Research article

Long-time behaviors of two stochastic mussel-algae models


  • Received: 25 July 2021 Accepted: 21 September 2021 Published: 27 September 2021
  • In this paper, we develop two stochastic mussel-algae models: one is autonomous and the other is periodic. For the autonomous model, we provide sufficient conditions for the extinction, nonpersistent in the mean and weak persistence, and demonstrate that the model possesses a unique ergodic stationary distribution by constructing some suitable Lyapunov functions. For the periodic model, we testify that it has a periodic solution. The theoretical findings are also applied to practice to dissect the effects of environmental perturbations on the growth of mussel.

    Citation: Dengxia Zhou, Meng Liu, Ke Qi, Zhijun Liu. Long-time behaviors of two stochastic mussel-algae models[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 8392-8414. doi: 10.3934/mbe.2021416

    Related Papers:

  • In this paper, we develop two stochastic mussel-algae models: one is autonomous and the other is periodic. For the autonomous model, we provide sufficient conditions for the extinction, nonpersistent in the mean and weak persistence, and demonstrate that the model possesses a unique ergodic stationary distribution by constructing some suitable Lyapunov functions. For the periodic model, we testify that it has a periodic solution. The theoretical findings are also applied to practice to dissect the effects of environmental perturbations on the growth of mussel.



