Citation: Xiaoyan Fei, Yun Dong, Hedi An, Qi Zhang, Yingchun Zhang, Jun Shi. Impact of region of interest size on transcranial sonography based computer-aided diagnosis for Parkinson’s disease[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5640-5651. doi: 10.3934/mbe.2019280
[1] | R. E. Burke and O. K. Malley, Axon degeneration in Parkinson's disease. Exp. Neurol., 246(2013), 72–83. |
[2] | C. Weingarten, M. Sundman, P. Hickey, et al., Neuroimaging of Parkinson's disease: Expanding views, Neurosci. Biobehav. Rev., 59(2015), 16–52. |
[3] | D. Frosini, M. Cosottini, D. Volterrani, et al., Neuroimaging in Parkinson's disease: Focus on substantia nigra and nigro-striatal projection. Curr. Opin. Neurol., 30(2017), 416–426. |
[4] | D. Berg, Ultrasound in the (premotor ) diagnosis of Parkinson ' s disease, Park. Relat. Disord., 13(2007),13. |
[5] | Q. Huang, F. Zhang and X. Li, Machine learning in ultrasound computer-aided diagnostic systems: A survey, BioMed. Res. Int., 2018, Article ID: 5137904. |
[6] | S. Zhou, J. Shi, J. Zhu, et al., Shearlet-based texture feature extraction for classification of breast tumor in ultrasound image, Biomed. Signal Process. Control, 8(2013), 688–696. |
[7] | G. Lehang, D. Wang, Y. Qian, et al., A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images, Clin. Hemorheol. Microcirc., 69(2018), 343–354. |
[8] | Q. Huang, Y. Chen, L. Liu, et al., On combining biclustering mining and AdaBoost for breast tumor classification, IEEE Trans. Knowl. Data Eng., 2019, in press. DOI: 10.1109/TKDE.2019.2891622 |
[9] | L. Chen, J. Hagenah and A. Mertins, Feature analysis for Parkinson's disease detection based on transcranial sonography image, In the 15th International Conference on Medical Image Computing and Computer-Assited Intervention, 2012, 272–279. |
[10] | O. Pauly, S. Ahmadi, A. Plate, et al., Detection of substantia nigra echogenicities in 3D transcranial ultrasound for early diagnosis of Parkinson disease, In the 15th International Conference on Medical Image Computing and Computer-Assited Intervention, 2012, 443–450. |
[11] | A. Plate, S. Ahmadi, O. Pauly, et al., Three-dimensional sonographic examination of the midbrain for computer-aided diagnosis of movement disorders, Ultrasound Med. Biol., 38(2012), 2041–2050. |
[12] | A. Sakalauskas, K. Laučkaitė, A. Lukoševičius, et al., Computer-aided segmentation of the mid-brain in trans-cranial ultrasound images, Ultrasound Med. Biol., 42(2016), 322–332. |
[13] | A. Sakalauskas, V. Špečkauskienė, K. Laučkaitė, et al., A. Lukoševičius, Transcranial ultrasonographic image analysis system for decision support in Parkinson disease, J. Ultrasound Med., 2018. |
[14] | B. Gong, J. Shi, S. Ying, et al., Neuroimaging-based diagnosis of Parkinson's disease with deep neural mapping large margin distribution machine, Neurocomputing, 320(2018), 141–149. |
[15] | J. Shi, Z. Y. Xue, Y. K. Dai, et al., Cascaded multi-column RVFL+ classifier for single-modal neuroimaging-based diagnosis of Parkinson's disease, IEEE Trans. Biomed. Eng., 2019, in press. DOI: 10.1109/TBME.2018.2889398. |
[16] | K. Skerl, S. Vinnicombe, E. Giannotti, et al., Influence of region of interest size and ultrasound lesion size on the performance of 2D shear wave elastography (SWE) in solid breast masses, Clin. Radiol., 70 (2015) 1421–1427. |
[17] | J. Moon, J. Hwang, J. Park, et al., Impact of region of interest (ROI) size on the diagnostic performance of shear wave elastography in differentiating solid breast lesions, Acta Radiol., 59 (2018), 657–663. |
[18] | Q. Zhang, Y. Xiao, J. Suo, et al., Sonoelastomics for breast tumor classification: a radiomics approach with clustering-based feature selection on sonoelastography, Ultrasound Med. Biol., 43 (2017), 1058–1069. |
[19] | Y. Ma and L. Zhu, A review on dimension reduction, Int. Statist. Rev., 81(2013), 134–150. |
[20] | J. Shi, Q. Jiang, Q. Zhang, et al., Sparse kernel entropy component analysis for dimensionality reduction of biomedical data, Neurocomputing, 168 (2015), 930–940. |
[21] | J. Shi, Q. Jiang, R. Mao, et al., FR-KECA: Fuzzy robust kernel entropy component analysis, Neurocomputing, 149 (2015), 1415–1423. |
[22] | B. Mwangi, T. Tian and J. Soares, A review of feature reduction techniques in neuroimaging, Neuroinformatics, 12 (2014), 229–244. |
[23] | C. Ding and H. Peng, Minimum redundancy feature selection from microarray gene expression data, J. Bioinform. Comput. Biol., 3(2005), 185–205. |