Citation: Xiaoli Hu, Shengmao Fu. Global boundedness and stability for a chemotaxis model of Boló’s concentric sclerosis[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5134-5146. doi: 10.3934/mbe.2020277
[1] | O. Marburg, Die sogenannte akute multiple sklerose, J. Psychiatrie Neurol., 27 (1906), 211-312. |
[2] | J. Baló, Encephaliyies periaxialis concentrica, Arch. Neur. Psych., 19 (1928), 242-264. |
[3] | C. B. Courville, Concentric sclerosis, in Multiple Sclsrosis and Pther Demyelinating Dieases (eds. P. J. Vinken and G. W. Bruyn), Amsterdam: North Holland, (1970), 51-437. |
[4] | Y. Kuroiwa, Concentric sclerosis, in Demyelinating Dieases (eds. J. C. Koetaier), Amsterdam: Elsevier Science Publishers, (1985), 17-409. |
[5] | S. Christine, S. Ludwin, T. Tabira, A. Guseo, C. F. Lucchinetti, L. Leel-ssy, et al., Tissue preconditioning may explain concentric lesions in Balós type of multiple sclerosis, Brain, 128 (2005), 979-987. |
[6] | R. H. Khonsari, V. Calvez, The origins of concentric demyelination: Self-organization in the human brain, Plos One, 2 (2007), e150. |
[7] | V. Calveza, R. H. Khonsarib, Mathematical description of concentric demyelination in the human brain: Self-organization models from Liesegang rings to chemotaxis, Math. Comput. Modell., 47 (2008), 726-742. |
[8] | L. Peferoen, D. Vogel, K. Ummenthum, M. Breur, P. Heijnen, W. H. Gerritsen, et al., Activation status of human microglia is dependent on lesion formation stage and remyelination in multiple sclerosis, J. Neur. Exp. Neurol., 74 (2015), 48-63. |
[9] | T. Hillen, K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280-301. |
[10] | K. Painter, T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Quart., 10 (2002), 501-543. |
[11] | Z. A. Wang, T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos, 17 (2007), 037108. |
[12] | P. Zheng, C. L. Mu, X. G. Hu, Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source, Discrete. Contin. Dyn. Syst. Ser. A., 35 (2015), 2299-2323. |
[13] | M. J. Ma, C. H. Ou, Z. A. Wang, Stationary solutions of a volume-filling chemotaxis model with logistic growth and their stability, SIAM J. Appl. Math., 72 (2012), 740-766. |
[14] | Y. Z. Han, Z. F. Li, J. C. Tao, M. J. Ma, Pattern formation for a volume-filling chemotaxia model with logistic growth, J. Math. Anal. Appl., 448 (2017), 885-907. |
[15] | M. J. Ma, M. Y. Gao, R. Carretero-González, Pattern formtion for a two-dimensional reaction-diffusion model with chemotaxis, J. Math. Anal. Appl., 475 (2019), 1883-1909. |
[16] | M. Burger, M. D. Francesco, Y. Dolak-Struss, The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion, SIAM J. Math. Anal., 38 (2006), 1288-1315. |
[17] | H. J. Guo, S. I. Zheng, B. Liang, Asympotic behaviour of solutions to the Keller-Segel model for chemotaxis with prevention of overcrowding, Nonlinearity., 26 (2013), 405-416. |
[18] | M. Winkler, K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064. |
[19] | Z. A. Wang, M. Winkler, D. Wrzosek, Singularity formation in chemotaxis systems with volume-filling effect, Nonlinearity, 24 (2011), 3279-3297. |
[20] | X. L. Hu, S. M. Fu, S. B. Ai, Global asymptotic behavior of solutions for a parabolic-parabolic-ODE chemotaxis system modeling multiple sclerosis, J. Diff. Equ., 269 (2020), 6875-6898. |
[21] | D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Springer Berlin, New York, 1981. |
[22] | S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for the solutions of elliptic differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math., 12 (1959), 623-727. |
[23] | S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for the solutions of elliptic differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math., 17 (1964), 35-92. |
[24] | M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Diff. Equ., 248 (2010), 2889-2905. |
[25] | X. L. Bai, M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583. |
[26] | H. L. Jin, Y. J. Kim, Z. A. Wang, Boundedness, stabilization, and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 78 (2018), 1632-1657. |