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Abstract: Baló’s concentric sclerosis (BCS) is considered a variant of inflammatory demyelinating
disease closely related to multiple sclerosis characterized by a discrete concentrically layered lesion in
the cerebal white matter. Khonsari and Calvez (Plos ONE. 2(2007)) proposed a parabolic-elliptic-ODE
chemotaxis model for BCS which describes the evolution of the densities of activated macrophages,
cytokine and apoptotic oligodendrocytes. Because “classically activated” M1 microglia can produce
cytotoxicity, we introduce a linear production term from the activated microglia in the ODE for
pro-inflammatory cytotoxic. For the new BCS chemotaxis model, we first investigate the uniform
boundedness and global existence of classical solutions, and then get a range of the chemosensitive
rate χ where the unique positive equilibrium point is exponentially asymptotically stable.
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behavior

1. Introduction

Baló’s concentric sclerosis (BCS) was first described by Marburg [1] in 1906, but became more
widely known until 1928 when the Hungarian neuropathologist Josef Baló published a report of
a 23-year-old student with right hemiparesis, aphasia, and papilledema, who at autopsy had several
lesions of the cerebral white matter, with an unusual concentric pattern of demyelination [2].
Traditionally, BCS is often regarded as a rare variant of multiple sclerosis (MS). Clinically, BCS is
most often characterized by an acute onset with steady progression to major disability and death with
months, thus resembling Marburg’s acute MS [3, 4]. Its pathological hallmarks are oligodendrocyte
loss and large demyelinated lesions characterized by the annual ring-like alternating pattern of
demyelinating and myelin-preserved regions. In [5], the authors found that tissue preconditioning
might explain why Baló lesions develop a concentric pattern. According to the tissue preconditioning
theory and the analogies between Baló’s sclerosis and the Liesegang periodic precipitation
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phenomenon, Khonsari and Calvez [6] established the following chemotaxis model

ũτ = D∆Xũ︸︷︷︸
diffusion of

activated macrophages

− ∇X · (χ̃ũ(ū − ũ)∇ṽ)︸                 ︷︷                 ︸
chemoattractant attracts

surrounding activated macrophages

+ µũ(ū − ũ)︸     ︷︷     ︸
production of activated macrophages

,

−ε̃∆X ṽ︸ ︷︷ ︸
diffusion of chemoattractant

= −α̃ṽ + β̃w̃︸     ︷︷     ︸
degradation\production of chemoattractant

,

w̃τ = κ
ũ

ū + ũ
ũ(w̄ − w̃)︸             ︷︷             ︸

destruction of oligodendrocytes

,

(1.1)

where ũ, ṽ and w̃ are, respectively, the density of activated macrophages, the concentration of
chemoattractants and density of destroyed oligodendrocytes. ū and w̄ represent the characteristic
densities of macrophages and oligodendrocytes respectively.

By numerical simulation, the authors in [6, 7] indicated that model (1.1) only produces
heterogeneous concentric demyelination and homogeneous demyelinated plaques as χ value
gradually increases. In addition to the chemoattractant produced by destroyed oligodendrocytes,
“classically activated” M1 microglia also can release cytotoxicity [8]. Therefore we introduce a linear
production term into the second equation of model (1.1), and establish the following BCS chemotaxis
model with linear production term

ũτ = D∆Xũ − ∇X · (χ̃ũ(ū − ũ)∇ṽ) + µũ(ū − ũ),
−ε̃∆X ṽ + α̃ṽ = β̃w̃ + γ̃ũ,

w̃τ = κ
ũ

ū + ũ
ũ(w̄ − w̃).

