In this paper, we present a detailed study of the following system of difference equations
$ \begin{equation*} x_{n+1} = \frac{a}{1+y_{n}x_{n-1}}, \ y_{n+1} = \frac{b}{1+x_{n}y_{n-1}}, \ n\in\mathbb{N}_{0}, \end{equation*} $
where the parameters $ a $, $ b $, and the initial values $ x_{-1}, \; x_{0}, \ y_{-1}, \; y_{0} $ are arbitrary real numbers such that $ x_{n} $ and $ y_{n} $ are defined. We mainly show by using a practical method that the general solution of the above system can be represented by characteristic zeros of the associated third-order linear equation. Also, we characterized the well-defined solutions of the system. Finally, we study long-term behavior of the well-defined solutions by using the obtained representation forms.
Citation: Durhasan Turgut Tollu, İbrahim Yalçınkaya, Hijaz Ahmad, Shao-Wen Yao. A detailed study on a solvable system related to the linear fractional difference equation[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 5392-5408. doi: 10.3934/mbe.2021273
In this paper, we present a detailed study of the following system of difference equations
$ \begin{equation*} x_{n+1} = \frac{a}{1+y_{n}x_{n-1}}, \ y_{n+1} = \frac{b}{1+x_{n}y_{n-1}}, \ n\in\mathbb{N}_{0}, \end{equation*} $
where the parameters $ a $, $ b $, and the initial values $ x_{-1}, \; x_{0}, \ y_{-1}, \; y_{0} $ are arbitrary real numbers such that $ x_{n} $ and $ y_{n} $ are defined. We mainly show by using a practical method that the general solution of the above system can be represented by characteristic zeros of the associated third-order linear equation. Also, we characterized the well-defined solutions of the system. Finally, we study long-term behavior of the well-defined solutions by using the obtained representation forms.
[1] | K. A. Chrysafis, B. K. Papadopoulos, G. Papaschinopoulos, On the fuzzy difference equations of finance, Fuzzy Sets Syst., 159 (2008), 3259–3270. doi: 10.1016/j.fss.2008.06.007 |
[2] | E. M. Elsayed, On the solutions and periodic nature of some systems of difference equations, Int. J. Biomath., 7 (2014), 1450067. doi: 10.1142/S1793524514500673 |
[3] | M. A. Akbar, L. Akinyemi, S. W. Yao, A. Jhangeer, H. Rezazadeh, M. M. Khater, et al., Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method, Results Phys., 25 (2021), 104228. doi: 10.1016/j.rinp.2021.104228 |
[4] | E. C. Pielou, Population and Community Ecology: Principles and Methods, CRC Press, London, 1974. |
[5] | H. Ahmad, A. R. Seadawy, T. A. Khan, P. Thounthong, Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations, J. Taibah Univ. Sci., 14 (2020), 346–358. doi: 10.1080/16583655.2020.1741943 |
[6] | V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Springer Science & Business Media, 1993. |
[7] | D. T. Tollu, Y. Yazlik, N. Taskara, On global behavior of a system of nonlinear difference equations of order two, Adv. Stud. Contemp. Math., 27 (2017), 373–383. |
[8] | N. Akgüneş, A. Gurbanlyyev, On the system of rational difference equations $x_{n} = f\left(x_{n-a_{1}}, y_{n-b_{1}}\right) $, $y_{n} = g\left(y_{n-b_{2}}, z_{n-c_{1}}\right) $, $z_{n} = h\left(z_{n-c_{2}}, x_{n-a_{2}}\right) $, Selcuk J. Appl. Math., 15 (2014), 1–8. |
[9] | A. M. Amleh, E. Camouzi, G. Ladas, On the dynamics of a rational difference equation, Part I, Int. J. Difference Equations, 3 (2008), 1–35. |
[10] | T. Cömert, I. Yalçınkaya, D. T. Tollu, A study on the positive solutions of an exponential type difference equation, Electron. J. Math. Anal. Appl., 6 (2018), 276–286. |
[11] | E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, Qualitative behavior of higher order difference equation, Soochow J. Math., 33 (2007), 861–873. |
[12] | A. S. Kurbanlı, C. Çinar, I. Yalçinkaya, On the behavior of positive solutions of the system of rational difference equations $x_{n+1} = \frac{x_{n-1}}{y_{n}x_{n-1}+1}, y_{n+1} = \frac{y_{n-1}}{ x_{n}y_{n-1}+1}$, Math. Comput. Model., 53 (2011), 1261–1267. doi: 10.1016/j.mcm.2010.12.009 |
[13] | N. Taskara, K. Uslu, D. T. Tollu, The periodicity and solutions of the rational difference equation with periodic coefficients, Comput. Math. Appl., 62 (2011), 1807–1813. doi: 10.1016/j.camwa.2011.06.024 |
[14] | I. Yalcinkaya, C. Çinar, D. Simsek, Global asymptotic stability of a system of difference equations, Appl. Anal., 87 (2008), 677–687. doi: 10.1080/00036810802140657 |
[15] | I. Yalcinkaya, C. Çinar, A. Gelisken, On the Recursive Sequence $x_{n} = \max \left\{ x_{n}, A\right\} /x_{n}^{2}x_{n-1}$, Discrete Dyn. Nat. Soc., 2010 (2010), 1–13. |
