, 1991.
    [20] H. K. Khalil, J. W. Grizzle, Nonlinear systems, Pearson Education Prentice hall, 2002.
    [21] A. Abrishamifar, A. Ahmad, M. Mohamadian, Fixed switching frequency sliding mode control for single-phase uni-polar inverters, IEEE Trans. Power Electron., 27 (2011), 2507–2514. doi: 10.1109/TPEL.2011.2175249. doi: 10.1109/TPEL.2011.2175249
    [22] J. Zivcak, M. Kelemen, I. Virgala, P. Marcinko, P. Tuleja, M. Sukop, et al., An adaptive neuro-fuzzy control of pneumatic mechanical ventilator. Actuators, 10 (2021), 1–23. doi: 10.3390/act10030051. doi: 10.3390/act10030051
    [23] Y. C. Hsu, H. A. Malki, Fuzzy variable structure control for MIMO systems, in IEEE International Conference on Fuzzy Systems Proceedings, IEEE World Congress on Computational Intelligence., 1 (1998), 280–285. doi: 10.1109/FUZZY.1998.687498.
    [24] J. Schäublin, M. Derighetti, P. Feigenwinter, S. P. Felix, A. M. Zbinden, Fuzzy logic control of mechanical ventilation during anaesthesia, Br. J. Anaesth., 77 (1996), 636–641. doi: 10.1093/bja/77.5.636. doi: 10.1093/bja/77.5.636
    [25] H. Guler, F. Ata, Design of a fuzzy lab view-based mechanical ventilator, Comput. syst. Sci. Eng., 29 (2014), 219–229.
    [26] D. Pelusi, Optimization of a fuzzy logic controller using genetic algorithms, in IEEE 3rd International Conference on Intelligent HumanMachine Systems and Cybernetics, 2 (2011), 143–146. doi: 10.1109/IHMSC.2011.105.
    [27] S. Kundu, D. R. Parhi, Reactive navigation of underwater mobile robot using ANFIS approach in a manifold manner, Int. J. of Autom. Comput., 14 (2017), 307–320. doi: 10.1007/s11633-016-0983-5. doi: 10.1007/s11633-016-0983-5
    [28] L. X. Wang, Design and analysis of fuzzy identifiers of nonlinear dynamic systems, IEEE Trans. Automat. Contr., 40 (1995), 11–23. doi: 10.1109/9.362903. doi: 10.1109/9.362903
    [29] M. Roopaei, M. Zolghadri, S. Meshksar, Enhanced adaptive fuzzy sliding mode control for uncertain nonlinear systems, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3670–3681. doi: 10.1016/j.cnsns.2009.01.029. doi: 10.1016/j.cnsns.2009.01.029
    [30] A. Saghafinia, H. W. Ping, M. N. Uddin, K. S. Gaeid, Adaptive fuzzy sliding-mode control into chattering-free IM drive, IEEE Trans. Ind. Appl., 51 (2014), 692–701. doi: 10.1109/TIA.2014.2328711. doi: 10.1109/TIA.2014.2328711
    [31] Y. Li, H. Wang, B. Zhao, K. Liu, Adaptive fuzzy sliding mode control for the probe soft landing on the asteroids with weak gravitational field, Math. Probl. Eng., 2015 (2015), 1–8. doi: 10.1155/2015/582948. doi: 10.1155/2015/582948
    [32] A. Ishigame, T. Furukawa, S. Kawamoto, T. Taniguchi, Sliding mode controller design based on fuzzy inference for nonlinear systems (power systems), IEEE Trans. Ind. Electron., 40 (1993), 64–70. doi: 10.1109/41.184822. doi: 10.1109/41.184822
    [33] M. Roopaei, M. Z. Jahromi, Chattering-free fuzzy sliding mode control in mimo uncertain systems, Nonlinear Anal. Theory Methods Appl., 71 (2009), 4430–4437. doi: 10.1016/j.na.2009.02.132. doi: 10.1016/j.na.2009.02.132
    [34] H. S. Haghighi, A. H. Markazi, Chaos prediction and control in mems resonators, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3091–3099. doi: 10.1016/j.cnsns.2009.10.002. doi: 10.1016/j.cnsns.2009.10.002
    [35] O. Cerman, P. Hušek, Adaptive fuzzy sliding mode control for electro-hydraulic servo mechanism, Expert Syst. Appl., 39 (2012), 10269–10277. doi: 10.1016/j.eswa.2012.02.172. doi: 10.1016/j.eswa.2012.02.172
    [36] F. J. Lin, S. L. Chiu, Adaptive fuzzy sliding-mode control for PM synchronous servo motor drives, IEE Proc. Control Theory Appl., 145 (1998), 63–72. doi: 10.1016/S0165-0114(03)00199-4. doi: 10.1016/S0165-0114(03)00199-4
    [37] S. Liu, L. Ding, Application of adaptive fuzzy sliding mode controller in PMSM servo system, in IEEE International Conference on Computing, 2 (2010), 95–98. doi: 10.1109/CCIE.2010.142.
    [38] N. Ullah, S. Wang, M. I. Khattak, M. Shafi, Fractional order adaptive fuzzy sliding mode controller for a position servo system subjected to aerodynamic loading and non-linearities, Aerosp. Sci. Technol., 43 (2015), 381–387. doi: 10.1016/j.ast.2015.03.020. doi: 10.1016/j.ast.2015.03.020
    [39] N. Ullah, M. Asghar Ali, A. Ibeas, J. Herrera, Adaptive fractional order terminal sliding mode control of a doubly fed induction generator-based wind energy system, IEEE Access, 5 (2017), 21368–21381. doi: 10.1109/ACCESS.2017.2759579. doi: 10.1109/ACCESS.2017.2759579
    [40] N. Ullah, A. Ibeas, M. Shafi, M. Ishfaq, M. Ali, Vaccination controllers for SEIR epidemic models based on fractional order dynamics, Biomed. Signal Process. Control, 38 (2017), 136–142. doi: 10.1016/j.bspc.2017.05.013. doi: 10.1016/j.bspc.2017.05.013
    [41] N. Ullah, A. Ullah, A. Ibeas, J. Herrera, Improving the hardware complexity by exploiting the reduced dynamics-Based fractional order systems, IEEE Access, 5 (2017), 7714–7723. doi: 10.1109/ACCESS.2017.2700439. doi: 10.1109/ACCESS.2017.2700439
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2236) PDF downloads(134) Cited by(2)

Article outline

Figures and Tables

Figures(17)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog