Research article Special Issues

Using a simple spectrophotometer to analyze cypress hydrolat composition


  • Received: 27 July 2021 Accepted: 15 October 2021 Published: 21 October 2021
  • The Pure Dew (Cypress Hydrolat), which could be extracted from the waste material after the extracting essential oil from Taiwan cypress, has a good bactericidal effect. However, due to the high cost on quality control and concentration measurement of the Pure Dew, its application was restricted. This research tries to find suitable spectral frequencies through which the absorbance detected by the spectrometer could be used as the index of the pure dew concentration. This study used Gas Chromatography-Mass Spectrophotometer (GC-MS) to analyze the composition of Taiwan cypress hydrolat. After obtaining the composition, the raw liquor of cypress hydrolat was diluted to 100, 50, 25 and 0% v/v with pure water. The test samples were then tested by a simple spectrophotometer. After the spectrographic detection of absorbance using a simple spectrophotometer, it is confirmed that the spectrum of wavelength between 205–350 nm is the most representative. The absorptance and the pure dew concentration was roughly in linear relation which suggested that a simple spectrophotometer can be used to develop a low-cost and high.

    Citation: Chang-Lung Yen, Jian-Hung Chen, Hung-Yu Chien, Jen-Son Cheng, Meng-Shiu Lee, Yueh-Ying Wang. Using a simple spectrophotometer to analyze cypress hydrolat composition[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 9033-9049. doi: 10.3934/mbe.2021445

    Related Papers:

  • The Pure Dew (Cypress Hydrolat), which could be extracted from the waste material after the extracting essential oil from Taiwan cypress, has a good bactericidal effect. However, due to the high cost on quality control and concentration measurement of the Pure Dew, its application was restricted. This research tries to find suitable spectral frequencies through which the absorbance detected by the spectrometer could be used as the index of the pure dew concentration. This study used Gas Chromatography-Mass Spectrophotometer (GC-MS) to analyze the composition of Taiwan cypress hydrolat. After obtaining the composition, the raw liquor of cypress hydrolat was diluted to 100, 50, 25 and 0% v/v with pure water. The test samples were then tested by a simple spectrophotometer. After the spectrographic detection of absorbance using a simple spectrophotometer, it is confirmed that the spectrum of wavelength between 205–350 nm is the most representative. The absorptance and the pure dew concentration was roughly in linear relation which suggested that a simple spectrophotometer can be used to develop a low-cost and high.



    加载中


    [1] A. Ohgaku, A. Endo, S. Hasegawa, Y. Hirose, Diterpene production by callus of some plants belonging to Cupressaceae, Agri. Biol. Chem., 48 (1984), 2523-2527.
    [2] J. Yu, H. Komada, Hinoki (Chamaecyparis obtusa) bark, a substrate with anti-pathogen properties that suppress some root diseases of tomato, Sci. Horti., 81 (1999), 13-24. doi: 10.1016/S0304-4238(98)00262-3
    [3] H. Ikei, C. Song, Y. Miyazaki, Physiological effect of olfactory stimulation by Hinoki cypress (Chamaecyparis obtusa) leaf oil, J. Physiol. Anthropol., 34 (2015), 44. doi: 10.1186/s40101-015-0082-2
    [4] H. Ikei, C. Song, Y. Miyazaki, Physiological effects of touching hinoki cypress (Chamaecyparis obtusa), J. Wood Sci., 64 (2018), 226-236. doi: 10.1007/s10086-017-1691-7
    [5] S. H. Lee, H. S. Do, K. J. Min, Effects of essential oil from Hinoki cypress, Chamaecyparis obtusa, on physiology and behavior of flies, PLoS One, 10 (2015), e0143450. doi: 10.1371/journal.pone.0116884
    [6] M. S. Bae, D. H. Park, C. Y. Choi, G. Y. Kim, J. C. Yoo, S. S. Cho, Essential oils and non-volatile compounds derived from Chamaecyparis obtusa: broad spectrum antimicrobial activity against infectious bacteria and MDR (multidrug resistant) strains, Nat. Prod. Commun., 11 (2016), 1934578X1601100536.
    [7] F. G. Kitson, B. S. Larsen, C. N. McEwen, Gas Chromatography and Mass Spectrometry: A Practical Guide, Academic Press, 1996.
    [8] D. J. Beale, F. R. Pinu, K. A. Kouremenos, M. M. Poojary, V. K. Narayana, B.A. Boughton, et al., Review of recent developments in GC-MS approaches to metabolomics-based research, Metabolomics, 14 (2018), 152. doi: 10.1007/s11306-018-1449-2
    [9] Y. Ohtani, A. Ninomiya, Z. Shibayama, K. Sameshima, Chemical distinction of hinoki [Chamaecyparis obtusa] clones made by multivariate analysis of essential oil components, Wood Ind., (2002), 246-250.
    [10] Y. J. Chen, C. Y. Lin, S. S. Cheng, S. T. Chang, Rapid discrimination and feature extraction of three chamaecyparis species by static-HS/GC-MS, J. Agri. Food Chem., 63 (2015), 810-820. doi: 10.1021/jf505587w
    [11] S. A. Emami, H. Massoomi, M. S. Moghadam, J. Asili, Identification of volatile oil components from aerial parts of Chamaecyparis lawsoniana by GC-MS and 13C-NMR methods, J. Essent. Oil Bear. Pl., 12 (2009), 661-665. doi: 10.1080/0972060X.2009.10643771
    [12] H. Daimon, M. Faisal, Lingkungan, Preliminary investigation on the useful chemicals obtained from high-temperature and high-pressure water treatment of Hinoki (Chamaecyparis Obutus) bark, J. Rekayasa Kimia, 7 (2010).
    [13] M. J. Chung, S. S. Cheng, C. Y. Lin, S. T. Chang, Profiling of volatile compounds from five interior decoration timbers in Taiwan using TD/GC-MS/FID, J. Wood Sci., 64 (2018), 823-835. doi: 10.1007/s10086-018-1773-1
    [14] M. Lee, S. Park, S. Lee, H. Lee, D. Kil, Emission characteristics of volatile organic compounds by humidifier with using hinoki cypress extracts, Mokchae Konghak J. Korean Wood Sci. Tech., 42 (2014), 747-757. doi: 10.5658/WOOD.2014.42.6.747
    [15] K. Saito, T. Mitsutani, T. Imai, Y. Matsushita, K. Fukushima, Application of time-of-flight secondary ion mass spectrometry to dendrochronology: estimating the felling date in discolored ancient wood by direct molecular mapping, Anal. Chem., 80 (2008), 1552-1557. doi: 10.1021/ac7021162
    [16] L. Hermabessiere, C. Himber, B. Boricaud, M. Kazour, R. Amara, A. Cassone, et al., Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics, Anal. Bioanal. Chem., 410 (2018), 6663-6676. doi: 10.1007/s00216-018-1279-0
    [17] Y. Lin, Y. Liao, Z. Yu, S. Fang, X. Ma, A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS, Energ. Convers. Manage., 151 (2017), 190-198. doi: 10.1016/j.enconman.2017.08.062
    [18] A. Sharififar, K. Singh, E. Jones, F. I. Ginting, B. Minasny, Evaluating a low-cost portable NIR spectrometer for the prediction of soil organic and total carbon using different calibration models. Soil Use Manage., 35 (2019), 607-616. doi: 10.1111/sum.12537
    [19] H. K. Srivastava, S. Wolfgang, J. D. Rodriguez, Expanding the analytical toolbox for identity testing of pharmaceutical ingredients: Spectroscopic screening of dextrose using portable Raman and near infrared spectrometers, Anal. Chim. Acta, 914 (2016), 91-99. doi: 10.1016/j.aca.2016.01.061
    [20] Y. Dung, J. Y. Lu, Q. T. Sung, Introduction of relative calibration method between ASD spectrometers, Techn. Wind, 14 (2016), 26-27.
    [21] X. S. Yi, A. J. Lan, X. M. Wen, Y. Zhang, Y. Li, Monitoring of heavy metals in farmland soils based on ASD and GaiaSky-mini, Chin. J. Ecol., 37 (2018), 1781.
    [22] F. Ieri, L. Cecchi, E. Giannini, C. Clemente, A. Romani, GC-MS and HS-SPME-GC × GC-TOFMS determination of the volatile composition of essential oils and hydrosols (By-products) from four Eucalyptus species cultivated in Tuscany, Molecules, 24 (2019), 226. doi: 10.3390/molecules24020226
    [23] F. E. Dowell, E. B. Maghirang, F. M. Fernandez, P. N. Newton, M. D. Green, Detecting counterfeit antimalarial tablets by near-infrared spectroscopy, J. Pharmaceut. Biomed., 48 (2008), 1011-1014. doi: 10.1016/j.jpba.2008.06.024
    [24] M. Alcalà, M. Blanco, M. Bautista, J. M. González, On-line monitoring of a granulation process by NIR spectroscopy, J. Pharmaceut. Sci., 99 (2010), 336-345. doi: 10.1002/jps.21818
    [25] M. Bian, A. K. Skidmore, M. Schlerf, T. Fei, Y. Liu, T. J. Wang, Reflectance spectroscopy of biochemical components as indicators of tea (Camellia sinensis) quality, Photogramm. Eng. Rem. S., 76 (2010), 1385-1392. doi: 10.14358/PERS.76.12.1385
    [26] P. V. Janse, J. N. Kayte, R. V. Agrawal, R. R. Deshmukh, Standard spectral reflectance measurements for ASD FieldSpec Spectroradiometer, in 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), IEEE, (2018), 729-733.
    [27] Z. Han, L. Deng, Application driven key wavelengths mining method for aflatoxin detection using hyperspectral data, Comput. Electron. Agri., 153 (2018), 248-255. doi: 10.1016/j.compag.2018.08.018
    [28] M. A. Cho, A. Ramoelo, A. Skidmore, Exploring various spectral regions for estimating chlorophyll from ASD leaf reflectance using prospect radiative transfer model, in 2014 IEEE Geoscience and Remote Sensing Symposium (IGARSS), (2014), 4754-4757.
    [29] A. Hommersom, S. Kratzer, M. Laanen, A. Marnix, L. Ilmar, M. Ligi, et al., Intercomparison in the field between the new WISP-3 and other radiometers (TriOS Ramses, ASD FieldSpec, and TACCS), J. Appl. Remote Sens., 6 (2012), 063615. doi: 10.1117/1.JRS.6.063615
    [30] L. L. Syu, S. H. Luo, J. C. Hsu, Composition analysis and antioxidant activity of six hydrolats, Hungkuang Acad. Rev., 71 (2013), 77-92.
    [31] S. Hayashi, K. Yano, T. Matsuura, The monoterpene constituents of the essential oil of Hinoki (Chamaecyparis Obtusa (Sieb. et Zucc.) Endl.), B. Chem. Soc. Jpn., 37 (1964), 680-683. doi: 10.1246/bcsj.37.680
    [32] R. Shoji, T. Iwase, Characterization of humic acids from trees and soils analyzed by the NICA-Donnan Model and UV-Vis Spectrum, J. Chem. Eng. Jpn., 50 (2017), 221-224. doi: 10.1252/jcej.16we097
    [33] Y. Saito, K. Ichihara, K. Morishita, K. Uchiyama, F. Kobayashi, T. Tomida, Remote detection of the fluorescence spectrum of natural pollens floating in the atmosphere using a laser-induced-fluorescence spectrum (LIFS) lidar, Remote Sens., 10 (2018), 1533. doi: 10.3390/rs10101533
    [34] M. Kawamura, K. Tsujino, Y. Tsujiko, Characteristic analysis of high resolution satellite imagery for forest species discrimination, in 2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS-2004), 4 (2004), 2358-2361.
    [35] I. Momohara, A. Kato, T. Nishimura, Spectrophotometric assay of a wood preservative, didecyldimethylammonium chloride (DDAC), in aqueous solution, J. Wood Sci., 56 (2010), 314-318. doi: 10.1007/s10086-009-1102-9
    [36] Y. H. Kuo, C. H. Chen, S. L. Huang, New diterpenes from the heartwood of Chamaecyparis obtusa var. f ormosana, J. Nat. Prod., 61 (1998), 829-831. doi: 10.1021/np970531+
    [37] A. Rady, A. Adedeji, Assessing different processed meats for adulterants using visible-near-infrared spectroscopy, Meat Sci., 136 (2018), 59-67. doi: 10.1016/j.meatsci.2017.10.014
    [38] A. S. Wilde, S. A. Haughey, P. Galvin-King, C. T. Elliott, The feasibility of applying NIR and FT-IR fingerprinting to detect adulteration in black pepper, Food Control, 100 (2019), 1-7. doi: 10.1016/j.foodcont.2018.12.039
    [39] H. Y. Chien, A. T. Shih, B. S. Yang, V. K. Hsiao, Fast honey classification using infrared spectrum and machine learning, Math. Biosci. Eng., 16 (2019), 6874-6891. doi: 10.3934/mbe.2019344
    [40] Y. Liu, F. T. Li, Comparisons of two ultraviolet-vacuum ultraviolet radiation scales, Spectrosc. Spec. Anal., 21 (2001), 427-431.
    [41] J. Xing, S. R. Wang, F. T. Li, Comparisons between radiometric scales on UV-VUV radiant standard light sources, Opt. Precis. Eng., 12 (2004), 373-379.
    [42] K. J. Kaffka, L. S. Gyarmati, Qualitative (Comparative) analysis by near infrared spectroscopy, in Proceedings of ICNIRS 1990, Citeseer, (1991), 135.
    [43] H. Chen, C. Ferrari, M. Angiuli, J. Yao, C. Raspi, E. Bramanti, Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis, Carbohyd. Polym., 82 (2021), 772-778.
    [44] S. Moncayo, S. Manzoor, J. Rosales, J. Anzano, J. Caceres, Qualitative and quantitative analysis of milk for the detection of adulteration by Laser Induced Breakdown Spectroscopy (LIBS), Food Chem., 232 (2017), 322-328. doi: 10.1016/j.foodchem.2017.04.017
    [45] D. Verma, M. Meila, A comparison of spectral clustering algorithms, Univ. Washington Tech. Rep. UWCSE030501, 1 (2003), 1-18.
    [46] C. L. Yen, Principle of experimental design and its application in sport and physical education research, Phys. Edu. J., 47 (2014), 475-488.
    [47] W. M. Syu, Research on the application of poisonous tree fruit theory, Fo Guang University, Yilan, Taiwan, (2005), unpublished.
    [48] R. Taylor, Interpretation of the correlation coefficient: a basic review, J. Diagn. Med. Sonog., 6 (1990), 35-39. doi: 10.1177/875647939000600106
    [49] D. R. Cox, Regression models and life-tables, J. Roy. Stat. Soc. Series B, 34 (1972), 187-202.
    [50] C. C. Chen, Comment on correlation coefficient (r) and coefficient of determination (R.2), Chung Hsing University Biological systems engineering, Available from: http://bse.nchu.edu.tw/new_page_315.htm.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3118) PDF downloads(184) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog