[1]
|
G. A. Cisneros, M. Karttunen, P. Ren, C. Sagui, Classical electrostatics for biomolecular simulations, Chem. Rev., 114 (2014), 779-814. doi: 10.1021/cr300461d
|
[2]
|
B. Honig, A. Nicholls, Classical electrostatics in biology and chemistry, Science, 268 (1995), 1144-1149. doi: 10.1126/science.7761829
|
[3]
|
Z. Zhang, S. Witham, E. Alexov, On the role of electrostatics in protein-protein interactions, Phys. Biol., 8 (2011), 035001. doi: 10.1088/1478-3975/8/3/035001
|
[4]
|
J. Batra, A. Szabó, T. R. Caulfield, A. S. Soares, M. Sahin-Tóth, E. S. Radisky, Long-range electrostatic complementarity governs substrate recognition by human chymotrypsin C, a key regulator of digestive enzyme activation, J. Biol. Chem. 288 (2013), 9848-9859. doi: 10.1074/jbc.M113.457382
|
[5]
|
H. Ikeuchi, Y. M. Ahn, T. Otokawa, B. Watanabe, L. Hegazy, J. Hiratake, et al., A sulfoximine-based inhibitor of human asparagine synthetase kills L-asparaginase-resistant leukemia cells, Bioorg. Med. Chem., 20 (2012), 5915-5927. doi: 10.1016/j.bmc.2012.07.047
|
[6]
|
X. Huang, F. Dong, H. X. Zhou, Electrostatic recognition and induced fit in the κ-PVIIA toxin binding to Shaker potassium channel, J. Am. Chem. Soc., 127 (2005), 6836-6849. doi: 10.1021/ja042641q
|
[7]
|
E. Alexov, Numerical calculations of the pH of maximal protein stability: The effect of the sequence composition and three-dimensional structure, Eur. J. Biochemi., 271 (2004), 173-185.
|
[8]
|
A. Isvoran, C. Craescu, E. Alexov, Electrostatic control of the overall shape of calmodulin: numerical calculations, Eur. Biophy. J., 36 (2007), 225-237. doi: 10.1007/s00249-006-0123-1
|
[9]
|
R. C. Mitra, Z. Zhang, E. Alexov, In silico modeling of pH-optimum of protein-protein binding, Proteins: Struct., Funct., Bioinf., 79 (2011), 925-936. doi: 10.1002/prot.22931
|
[10]
|
A. V. Onufriev, E. Alexov, Protonation and pK changes in protein-ligand binding, Q. Rev. Biophys., 46 (2013), 181-209. doi: 10.1017/S0033583513000024
|
[11]
|
K. Talley, E. Alexov, On the pH-optimum of activity and stability of proteins, Proteins: Struct., Funct., Bioinf., 78 (2010), 2699-2706.
|
[12]
|
M. Petukh, T. Kimmet, E. Alexov, BION web server: predicting non-specifically bound surface ions, Bioinformatics, 29 (2013), 805-806. doi: 10.1093/bioinformatics/btt032
|
[13]
|
M. Petukh, M. Zhang, E. Alexov, Statistical investigation of surface bound ions and further development of BION server to include p H and salt dependence, J. Comput. Chem., 36 (2015), 2381-2393. doi: 10.1002/jcc.24218
|
[14]
|
M. Petukh, M. Zhenirovskyy, C. Li, L. Li, L. Wang, E. Alexov, Predicting nonspecific ion binding using DelPhi, Biophys. J., 102 (2012), 2885-2893. doi: 10.1016/j.bpj.2012.05.013
|
[15]
|
E. Alexov, E. L. Mehler, N. Baker, A. M. Baptista, Y. Huang, F. Milletti, et al., Progress in the prediction of pKa values in proteins, Proteins: Struct., Funct., Bioinf., 79 (2011), 3260-3275. doi: 10.1002/prot.23189
|
[16]
|
R. E. Georgescu, E. G. Alexov, M. R. Gunner, Combining conformational flexibility and continuum electrostatics for calculating pKas in proteins, Biophys. J., 83 (2002), 1731-1748. doi: 10.1016/S0006-3495(02)73940-4
|
[17]
|
M. R. Gunner, N. A. Baker, Continuum electrostatics approaches to calculating pKas and Ems in proteins, Methods Enzymol., 578 (2016), 1-20. doi: 10.1016/bs.mie.2016.05.052
|
[18]
|
C. Bertonati, B. Honig, E. Alexov, Poisson-Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies, Biophys. J., 92 (2007), 1891-1899. doi: 10.1529/biophysj.106.092122
|
[19]
|
J. H. Bredenberg, C. Russo, M. O. Fenley, Salt-mediated electrostatics in the association of TATA binding proteins to DNA: a combined molecular mechanics/Poisson-Boltzmann study, Biophys. J., 94 (2008), 4634-4645. doi: 10.1529/biophysj.107.125609
|
[20]
|
A. Ghosh, C. S. Rapp, R. A. Friesner, Generalized Born model based on a surface integral formulation, J. Phys. Chem. B, 102 (1998), 10983-10990. doi: 10.1021/jp982533o
|
[21]
|
P. Grochowski, J. Trylska, Continuum molecular electrostatics, salt effects, and counterion binding-a review of the Poisson-Boltzmann theory and its modifications, Biopolym.: Orig. Res. Biomol., 89 (2008), 93-113.
|
[22]
|
N. A. Baker, Poisson-Boltzmann methods for biomolecular electrostatics, Methods Enzymol., 383 (2004), 94-118. doi: 10.1016/S0076-6879(04)83005-2
|
[23]
|
L. Xiao, J. Diao, D. A. Greene, J. Wang, R. Luo, A continuum Poisson-Boltzmann model for membrane channel proteins, J. Chem. Theory Comput., 13 (2017), 3398-3412. doi: 10.1021/acs.jctc.7b00382
|
[24]
|
C. Li, L. Li, M. Petukh, E Alexov, Progress in developing Poisson-Boltzmann equation solvers, Comput. Math. Biophys., 1 (2013), 42-62. doi: 10.2478/mlbmb-2013-0002
|
[25]
|
J. Mongan, C. Simmerling, J. A. McCammon, D. A. Case, A. Onufriev, Generalized Born model with a simple, robust molecular volume correction, J. Chem. Theory Comput., 3 (2007), 156-169. doi: 10.1021/ct600085e
|
[26]
|
M. Feig, A. Onufriev, M. S. Lee, W. Im, D. A. Case, C. L. Brooks III, Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures, J. Comput. Chem., 25 (2004), 265-284. doi: 10.1002/jcc.10378
|
[27]
|
L. Li, C. Li, S. Sarkar, J. Zhang, S. Witham, Z. Zhang, et al., DelPhi: A comprehensive suite for DelPhi software and associated resources, BMC Biophys., 5 (2012), 9. doi: 10.1186/2046-1682-5-9
|
[28]
|
W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera, B. Honig, Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects, J. Comput. Chem., 23 (2002), 128-137. doi: 10.1002/jcc.1161
|
[29]
|
W. M. Botello-Smith, X. Liu, Q. Cai, Z. Li, H. Zhao, R. Luo, Numerical Poisson-Boltzmann model for continuum membrane systems, Chemi. Phys. Lett., 555 (2013), 274-281. doi: 10.1016/j.cplett.2012.10.081
|
[30]
|
Y. Zhou, S. Zhao, M. Feig, G. W. Wei, High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources, J. Comput. Phys., 213 (2006), 1-30. doi: 10.1016/j.jcp.2005.07.022
|
[31]
|
E. Jurrus, D. Engel, K. Star, K. Monson, J. Brandi, L. E. Felberg, et al., Improvements to the APBS biomolecular solvation software suite, Protein Sci., 27 (2018), 112-128. doi: 10.1002/pro.3280
|
[32]
|
A. H. Boschitsch, M. O. Fenley, A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation, J. Comput. Chem., 28 (2007), 909-921. doi: 10.1002/jcc.20565
|
[33]
|
A. H. Boschitsch, M. O. Fenley, Hybrid boundary element and finite difference method for solving the nonlinear Poisson-Boltzmann equation, J. Comput. Chem., 25 (2004), 935-955. doi: 10.1002/jcc.20000
|
[34]
|
C. Li, Z. Jia, A. Chakravorty, S. Pahari, Y. Peng, S. Basu, et al., DelPhi Suite: New Developments and Review of Functionalities, J. Comput. Chem., 40 (2019), 2502-2508. doi: 10.1002/jcc.26006
|
[35]
|
I. Klapper, R. Hagstrom, R. Fine, K. Sharp, B. Honig, Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: Effects of ionic strength and amino-acid modification, Proteins: Struct., Funct., Bioinf., 1 (1986), 47-59. doi: 10.1002/prot.340010109
|
[36]
|
W. Im, D. Beglov, B. Roux, Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation, Comput. Phys. Commun., 111 (1998), 59-75. doi: 10.1016/S0010-4655(98)00016-2
|
[37]
|
W. Rocchia, E. Alexov, B. Honig, Extending the applicability of the nonlinear Poisson- Boltzmann equation: multiple dielectric constants and multivalent ions, J. Phys. Chem. B, 105 (2001), 6507-6514. doi: 10.1021/jp010454y
|
[38]
|
B. A. Luty, M. E. Davis, J. A. McCammon, Solving the finite-difference non-linear Poisson-Boltzmann equation, J. Comput. Chem., 13 (1992), 1114-1118. doi: 10.1002/jcc.540130911
|
[39]
|
M. J. Holst, F. Saied, Numerical solution of the nonlinear Poisson-Boltzmann equation: developing more robust and efficient methods, J. Comput. Chem., 16 (1995), 337-364. doi: 10.1002/jcc.540160308
|
[40]
|
Q. Cai, M. J. Hsieh, J. Wang, R. Luo, Performance of nonlinear finite-difference Poisson- Boltzmann solvers, J. Chem. Theory Comput., 6 (2010), 203-211. doi: 10.1021/ct900381r
|
[41]
|
A. Shestakov, J. Milovich, A. Noy, Solution of the nonlinear Poisson-Boltzmann equation using pseudo-transient continuation and the finite element method, J. Colloid Interface Sci., 247 (2002), 62-79. doi: 10.1006/jcis.2001.8033
|
[42]
|
A. Sayyed-Ahmad, K. Tuncay, P. J. Ortoleva, Efficient solution technique for solving the Poisson-Boltzmann equation, J. Comput. Chem., 25 (2004), 1068-1074. doi: 10.1002/jcc.20039
|
[43]
|
W. Geng, S. Zhao, Fully implicit ADI schemes for solving the nonlinear Poisson-Boltzmann equation, Comput. Math. Biophys., 1 (2013), 109-123. doi: 10.2478/mlbmb-2013-0006
|
[44]
|
A. Nicholls, B. Honig, A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation, J. Comput. Chem., 12 (1991), 435-445. doi: 10.1002/jcc.540120405
|