(1.2)

Before going to details, let us simplify model (1.2) with the following scaling

u = ũ
ū , v =

µūε̃
D ṽ, w = w̃

w̄ , t = µūτ, x =

√
µū
D X,

χ =
χ̃

ε̃µ
, α = Dα̃

ε̃µū , β = β̃w̄, γ = γ̃ū, δ = κ
µ
,

then model (1.2) takes the form

ut = ∆u − ∇ · (χu(1 − u)∇v) + u(1 − u), x ∈ Ω, t > 0,
−∆v + αv = βw + γu, x ∈ Ω, t > 0,
wt = δ

u
1 + u

u(1 − w), x ∈ Ω, t > 0,

∂ηu = ∂ηv = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.3)

where Ω ⊂ Rn (n ≥ 1) is a smooth bounded domain, η is the outward normal vector to ∂Ω, ∂η = ∂/∂η,
δ balances the speed of the front and the intensity of the macrophages in damaging the myelin. The
parameters χ, α and δ are positive constants as well as β, γ are nonnegative constants.

If δ = 0, then model (1.3) is a parabolic-elliptic chemotaxis system with volume-filling effect and
logistic source. In order to be more line with biologically realistic mechanisms, Hillen and Painter
[9,10] considered the finite size of individual cells-“volume-filling” and derived volume-filling models{

ut = ∇ · (Du(q(u) − q′(u)u)∇u − q(u)uχ(v)∇v) + f (u, v),
vt = Dv∆v + g(u, v).

(1.4)
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q(u) is the probability of the cell finding space at its neighbouring location. It is also called the
squeezing probability, which reflects the elastic properties of cells. For the linear choice of
q(u) = 1 − u, global existence of solutions to model (1.4) in any space dimension are investigated
in [9]. Wang and Thomas [11] established the global existence of classical solutions and given
necessary and sufficient conditions for spatial pattern formation to a generalized volume-filling
chemotaxis model. For a chemotaxis system with generalized volume-filling effect and logistic
source, the global boundedness and finite time blow-up of solutions are obtained in [12].
Furthermore, the pattern formation of the volume-filling chemotaxis systems with logistic source and
both linear diffusion and nonlinear diffusion are shown in [13–15] by the weakly nonlinear analysis.
For parabolic-elliptic Keller-Segel volume-filling chemotaxis model with linear squeezing probability,
asymptotic behavior of solutions is studied both in the whole space Rn [16] and on bounded
domains [17]. Moreover, the boundedness and singularity formation in parabolic-elliptic Keller-Segel
volume-filling chemotaxis model with nonlinear squeezing probability are discussed in [18, 19].

Very recently, we [20] investigated the uniform boundedness and global asymptotic stability for the
following chemotaxis model of multiple sclerosis

ut = ∆u − ∇ · (χ(u)∇v) + u(1 − u), χ(u) = χ
u

1 + u
, x ∈ Ω, t > 0,

τvt = ∆v − βv + αw + γu, x ∈ Ω, t > 0,
wt = δ

u
1 + u

u(1 − w), x ∈ Ω, t > 0,

subject to the homogeneous Neumann boundary conditions.
In this paper, we are first devoted to studying the local existence and uniform boundedness of the

unique classical solution to system (1.3) by using Neumann heat semigroup arguments, Banach fixed
point theorem, parabolic Schauder estimate and elliptic regularity theory. Then we discuss that
exponential asymptotic stability of the positive equilibrium point to system (1.3) by constructing
Lyapunov function.

Although, in the pathological mechanism of BCS, the initial data in model (1.3) satisfy
0 < u0(x) ≤ 1,w0(x) = 0, we mathematically assume that{

u0(x) ∈ C0(Ω̄) with 0 ≤,. u0(x) ≤ 1 in Ω,

w0(x) ∈ C2+ν(Ω̄) with 0 < ν < 1 and 0 ≤ w0(x) ≤ 1 in Ω.
(1.5)

It is because the condition (1.5) implies u(x, t0) > 0 for any t0 > 0 by the strong maximum principle.
The following theorems give the main results of this paper.