[16] | I. Yalcinkaya, D. T. Tollu, Global behavior of a second-order system of difference equations, Adv. Stud. Contemp. Math., 26 (2016), 653–667. |
[17] | Y. Akrour, N. Touafek, Y. Halim, On a system of difference equations of second order solved in a closed form, Miskolc Math. Notes, 20 (2019), 701–717. doi: 10.18514/MMN.2019.2923 |
[18] | N. Haddad, N. Touafek, J. F. T. Rabago, Well-defined solutions of a system of difference equations, J. Appl. Math. Comput., 56 (2018), 439–458. doi: 10.1007/s12190-017-1081-8 |
[19] | Y. Halim, M. Bayram, On the solutions of a higher-order difference equation in terms of generalized Fibonacci sequences, Math. Methods Appl. Sci., 11 (2016), 2974–2982. |
[20] | Y. Halim, J. F. T. Rabago, On the solutions of a second-order difference equation in terms of generalized Padovan sequences, Math. Slovaca, 68 (2018), 625–638. doi: 10.1515/ms-2017-0130 |
[21] | T. F. Ibrahim, N. Touafek, On a third order rationaldifference equation with variable coeffitients, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 20 (2013), 251–264. |
[22] | M. Kara, Y. Yazlik, Solvability of a system of nonlinear difference equations of higher order, Turk. J. Math., 43 (2019), 1533–1565. doi: 10.3906/mat-1902-24 |
[23] | M. Kara, Y. Yazlik, On the system of difference equations $x_{n} = \frac{x_{n-2} \ \ \ y_{n-3}}{{y}_{n-1} \ \ \ \left(a_{n}+b_{n} \ \ \ x_{n-2} \ \ \ y_{n-3} \ \ \ \right) }, y_{n} = \frac{y_{n-2} \ \ \ x_{n-3}}{ x_{n-1} \ \ \ \left(\alpha _{n}+\beta _{n} \ \ \ y_{n-2} \ \ \ x_{n-3} \ \ \ \right) }$, J. Math. Ext., 14 (2020), 41–59. |
[24] | M. Kara Y. Yazlik, D. T. Tollu, Solvability of a system of higher order nonlinear difference equations, Hacettepe J. Math. Stat., 49 (2020), 1566–1593. |
[25] | M. Kara, N. Touafek, Y. Yazlik, Well-defined solutions of a three-dimensional system of difference equations, Gazi Univ. J. Sci., 33 (2020), 767–778. |
[26] | Y. Akrour, M. Kara, N. Touafek, Y. Yazlik, Solutions formulas for some general systems of nonlinear difference equations, Miskolc Math. Notes, 2021, Accepted. |
[27] | S. Stević, B. Iričanin, W. Kosmala, Z. Šmarda, Representation of solutions of a solvable nonlinear difference equation of second order, Electron. J. Qual. Theory Differ. Equations, 2018 (2018), 1–18. |
[28] | N. Taskara, D. T. Tollu, N. Touafek, Y. Yazlik, A solvable system of difference equations, J. Korean. Math. Soc., 35 (2020), 301–319. |
[29] | D. T. Tollu, Y. Yazlik, N. Taskara, On a solvable nonlinear difference equation of higher order, Turk. J. Mat., 42 (2018), 1765–1778. doi: 10.3906/mat-1705-33 |
[30] | Y. Yazlik, D. T. Tollu, N. Taskara, On the solutions of a three-dimensional system of difference equations, Kuwait J. Sci., 43 (2016), 95–111. |
[31] | Y. Yazlik, M. Kara, On a solvable system of difference equations of higher-order with period two coefficients, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68 (2019), 1675–1693. |
[32] | Y. Yazlik, M. Gungor, On the solvable of nonlinear difference equation of sixth-order, J. Sci. Arts, 19 (2019), 399–414. |
[33] | Y. Yazlik, M. Kara, Beşinci mertebeden fark denklem sisteminin çözülebilirliği üzerine, Eskiş ehir Tech. Univ. J. Sci. Technol. B Theor. Sci., 7 (2019), 29–45. |
[34] | L. Brand, A sequence defined by a difference equation. Am. Math. Mon., 62 (1955), 489–492. |
[35] | E. A. Grove, G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, 2004. |
[36] | R. Abo-Zeid, Behavior of solutions of a second order rational difference equation, Math. Morav., 23 (2019), 11–25. doi: 10.5937/MatMor1901011A |
[37] | M. Gümüş, R. Abo-Zeid, Global behavior of a rational second order difference equation, J. Appl. Math. Comput., 62 (2019), 119–133. |
[38] | M. Dehghan, R. Mazrooei-Sebdani, H. Sedaghat, Global behaviour of the Riccati difference equation of order two, J. Differ. Equations Appl., 17 (2011), 467–477. doi: 10.1080/10236190903049017 |
[39] | M. Kara, D. T. Tollu, Y. Yazlik, Global behavior of two-dimensional difference equations system with two periodic coefficients, Tbil. Math. J., 13 (2020), 49–64. |
[40] | D. T. Tollu, Periodic Solutions of a System of Nonlinear Difference Equations with Periodic Coefficients, J. Math., 2020 (2020), 1–7. |
[41] | A. Raouf, Global behaviour of the rational Riccati difference equation of order two: the general case, J. Differ. Equations Appl., 18 (2012), 947–961. doi: 10.1080/10236198.2010.532790 |
[42] | G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford University Press, New York, 1979. |