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Abstract: Transcranial sonography (TCS) has gained increasing application for diagnosis of 

Parkinson’s disease (PD) in clinical practice in recent years, because most PD patients, even in the 

early stage of PD, have abnormal hyperechogenicity of the substantia nigra (SN) in brainstem shown 

in TCS images. Therefore, the region of interest (ROI) for feature extraction should cover the SN 

region in a computer-aided diagnosis (CAD) system. The ROI size naturally affects the feature 

representation. However, there currently exist no unified standard for determining the size of ROI. In 

this work, we quantitatively compare the performance of TCS-based CAD with three sizes of ROIs, 

namely the entire midbrain (EM) region, the half of midbrain (HoM) region and the SN region. The 

experimental results on the original extracted features and the features by dimensionality reduction 

show that ROI covering the EM region achieves the overall best diagnosis performance. The results 

indicates that the neighboring regions around SN might also have abnormal symptoms, which cannot 

be clearly observed with naked eyes. It suggests that the large ROI includes more information for 

feature representation to improve the diagnosis performance of TCS-based CAD for PD. 
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1. Introduction  

Parkinson’s disease (PD) is the second most common degenerative disorder of the central 

nervous system after Alzheimer's disease in the elderly population worldwide [1,2]. PD not only 

immensely affects the patient’s quality of life, but also results in a high socioeconomic burden.  

Early and accurate diagnosis of PD is crucial for early intervention and neuroprotective 

strategies to delay or prevent the progression of PD. However, PD diagnosis mainly depends on the 

patient’s clinical symptoms together with the expertise of the clinical neurologist, and thus has high 

possibility of missed diagnosis and misdiagnosis due to the complexity of PD [3].  

Neuroimaging techniques, such as magnetic resonance imaging (MRI), functional MRI (fMRI), 

positron emission tomography (PET) and single photon emission tomography (SPECT), have shown 

their effectiveness in facilitating early and even preclinical diagnosis for PD [2,3].  

Transcranial sonography (TCS) is a valid neuroimaging tool with the advantages of high 

mobility, non-invasiveness, non-ionizing radiation and low cost. TCS can generate high-resolution 

B-mode images of the deep brain structure parenchyma through the intact skull. In recent years, TCS 

has gained increasing application in diagnosis of PD [3,4], because most PD patients, even in the 

early stage of PD, have abnormal hyperechogenicity of the substantia nigra (SN) in brainstem shown 

in TCS images [3,4].  

On the other hand, since the ultrasound-based computer-aided diagnosis (CAD) systems have 

shown the effectiveness to offer effective decision support and a second opinion tool for sonologists 

for diagnosis of various tumors [5–8], various TCS-based CADs for PD have also been proposed in 

recent years. For example, Chen et al. proposed a 2D-TCS-based CAD for PD that adopted the local 

features to represent the properties of the SN region [9]; Pauly et al. proposed to detect SN region 

from 3D TCS images with random forests [10]; Plate et al. reported a 3D-TCS image-based CAD for 

PD using the support vector machine (SVM) classifier [11]; Sakalauskas et al. proposed a 

semi-automated segmentation algorithm to segment the midbrain region in TCS images for further 

analysis [12], and they further developed a CAD system for PD [13]; Gong et al. proposed a deep 

neural mapping large margin distribution machine for TCS-based diagnosis PD [14]; Shi et al. 

developed a cascaded multi-column RVLF+ classifier algorithm and then applied it to the TCS-based 

CAD for PD [15]. All these studies indicate feasibility and effectiveness of TCS-based CAD for PD.  

However, it is worth noting that no unified standard is proposed to select the region of interest 

(ROI) in TCS images for feature extraction in current research. The commonly used ROIs only 

include the SN region or a region that is slightly larger than SN [11], such as the half of midbrain 

(HoM) region [9]. In fact, the size of ROI naturally affects the representation of extracted features [16,17]. 

However, no studies exist on quantitative analysis of this impact on the diagnosis performance of 

TCS-based CAD for PD.  

In this work, we quantitatively evaluate the impact of three sizes of ROIs, namely the entire 

midbrain (EM) region, the HoM region and the SN region, on the diagnosis performance of the 

TCS-based CAD for PD. 

2. Materials and method 

2.1. TCS datasets 
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The TCS dataset includes 153 images (76 PD patients and 77 normal controls (NCs)), which 

were acquired from the Shanghai East Hospital of Tongji University and the Second Affiliated 

Hospital of Soochow University was used in this work. The approval from the ethics committee of 

the hospital was obtained, and all subjects had signed informed consent.  

The TCS images from the Shanghai East Hospital of Tongji University were scanned by a Philips 

IE33 color ultrasound scanner (Philips Healthcare, Bothell, Washington, USA) with a S5-1 phased array 

probe (Philips Healthcare, Bothell, Washington, USA). The data from the Second Affiliated Hospital of 

Soochow University were acquired by a Siemens Acuson Sequoia 512 ultrasound scanner (Siemens 

Medical Solutions, Malvern, Pennsylvania, USA) with a 4V1C prober (Siemens Medical Solutions, 

Malvern, Pennsylvania, USA). The probe frequency was set to 2–3 MHz, the penetration depth is 13–16 

cm, and the dynamic range is 45–60 dB in both hospitals. Other imaging parameters, such as gain and 

time-gain compensation, were set for clear visualization of each subject. After the subject was positioned 

on the bed, the TCS images were scanned through the right or left temporal bone windows in the axial 

plane. For each subject, one TCS image was selected for further analysis.  

Since the abnormal hyperechogenicity of the SN in brainstem is a typical sign of PD found in 

TCS images [3,4], the ROI should include the SN in each TCS image. After all the TCS images were 

acquired from the two hospitals, the ROIs were manually selected by an experienced sonologist from 

the Shanghai East Hospital of Tongji University, which can help to reduce the impact of ROI 

selection by different sonologists to a certain extent. Figure 1 shows the example ROIs of the EM, 

HoM and SN regions from TCS images of a PD patient and an NC, respectively. 

 

   

   

Figure 1. Example ROIs of the EM, HoM and SN in TCS images (from left to right) 

from an NC (first row) and a PD patient (second row). 
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2.2. TCS-based CAD for PD 

Figure 2 shows the flowcharts for PD diagnosis by the TCS-based CAD, which mainly includes 

the modules of feature extraction, dimensionality reduction and classifier. 

Feature 

Extraction
TCS Image

Dimension 

Reduction
Classifier

 

Figure 2. Flowchart of the TCS-based CAD. 

For the TCS images, the statistical features and texture features were directly extracted from 

each ROI in this work. The statistical features were calculated from the intensities of all pixels in 

ROI, including the mean, standard deviation, coefficient of variance, skewness, kurtosis, entropy of 

histogram, area ratio, combined area ratio, and several percentiles, etc. Additional details of these 

features can be found in reference [18]. The texture features were extracted from the gray-level 

co-occurrence matrix (GLCM), including the energy, contrast, homogeneity and entropy of GLCM. 

Moreover, the features of Hu invariant moments were also extracted according to reference [9]. We 

subsequently obtained 73-dimensional features in total from each TCS image. It is worth noting that 

to evaluate the impact of ROI size for TCS-based CAD, we selected three sizes of ROIs according to 

the anatomic information in this work, including the EM region, the HoM region and only the SN 

region, respectively. The same features were then extracted for different sizes of ROIs. 

In this work, the dimensionality reduction algorithms were also performed on the original 

features to generate compact feature representation that could more comprehensively evaluate the 

performance of different size ROIs in TCS images. Although many dimensionality reduction 

algorithms have been proposed [19–22], we selected the classical principal component analysis (PCA) 

and minimum redundancy maximum relevance (MRMR) [23] to reduce feature redundancy, 

respectively. Since both algorithms are widely used in dimensionality reduction for various data, we 

do not repeat them here.  

Since the SVM classifier has proven its effectiveness for TCS-based CAD for PD [9,11], it is 

also used in this work. 

2.3. Experimental design 

Two experiments were conducted for the TCS-based CAD. The first experiment primarily 

evaluated the effect of three sizes of ROIs in TCS images for diagnosis of PD, i.e. the EM region, the 

HoM region and only the SN region, respectively. The same 73-dimensional features were extracted 

from these three sizes of ROIs. The second one conducted the widely used PCA and MRMR on the 

original features to reduce the feature dimensionalities of the original features for further 

comprehensive comparison. Therefore, in total, three types of features were extracted for each size of 

ROIs. The extracted features were subsequently fed to the SVM classifier in the first experiment.  

The 5-fold cross-validation strategy was performed on the single-modal TCS dataset with 153 

subjects to avoid the sampling bias introduced by randomly partitioning the dataset in 

cross-validation. The classification accuracy (Acc), sensitivity (Sen), specificity (Spe), Youden index 
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(YI), positive predictive value (PPV), negative predictive value (NPV) and F1-score were calculated 

as evaluation indices by 

 
 
 
 
 

 
 
 
 
                         

                                                  

                                                  

                                                   

                                                  

                                                

                                

                     (11) 

where TP, FP, FN and TN are true positive, false positive, false negative and true negative, respectively. 

3. Results 

Table 1 shows the results of TCS-based CADs of three ROIs with the commonly used linear 

kernel SVM on the original features. It can be found that the EM-based diagnosis achieves the 

overall best results with the best mean accuracy of 75.16 ± 1.77%, sensitivity of 79.67 ± 5.10%, YI 

of 49.92 ± 4.89%, PPV of 71.55 ± 8.97%, NPV of 77.03 ± 9.62%, F1-score of 73.96 ± 4.65%, and 

the second best specificity of 70.25 ± 6.70%. Moreover, the overall performance of the HoM-based 

method is also superior to that of the SN-based approach, and obtains the best mean specificity of 

74.08 ± 9.99% and the second best mean accuracy of 73.25 ± 4.53%, sensitivity of 72.36 ± 9.68%, 

YI of 46.44 ± 9.05%, PPV of 71.00 ± 6.38% NPV of 73.63 ± 6.87% and F1-score of 72.73 ± 4.93%.  

Table 1. Results of TCS-based CAD for three sizes of ROIs with linear kernel SVM on 

the original features. (Unit: %) 

 Accuracy Sensitivity Specificity YI PPV NPV F1 

SN 70.80 ± 4.42 61.52 ± 8.43 69.45 ± 6.32 30.97 ± 8.58 70.74 ± 5.70 69.15 ± 4.79 70.90 ± 4.96 

HoM 73.25 ± 4.53 72.36 ± 9.68 74.08 ± 9.99 46.44 ± 9.05 71.00 ± 6.38 73.63 ± 6.87 72.73 ± 4.93 

EM 75.16 ± 1.77 79.67 ± 5.10 70.25 ± 6.70 49.92 ± 4.89 71.55 ± 8.97 77.03 ± 9.62 73.96 ± 4.65 

Table 2 gives the results of TCS-based CADs of three ROIs with the commonly used Gaussian 

kernel SVM on the original features. The EM-based method again achieves the overall best 

performance with the best mean accuracy, sensitivity, specificity, YI, PPV, NPV and F1-value of 

71.85 ± 4.11%, 73.52 ± 7.24%, 70.17 ± 9.90%, 43.69 ± 8.44%, 71.31 ± 7.99%, 73.25 ± 3.08% and 

71.33 ± 4.44%, respectively. The overall results of the HoM-based diagnosis are next to those of the 

EM-based one, obtaining the second best mean accuracy, sensitivity, specificity, YI, PPV, and 

F1-score of 70.56 ± 4.85%, 72.08 ± 6.33%, 69.08 ± 9.53%, 41.16 ± 9.98%, 70.01 ± 8.01%, 71.78 ± 

3.27% and 70.86 ± 5.17%, respectively. Tables I and II show consistent results, suggesting that the 

larger ROIs can promote diagnosis performance compared with the SN region.  
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Table 2. Results of TCS-based CAD for three sizes of ROIs with Gaussian kernel SVM 

on the original features. (Unit: %) 

 Accuracy Sensitivity Specificity YI PPV NPV F1 

SN 69.31 ± 2.45 71.12 ± 4.98 67.50 ± 6.56 38.62 ± 4.78 68.60 ± 2.95 70.36 ± 3.78 69.68 ± 1.97 

HoM 70.56 ± 4.85 72.08 ± 6.33 69.08 ± 9.53 41.16 ± 9.98 70.01 ± 8.01 71.78 ± 3.27 70.86 ± 5.17 

EM 71.85 ± 4.11 73.52 ± 7.24 70.17 ± 9.90 43.69 ± 8.44 71.31 ± 7.99 73.25 ± 3.08 71.33 ± 4.44 

Figure 3 shows the compared results of different dimensional features for three sizes of ROIs, 

where the features are reduced by the conventional PCA algorithms. In this experiment, we only 

adopted the linear kernel SVM as classifier, because it achieved performance superior to the 

Gaussian kernel SVM. Moreover, we only give the results of YI, since it is a hybrid index combining 

both sensitivity and specificity. It can be found that both the EM- and HoM-based diagnosis 

outperform the SN-based classification for different feature dimensionalities. Moreover, the 

EM-based option achieves the overall best performance with the best classification accuracy, specificity, 

YI and PPV, whereas the HoM-based classification obtains the best sensitivity, NPV and F1-score.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Figure 3. Results of (a) classification accuracy, (b) YI, (c) PPV, (d) NPV and (e) 

F1-score for different dimensional features by PCA for EM-, HoM- and SN-based CAD. 

Figure 4 gives the compared results of different dimensional features for three sizes of ROIs, 

where the features are selected by the conventional MRMR algorithm. Again the linear kernel SVM 

is used in this experiment. The results show trends similar to those in Figure 3. Both EM- and 

HoM-based CAD are superior to the SN-based approach, and the EM-based diagnosis achieves the 

best overall performance on all evaluation indices. 
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(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

Figure 4. Results of (a) classification accuracy, (b) YI, (c) PPV, (d) NPV and (e) F1-score 

for different dimensional features by MRMR for EM-, HoM- and SN-based CAD.  

Finally, we select the classification results of the 50-dimensional features via PCA and the 

60-dimensional features by MRMR for comparison of the three sizes of ROIs, as shown in Table 3. It 

can be found that both EM- and HoM-based diagnosis outperform the SN-based approach with not 

only the original features but also the reduced features. Moreover, both PCA and MRMR can 

improve the performance of feature representation for all three sizes of ROIs. The EM-based 

classification with the features reduced by PCA achieves the overall best results with the best mean 

classification accuracy of 76.43 ± 3.91%, specificity of 80.58 ± 4.16%, YI of 56.97 ± 3.49%, PPV of 

78.48 ± 5.46% and F1-score of 75.05 ± 5.38%, and the second best mean sensitivity of 76.39 ± 3.50% 

and NPV of 76.39 ± 4.74%. 

Table 3. Results of TCS-based CAD for three sizes of ROIs with different dimensional 

features. (Unit: %) 

 Accuracy Sensitivity Specificity YI PPV NPV F1 

SN 70.80 ± 4.42 61.52 ± 8.43 69.45 ± 6.32 30.97 ± 8.58 70.74 ± 5.70 69.15 ± 4.79 70.90 ± 4.96 

SN-PCA 71.89 ± 5.92 66.94 ± 5.56 74.00 ±6.53 40.94 ± 8.48 70.04 ± 4.55 72.01 ± 1.38 72.23 ± 7.57 

SN-MRMR 71.20 ± 4.52 72.37 ± 2.39 70.33 ± 8.99 42.70 ± 8.93 70.91 ± 7.99 71.97 ± 1.73 71.43 ± 4.17 

HoM 73.25 ± 4.53 72.36 ± 9.68 74.08 ± 9.99 46.44 ± 9.05 71.00 ± 6.38 73.63 ± 6.87 72.73 ± 4.93 

HoM-PCA 73.27 ± 4.95 70.94 ± 6.44 71.33 ± 9.09 42.27 ± 6.55 72.63 ± 5.60 74.01 ± 3.71 73.74 ± 3.41 

HoM-MRMR 73.23 ± 2.40 76.30 ± 9.65 68.83 ± 2.72 45.13 ± 9.03 73.58 ± 3.91 74.53 ± 9.21 72.76 ± 2.75 

EM 75.16 ± 1.77 79.67 ± 5.10 70.25 ± 6.70 49.92 ± 4.89 71.55 ±8.97 77.03 ± 9.62 73.96 ± 4.65 

EM-PCA 76.43 ± 3.91 76.39 ± 3.50 80.58 ± 4.16 56.97 ± 3.49 78.48 ± 5.46 76.39 ± 4.74 75.05 ± 5.38 

EM-MRMR 75.78 ± 4.54 74.87 ± 3.78 80.56 ± 3.16 55.43 ± 5.39 78.10 ± 5.18 75.20 ± 3.69 74.24 ± 5.64 
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4. Discussion 

With the increasing application of TCS for diagnosis of PD in clinical practice, the TCS-based 

CAD has also attracted considerable attention. The TCS-based diagnosis of PD mainly depends on 

the clinical finding that PD patients have abnormal hyperechogenicity of SN in the TCS images [3,4]. 

Therefore, the ROI for feature extraction should cover the SN region. The ROI size naturally affects 

the feature representation and the final classification performance. However, to the best of our 

knowledge, there currently exist no unified standard for determining the size of ROI. Therefore, we 

quantitatively compare the performance of TCS-based CAD with the three sizes of ROIs, namely the 

EM, the HoM and the SN regions in this work. 

As shown in Tables 1 and 2, the EM-based CAD achieves the overall best performance by both 

the linear and Gaussian kernel-based SVM classifiers with the original features, whereas the 

HoM-based CAD is also superior to SN-based approach. Moreover, Figures 3 and 4 shows the 

compared results about the features reduced by both PCA and MRMR with linear SVM for different 

ROIs, which show the same trend with those in Table 1 and 2. All the results suggest that the large 

ROI-based CAD outperforms the only SN region based one. Although the SN region shows 

abnormal hyperechogenicity for PD patients, the neighboring regions around SN might also have 

abnormal symptoms, which cannot be clearly observed with naked eyes. However, the larger ROIs 

truly include more information, which is effectively extracted and represented by the machine 

learning based methods.  

Since the EM-based CAD achieves the best performance, we will further develop the 

TCS-based CAD with EM ROI in future. In this work, we only extracted the statistical and texture 

features from ROI. More kinds of features, such as wavelet-based features, will be extracted to 

further improve the performance of CAD. Moreover, due to the success of deep learning for feature 

representation, we will study the deep learning algorithms for the TCS-based CAD for PD with the 

small sample dataset. 

5. Conclusion 

In summary, we quantitatively compare the impact of ROI size in TCS image on the 

performance of TCS-based CAD of PD. The experimental results show that the ROI covering the 

EM region achieves the overall best diagnosis accuracy, which will guide the selection of ROI from 

TCS images in future work. 
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