Theorem 1.1. Assume that the initial data (u0(x),w0(x)) satisfy the condition (1.5). Then model (1.3)
possesses a unique global solution (u(x, t), v(x, t),w(x, t)) satisfying

u(x, t) ∈ C0(Ω̄ × [0,∞)) ∩C2,1(Ω̄ × (0,∞)),
v(x, t) ∈ C0((0,∞),C2(Ω̄)),
w(x, t) ∈ C2,1(Ω̄ × [0,∞)),

(1.6)

and
0 < u(x, t) ≤ 1, 0 ≤ v(x, t) ≤

β + γ

α
, w0(x) ≤ w(x, t) ≤ 1, in Ω̄ × (0,∞).
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Moreover, there exist a ν ∈ (0, 1) and M > 0 such that

‖u‖C2+ν,1+ν/2(Ω̄×[1,∞)) + ‖v‖C0([1,∞),C2+ν(Ω̄)) + ‖w‖Cν,1+ν/2(Ω̄×[1,∞)) ≤ M. (1.7)

Theorem 1.2. Assume that β ≥ 0, γ ≥ 0, β + γ > 0 and

χ <


min

{
2
√

2α
β
, 2
√

2α
γ

}
, β > 0, γ > 0,

2
√

2α
β
, β > 0, γ = 0,

2
√

2α
γ
, β = 0, γ > 0.

(1.8)

Let (u, v,w) be a positive classical solution of the problem (1.3), (1.5). Then

‖u(·, t) − u∗‖L∞(Ω) + ‖v(·, t) − v∗‖L∞(Ω) + ‖w(·, t) − w∗‖L∞(Ω) → 0, as t → ∞. (1.9)

Furthermore, there exist positive constants λ = λ(χ, α, γ, δ, n) and C = C(|Ω|, χ, α, β, γ, δ) such that

‖u − u∗‖L∞(Ω) ≤ Ce−λt, ‖v − v∗‖L∞(Ω) ≤ Ce−λt, ‖w − w∗‖L∞(Ω) ≤ Ce−λt, t > 0, (1.10)

where (u∗, v∗,w∗) = (1, β+γ

α
, 1) is the unique positive equilibrium point of the model (1.3).

The paper is organized as follows. In section 2, we prove the local existence, the boundedness and
global existence of a unique classical solution. In section 3, we firstly establish the uniform
convergence of the positive global classical solution, then discuss the exponential asymptotic stability
of positive equilibrium point in the case of weak chemotactic sensitivity. The paper ends with a brief
concluding remarks.

2. Boundedness and global existence

The aim of this section is to develop the existence and boundedness of a global classical solution
by employing Neumann heat semigroup arguments, Banach fixed point theorem, parabolic Schauder
estimate and elliptic regularity theory.

Proof of Theorem 1.1 (i) Existence. For p ∈ (1,∞), let A denote the sectorial operator defined
by

Au := −∆u for u ∈ D(A) :=
{
ϕ ∈ W2,p(Ω)

∣∣∣∣ ∂
∂η
ϕ
∣∣∣∣
∂Ω

= 0
}
.

λ1 > 0 denote the first nonzero eigenvalue of −∆ in Ω with zero-flux boundary condition. Let A1 =

−∆ +α and Xl be the domains of fractional powers operator Al, l ≥ 0. From the Theorem 1.6.1 in [21],
we know that for any p > n and l ∈ ( n

2p ,
1
2 ),

‖z‖L∞(Ω) ≤ C‖Al
1z‖Lp(Ω) for all z ∈ Xl. (2.1)

We introduce the closed subset

S :=
{
u ∈ X

∣∣∣‖u‖L∞((0,T );L∞(Ω)) ≤ R + 1
}

in the space X := C0([0,T ]; C0(Ω̄)), where R is a any positive number satisfying

‖u0(x)‖L∞(Ω) ≤ R
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and T > 0 will be specified later. Note F(u) = u
1+u , we consider an auxiliary problem with F(u)

replaced by its extension F̃(u) defined by

F̃(u) =

F(u)u if u ≥ 0,
−F(−u)(−u) if u < 0.

Notice that F̃(u) is a smooth globally Lipshitz function. Given û ∈ S , we define Ψû = u by first writing

w(x, t) = (w0(x) − 1)e−δ
∫ t

0 F̃(û)ûds + 1, x ∈ Ω, t > 0, (2.2)

and
w0 ≤ w(x, t) ≤ 1, x ∈ Ω, t > 0,

then letting v solve {
−∆v + αv = βw + γû, x ∈ Ω, t ∈ (0,T ),
∂ηv = 0, x ∈ ∂Ω, t ∈ (0,T ),

(2.3)

and finally taking u to be the solution of the linear parabolic problem
ut = ∆u − χ∇ · (û(1 − û)∇v) + û(1 − û), x ∈ Ω, t ∈ (0,T ),
∂ηu = 0, x ∈ ∂Ω, t ∈ (0,T ),
u(x, 0) = u0(x), x ∈ Ω.

Applying Agmon-Douglas-Nirenberg Theorem [22, 23] for the problem (2.3), there exists a constant
C such that

‖v‖W2
p(Ω) ≤ C(β‖w‖Lp(Ω) + γ‖û‖Lp(Ω))

≤ C(β|Ω|
1
p + γ(R + 1))

(2.4)

for all t ∈ (0,T ). From a variation-of-constants formula, we define

Ψ(û) = et∆u0 − χ

∫ t

0
e(t−s)∆∇ · (û(1 − û)∇v(s)) ds +

∫ t

0
e(t−s)∆û(s)(1 − û(s))ds.

First we shall show that for T small enough

‖Ψ(û)‖L∞((0,T );L∞(Ω)) ≤ R + 1

for any û ∈ S . From the maximum principle, we can give

‖et∆u0‖L∞(Ω) ≤ ‖u0‖L∞(Ω), (2.5)

and ∫ t

0
‖et∆û(s)(1 − û(s))‖L∞(Ω)ds ≤

∫ t

0
‖û(s)(1 − û(s))‖L∞(Ω)ds

≤(R + 1)(R + 2)T
(2.6)
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for all t ∈ (0,T ). We use inequalities (2.1) and (2.4) to estimate

χ

∫ t

0
‖e(t−s)∆∇ · (û(1 − û)∇v(s))‖L∞(Ω)ds

≤C
∫ t

0
(t − s)−l‖e

t−s
2 ∆∇ · (û(1 − û)∇v(s))‖Lp(Ω)ds

≤C
∫ t

0
(t − s)−l− 1

2 ‖(û(1 − û)∇v(s)‖Lp(Ω)ds

≤CT
1
2−l(R + 1)(R + 2)(β|Ω|

1
p + γ(R + 1))

(2.7)

for all t ∈ (0,T ). This estimate is attributed to T < 1 and the inequality in [24, Lemma 1.3 iv]

‖et∆∇z‖Lp(Ω) ≤ C1(1 + t−
1
2 )e−λ1t‖z‖Lp(Ω) for all z ∈ C∞c (Ω).

From inequalities (2.5), (2.6) and (2.7) we can deduce that Ψ maps S into itself for T small enough.
Next we prove that the map Ψ is a contractive on S . For û1, û2 ∈ S , we estimate

‖Ψ(û1) − Ψ(û2)‖L∞(Ω)

≤χ

∫ t

0
(t − s)−l− 1

2 ‖ [û2(s)(1 − û2(s)) − û1(s)(1 − û1(s))]∇v2(s)‖Lp(Ω)ds

+ χ

∫ t

0
‖û1(s)(1 − û1(s))(∇v1(s) − ∇v2(s))‖Lp(Ω)ds

+

∫ t

0
‖e(t−s)∆[û1(s)(1 − û1(s)) − û2(s)(1 − û2(s))]‖L∞(Ω)ds

≤χ

∫ t

0
(t − s)−l− 1

2 (2R + 1)‖û1(s) − û2(s)‖X‖∇v2(s)‖Lp(Ω)ds

+ χ

∫ t

0
(R + 1)(R + 2)

(
β‖w1(s) − w2(s)‖Lp(Ω) + γ‖û1(s) − û2(s)‖Lp(Ω)

)
ds

+

∫ t

0
(2R + 1)‖û1(s) − û2(s)‖Xds

≤χ

∫ t

0
(t − s)−l− 1

2 (2R + 1)‖û1(s) − û2(s)‖X‖∇v2(s)‖Lp(Ω)ds

+ 2βδχ
∫ t

0
(R + 1)(R + 2)t‖û1(s) − û2(s)‖Lp(Ω) + γ‖û1(s) − û2(s)‖Lp(Ω)ds

+

∫ t

0
(2R + 1)‖û1(s) − û2(s)‖Xds

≤
(
CχT

1
2−l(2R + 1)(β|Ω|

1
p + γ(R + 1)) + 2βδχT (R2 + 3R + γ + 2) + T (2R + 1)

)
‖û1(s) − û2(s)‖X.

Fixing T ∈ (0, 1) small enough such that(
CχT

1
2−l(2R + 1)(β|Ω|

1
p + γ(R + 1)) + 2βδχT (R2 + 3R + γ + 2) + T (2R + 1)

)
≤

1
2
.

It follows from the Banach fixed point theorem that there exists a unique fixed point of Ψ.
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(ii) Regularity. Since the above of T depends on ‖u0‖L∞(Ω) and ‖w0‖L∞(Ω) only, it is clear that
(u, v,w) can be extended up to some maximal Tmax ∈ (0,∞]. Let QT = Ω × (0,T ] for all T ∈ (0,Tmax).
From u ∈ C0(Q̄T ), we know that w ∈ C0,1(Q̄T ) by the expression (2.2) and v ∈ C0([0,T ],W2

p(Ω)) by
Agmon-Douglas-Nirenberg Theorem [22,23]. From parabolic Lp-estimate and the embedding relation
W1

p(Ω) ↪→ Cν(Ω̄), p > n, we can get u ∈ W2,1
p (QT ). By applying the following embedding relation

W2,1
p (QT ) ↪→ Cν,ν/2(Q̄T ), p >

n + 2
2

, (2.8)

we can derive u(x, t) ∈ Cν,ν/2(Q̄T ) with 0 < ν ≤ 2 − n+2
p . The conclusion w ∈ Cν,1+ν/2(Q̄T ) can be

obtained by substituting u ∈ Cν,ν/2(Q̄T ) into the formulation (2.2). The regularity u ∈ C2+ν,1+ν/2(Q̄T )
can be deduced by using further bootstrap argument and the parabolic Schauder estimate. Similarly,
we can get v ∈ C0((0,T ),C2+ν(Ω̄)) by using Agmon-Douglas-Nirenberg Theorem [22, 23]. From the
regularity of u we have w ∈ C2+ν,1+ν/2(Q̄T ).

Moreover, the maximal principle entails that 0 < u(x, t) ≤ 1, 0 ≤ v(x, t) ≤ β+γ

α
. It follows from the

positivity of u that F̃(u) = F(u) and because of the uniqueness of solution we infer the existence of the
solution to the original problem.

(iii) Uniqueness. Suppose (u1, v1,w1) and (u2, v2,w2) are two deferent solutions of model (1.3) in
Ω × [0,T ]. Let U = u1 − u2, V = v1 − v2, W = w1 − w2 for t ∈ (0,T ). Then

1
2

d
dt

∫
Ω

U2dx +

∫
Ω

|∇U |2dx

≤χ

∫
Ω

|u1(1 − u1) − u2(1 − u2)|∇v1||∇U | + u2(1 − u2)|∇V ||∇U |dx

+

∫
Ω

|u1(1 − u1) − u2(1 − u2)||U |dx

≤χ

∫
Ω

|U ||∇v1||∇U | +
1
4
|∇V ||∇U |dx +

∫
Ω

|U |2dx

≤

∫
Ω

|∇U |2dx +
χ2

32

∫
Ω

|∇V |2dx +
χ2K2 + 2

2

∫
Ω

|U |2dx,

(2.9)

where we have used that |∇v1| ≤ K results from ∇v1 ∈ C0([0,T ],C0(Ω̄)).
Similarly, by Young inequality and w0 ≤ w1 ≤ 1, we can estimate∫

Ω

|∇V |2dx +
α

2

∫
Ω

|V |2dx ≤
β2

α

∫
Ω

|W |2dx +
γ2

α

∫
Ω

|U |2dx, (2.10)

and
d
dt

∫
Ω

W2dx ≤ δ
∫

Ω

|U |2 + |W |2dx. (2.11)

Finally, adding to the inequalities (2.9)–(2.11) yields

d
dt

(∫
Ω

U2dx +

∫
Ω

W2dx
)
≤ C

(∫
Ω

U2dx +

∫
Ω

W2dx
)

for all t ∈ (0,T ).

The results U ≡ 0, W ≡ 0 in Ω× (0,T ) are obtained by Gronwall’s lemma. From the inequality (2.10),
we have V ≡ 0. Hence (u1, v1,w1) = (u2, v2,w2) in Ω × (0,T ).
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(iv) Uniform estimates. We use the Agmon-Douglas-Nirenberg Theorem [22, 23] for the second
equation of the model (1.3) to get

‖v‖C0([t,t+1],W2
p(Ω)) ≤ C

(
‖u‖Lp(Ω×[t,t+1]) + ‖w‖Lp(Ω×[t,t+1])

)
≤ C2 (2.12)

for all t ≥ 1 and C2 is independent of t. From the embedded relationship W1
p(Ω) ↪→ C0(Ω̄), p > n, the

parabolic Lp-estimate and the estimation (2.12), we have

‖u‖W2,1
p (Ω×[t,t+1]) ≤ C3

for all t ≥ 1. The estimate ‖u‖Cν, ν2 (Ω̄×[t,t+1]) ≤ C4 for all t ≥ 1 obtained by the embedded
relationship (2.8). We can immediately compute ‖w‖Cν,1+ ν

2 (Ω̄×[t,t+1]) ≤ C5 for all t ≥ 1 according to the
regularity of u and the specific expression of w. Further, bootstrapping argument leads to
‖v‖C0([t,t+1],C2+ν(Ω̄)) ≤ C6 and ‖u‖C2+ν,1+ ν

2 (Ω̄×[t,t+1]) ≤ C7 for all t ≥ 1. Thus the uniform estimation (1.7) is
proved. �

Remark 2.1. Assume the initial data 0 < u0(x) ≤ 1 and w0(x) = 0. Then the BCS model (1.3) has
a unique classical solution.

3. Exponential stability of positive equilibrium point

In this section we investigate the global asymptotic stability of the unique positive equilibrium point
(1, β+γ

α
, 1) to model (1.3). To this end, we first introduce following auxiliary problem

uεt = ∆uε − ∇ · (uε(1 − uε)∇vε) + uε(1 − uε), x ∈ Ω, t > 0,
−∆vε + αvε = βwε + γuε , x ∈ Ω, t > 0,

wεt = δ
u2
ε + ε

1 + uε
(1 − wε), x ∈ Ω, t > 0,

∂ηuε = ∂ηvε = 0, x ∈ ∂Ω, t > 0,
uε(x, 0) = u0(x), wε(x, 0) = w0(x), x ∈ Ω.

(3.1)

By a similar proof of Theorem 1.1, we get that the problem (3.1) has a unique global classical
solution (uε , vε ,wε), and there exist a ν ∈ (0, 1) and M1 > 0 which is independent of ε such that

‖uε‖C2+ν,1+ν/2(Ω̄×[1,∞)) + ‖vε‖C2+ν,1+ν/2(Ω̄×[1,∞)) + ‖wε‖Cν,1+ν/2(Ω̄×[1,∞)) ≤ M1. (3.2)

Then, motivated by some ideas from [25,26], we construct a Lyapunov function to study the uniform
convergence of homogeneous steady state for the problem (3.1).

Let us give following lemma which is used in the proof of Lemma 3.2.

Lemma 3.1. Suppose that a nonnegative function f on (1,∞) is uniformly continuous and∫ ∞
1

f (t)dt < ∞. Then f (t)→ 0 as t → ∞.

Lemma 3.2. Assume that the condition (1.8) is satisfied. Then

‖uε(·, t) − 1‖L2(Ω) + ‖vε(·, t) − v∗‖L2(Ω) + ‖wε(·, t) − 1‖L2(Ω) → 0, t → ∞, (3.3)

where v∗ =
β+γ

α
.
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Proof We construct a positive function

E(t) :=
∫

Ω

(uε − 1 − ln uε) +
1

2δε

∫
Ω

(wε − 1)2, t > 0.

From the problem (3.1) and Young’s inequality, we can compute

d
dt

E(t) ≤
χ2

4

∫
Ω

|∇vε |2dx −
∫

Ω

(uε − 1)2dx −
∫

Ω

(wε − 1)2dx, t > 0. (3.4)

We multiply the second equations in system (3.1) by vε − v∗, integrate by parts over Ω and use Young’s
inequality to obtain ∫

Ω

|∇vε |2dx ≤
γ2

2α

∫
Ω

(uε − 1)2dx +
β2

2α

∫
Ω

(wε − 1)2dx, t > 0, (3.5)

and ∫
Ω

(vε − v∗)2dx ≤
2γ2

α2

∫
Ω

(uε − 1)2dx +
2β2

α2

∫
Ω

(wε − 1)2dx, t > 0. (3.6)

Substituting inequality (3.5) into inequality (3.4) to get

d
dt

E(t) ≤ −C8

(∫
Ω

(uε − 1)2dx +

∫
Ω

(wε − 1)2dx
)
, t > 0,

where C8 = min
{
1 − χ2β2

8α , 1 −
χ2γ2

8α

}
> 0.

Let f (t) :=
∫

Ω
(uε − 1)2 + (wε − 1)2dx. Then∫ ∞

1
f (t)dt ≤

E(1)
C8

< ∞, t > 1.

It follows from the uniform estimation (3.2) and the Arzela-Ascoli theorem that f (t) is uniformly
continuous in (1,∞). Applying Lemma 3.1, we have∫

Ω

(uε(·, t) − 1)2 + (wε(·, t) − 1)2dx→ 0, t → ∞. (3.7)

Combining inequality (3.6) and the limit (3.7) to obtain∫
Ω

(vε(·, t) − v∗)2dx→ 0, t → ∞.

�
Proof of Theorem 1.2 As we all known, each bounded sequence in C2+ν,1+ ν

2 (Ω̄ × [1,∞)) is
precompact in C2,1(Ω̄ × [1,∞)). Hence there exists some subsequence {uεn}

∞
n=1 satisfying εn → 0 as

n→ ∞ such that
lim
n→∞
‖uεn − u∗‖C2,1(Ω̄×[1,∞)) = 0.

Similarly, we can get
lim
n→∞
‖vεn − v∗‖C2(Ω̄) = 0,
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and
lim
n→∞
‖wεn − w∗‖C0,1(Ω̄×[1,∞)) = 0.

Combining above limiting relations yields that (u∗, v∗,w∗) satisfies model (1.3). The conclusion
(u∗, v∗,w∗) = (u, v,w) is directly attributed to the uniqueness of the classical solution of the
model (1.3). Furthermore, according to the conclusion, the strong convergence (3.3) and Diagonal
line method, we can deduce

‖u(·, t) − 1‖L2(Ω) + ‖v(·, t) − v∗‖L2(Ω) + ‖w(·, t) − 1‖L2(Ω) → 0, t → ∞. (3.8)

By applying Gagliardo-Nirenberg inequality

‖z‖L∞ ≤ C‖z‖2/(n+2)
L2(Ω) ‖z‖

n/(n+2)
W1,∞(Ω), z ∈ W1,∞(Ω), (3.9)

comparison principle of ODE and the convergence (3.8), the uniform convergence (1.9) is obtained
immediately.

Since limt→∞ ‖u(·, t) − 1‖L∞(Ω) = 0, so there exists a t1 > 0 such that

u(x, t) ≥
1
2

for all x ∈ Ω, t > t1. (3.10)

Using the explicit representation formula of w

w(x, t) = (w0(x) − 1)e−δ
∫ t

0 F(u)uds + 1, x ∈ Ω, t > 0

and the inequality (3.10), we have

‖w(·, t) − 1‖L∞(Ω) ≤ e−
δ
6 (t−t1), t > t1. (3.11)

Multiply the first two equations in model (1.3) by u − 1 and v − v∗, respectively, integrate over Ω and
apply Cauchy’s inequality, Young’s inequality and the inequality (3.10), to find

d
dt

∫
Ω

(u − 1)2dx ≤
χ2

32

∫
Ω

|∇v|2dx −
∫

Ω

(u − 1)2dx, t > t1. (3.12)

∫
Ω

|∇v|2dx +
α

2

∫
Ω

(v − v∗)2dx ≤
β2

α

∫
Ω

(w − 1)2dx +
γ2

α

∫
Ω

(u − 1)2dx, t > 0. (3.13)

Combining the estimations (3.11)–(3.13) leads us to the estimate

d
dt

∫
Ω

(u − 1)2dx ≤
(
χ2γ2

32α
− 1

) ∫
Ω

(u − 1)2dx +
χ2β2

32α
e−

δ
3 (t−t1), t > t1.

Let y(t) =
∫

Ω
(u − 1)2dx. Then

y′(t) ≤
(
χ2γ2

32α
− 1

)
y(t) +

χ2β2

32α
e−

δ
3 (t−t1), t > t1.
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From comparison principle of ODE, we get

y(t) ≤
(
y(t1) −

3χ2β2

32α(3 − δ) − χ2γ2

)
e−

(
1− χ

2γ2
32α

)
(t−t1)

+
3χ2β2

32α(3 − δ) − χ2γ2 e−
δ
3 (t−t1), t > t1.

This yields ∫
Ω

(u − 1)2dx ≤ C9e−λ2(t−t1), t > t1, (3.14)

where λ2 = min{1 − χ2γ2

32α ,
δ
3 } and C9 = max

{
|Ω| −

3χ2β2

32α(3−δ)−χ2γ2 ,
3χ2β2

32α(3−δ)−χ2γ2

}
.

From the inequalities (3.11), (3.13) and (3.14), we derive∫
Ω

(
v −

β + γ

α

)2

dx ≤ C10e−λ2(t−t1), t > t1, (3.15)

where C10 = max
{

2γ2

α2 C9,
2β2

α2

}
. By employing the uniform estimation (1.7), the inequalities (3.9), (3.14)

and (3.15), the exponential decay estimation (1.10) can be obtained.
The proof is complete. �

4. Concluding remarks

In this paper, we mainly study the uniform boundedness of classical solutions and exponential
asymptotic stability of the unique positive equilibrium point to the chemotactic cellular model (1.3) for
Baló’s concentric sclerosis (BCS). For model (1.1), by numerical simulation, Calveza and Khonsarib
in [7] shown that demyelination patterns of concentric rings will occur with increasing of chemotactic
sensitivity. By the Theorem 1.1 we know that systems (1.1) and (1.2) are uniformly bounded and
dissipative. By the Theorem 1.2 we also find that the constant equilibrium point of model (1.1) is
exponentially asymptotically stable if

χ̃ <
2

w̄β̃

√
2Dµα̃ε̃

ū
,

and the constant equilibrium point of the model (1.2) is exponentially asymptotically stable if

χ̃ < 2

√
2Dµα̃ε̃

ū
min

{
1

w̄β̃
,

1
ūγ̃

}
.

According to a pathological viewpoint of BCS, the above stability results mean that if chemoattractive
effect is weak, then the destroyed oligodendrocytes form a homogeneous plaque.
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