    加载中


    [1] Quagga & Zebra Mussels, Available from: https://cisr.ucr.edu/invasive-species/quagga-zebra-mussels.
    [2] D. J. Wildish, D. D. Kristmanson, Importance to mussels of the benthic boundary layer, Can. J. Fish. Aquat. Sci., 41 (1984), 1618–1625. doi: 10.1139/f84-200
    [3] P. Dolmer, Algal concentration profiles above mussel beds, J. Sea Res., 43 (2000), 113–119. doi: 10.1016/S1385-1101(00)00005-8
    [4] J. Widdows, J. S. Lucas, M. D. Brinsley, P. N. Salkeld, F. J. Staff, Investigation of the effects of current velocity on mussel feeding and mussel bed stability using an annular flume, Helgol. Mar. Res., 56 (2002), 3–12. doi: 10.1007/s10152-001-0100-0
    [5] J. Koppel, M. Rietkerk, N. Dankers, P. Herman, Scale-dependent feedback and regular spatial patterns in young mussel beds, Am. Nat., 165 (2005), E66–E77. doi: 10.1086/428362
    [6] R. A. Cangelosi, D. J. Wollkind, B. J. Kealy-Dichone, I. Chaiya, Nonlinear stability analyses of Turing patterns for a mussel-algae model, J. Math. Biol., 70 (2015), 1249–1294. doi: 10.1007/s00285-014-0794-7
    [7] Y. L. Song, H. P. Jiang, Q. X. Liu, Y. Yuan, Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 16 (2018), 2030–2062.
    [8] R. A. Cangelosi, D. J. Wollkind, B. J. Kealy-Dichone, I. Chaiya, Nonlinear stability analyses of Turing patterns for a mussel-algae model, J. Math. Biol., 70 (2015), 1249–1294. doi: 10.1007/s00285-014-0794-7
    [9] M. Holzer, N. Popovic, Wavetrain solutions of a reaction-diffusion-advection model of mussel-algae interaction, SIAM. J. Appl. Dyn. Syst., 16 (2017), 431–478. doi: 10.1137/15M1040463
    [10] Z. L. Shen, J. J. Wei, Spatiotemporal patterns in a delayed reaction-diffusion mussel-algae model, Int. J. Bifur. Chaos., 29 (2019), 1950164. doi: 10.1142/S0218127419501645
    [11] Z. L. Shen, J. J. Wei, Stationary pattern of a reaction-diffusion mussel-algae model, Bull. Math. Biol., 82 (2020), 1–31. doi: 10.1007/s11538-019-00680-3
    [12] A. G. Brinkman, N. Dankers, M. van Stralen, An analysis of mussel bed habitats in the Dutch Wadden Sea, Helgol. Mar. Res., 56 (2002), 59–75. doi: 10.1007/s10152-001-0093-8
    [13] J. L. Yang, C. G. Satuito, W. Y. Bao, H. Kitamura, Larval settlement and metamorphosis of the mussel Mytilus galloprovincialis on different macroalgae, Mar. Biol., 152 (2007), 1121–1132. doi: 10.1007/s00227-007-0759-0
    [14] R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 2001.
    [15] C. Lu, L. J. Chen, Y. M. Wang, S. Gao, The threshold of stochastic Gilpin-Ayala model subject to general Lévy jumps, J. Appl. Math. Comput., 60 (2019), 731–747. doi: 10.1007/s12190-018-01234-x
    [16] G. D. Liu, H. K. Qi, Z. B. Chang, X. Z. Meng, Asymptotic stability of a stochastic May mutualism system, Comput. Math. Appl., 79 (2020), 735–745. doi: 10.1016/j.camwa.2019.07.022
    [17] J. Hu, Z. J. Liu, L. W. Wang, R. H. Tan, Extinction and stationary distribution of a competition system with distributed delays and higher order coupled noises, Math. Biosci. Eng, 17 (2020), 3240–3251. doi: 10.3934/mbe.2020184
    [18] M. Liu, C. Z. Bai, Optimal harvesting of a stochastic mutualism model with regime-switching, Appl. Math. Comput., 373 (2020), 125040.
    [19] Y. Zhao, L. You, D. Burkow, S. L. Yuan, Optimal harvesting strategy of a stochastic inshore-offshore hairtail fishery model driven by Lévy jumps in a polluted environment, Nonlinear Dyn., 95 (2019), 1529–1548. doi: 10.1007/s11071-018-4642-y
    [20] R. Durrett, Stochastic Calculus: A Practical Introduction, CRC Press, New York, 1996.
    [21] Z. Z. Liu, Z. W. Shen, H. Wang, Z. Jin, Analysis of a local diffusive SIR model with seasonality and nonlocal incidence of infection, SIAM J. Appl. Math., 79 (2019), 2218–2241. doi: 10.1137/18M1231493
    [22] X. N. Liu, Y. Wang, X. Q. Zhao, Dynamics of a climate-based periodic Chikungunya model with incubation period, Appl. Math. Model., 80 (2020), 151–168. doi: 10.1016/j.apm.2019.11.038
    [23] H. K. Qi, X. N. Leng, X. Z. Meng, T. H. Zhang, Periodic solution and ergodic stationary distribution of SEIS dynamical systems with active and latent patients, Qual. Theory Dyn. Syst., 18 (2019), 347–369. doi: 10.1007/s12346-018-0289-9
    [24] X. H. Zhang, D. Q. Jiang, Periodic solutions of a stochastic food-limited mutualism model, Mathodol. Comput. Appl., 22 (2020), 267–278.
    [25] C. Lu, X. H. Ding, Periodic solutions and stationary distribution for a stochastic predator-prey system with impulsive perturbations, Appl. Math. Comput., 350 (2019), 313–322.
    [26] X. R. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, Chichester, 1997.
    [27] R. S. Lipster, A strong law of large numbers for local martingales, Stochastics, 3 (1980), 217–228. doi: 10.1080/17442508008833146
    [28] R. Khasminskii, Stochastic Stability of Differential Equations, Springer, Berlin, 2011.
    [29] G. C. Cadee, J. Hegeman, Phytoplankton in the Marsdiep at the end of the 20th century: 30 years monitoring biomass, primary production, and Phaeocystis blooms, J. Sea. Res., 48 (2002), 97–110. doi: 10.1016/S1385-1101(02)00161-2
    [30] D. K. Muschenheim, C. R. Newell, Utilization of seston flux over a mussel bed, Mar. Ecol. Prog. Ser., 85 (1992), 131–136. doi: 10.3354/meps085131
    [31] H. Scholten, A. C. Smaal, Responses of Mytilus edulis L. to varying food concentrations: testing EMMY, an ecophysiological model, J. Exp. Mar. Biol. Ecol., 219 (1998), 217–239. doi: 10.1016/S0022-0981(97)00182-2
    [32] H. U. Riisgard, On measurement of filtration rates in bivalves–-the stony road to reliable data: review and interpretation, Mar. Ecol. Prog. Ser., 211 (2001), 275–291. doi: 10.3354/meps211275
    [33] A. A. Sukhotin, D. Abele, H. O. Portner, Growth, metabolism and lipid peroxidation in Mytilus edulis: age and size effects, Mar. Ecol. Prog. Ser., 226 (2002), 223–234. doi: 10.3354/meps226223
    [34] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 5250–546.
    [35] D. C. Shangguan, Z. J. Liu, L. W. Wang, R. H. Tan, A stochastic epidemic model with infectivity in incubation period and homestead-isolation on the susceptible, J. Appl. Math. Comput., 67 (2021), 785–805. doi: 10.1007/s12190-021-01504-1
    [36] X. J. Mu, Q. M. Zhang, L. B. Rong, Optimal vaccination strategy for an SIRS model with imprecise parameters and Lévy noise, J. Frankl. Inst., 356 (2019), 11385–11413. doi: 10.1016/j.jfranklin.2019.03.043
    [37] X. W. Yu, S. L. Yuan, T. H. Zhang, Survival and ergodicity of a stochastic phytoplankton-zooplankton modelwith toxin-producing phytoplankton in an impulsive polluted environment, Appl. Math. Comput., 347 (2019), 249–264.
    [38] D. M. Li, T. Guo, Y. J. Xu, The effects of impulsive toxicant input on a single-species population in a small polluted environment, Math. Biosci. Eng., 16 (2019), 8179–8194. doi: 10.3934/mbe.2019413
    [39] Q. Liu, D. Q. Jiang, T. Hayat, A. Alsaedi, Dynamical behavior of stochastic predator-prey models with distributed delay and general functional response, Stoch. Anal. Appl., 38 (2020), 403–426. doi: 10.1080/07362994.2019.1695628
    [40] L. L. Liu, R. Xu, Z. Jin, Global dynamics of a spatial heterogeneous viral infection model with intracellular delay and nonlocal diffusion, Appl. Math. Model., 82 (2020), 150–167. doi: 10.1016/j.apm.2020.01.035
    [41] P. A. Naik, K. M. Owolabi, M. Yavuz, J. Zu, Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos Solitons Fractals, 140 (2020), 110272. doi: 10.1016/j.chaos.2020.110272
    [42] M. Yavuz, N. Sene, Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate, Fractal Fract., 4 (2020), 35. doi: 10.3390/fractalfract4030035
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2145) PDF downloads(93) Cited by(7)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog