Citation: Bhaven A. Mistry, Tom Chou. Nonspecific probe binding and automatic gating in flow cytometry and fluorescence activated cell sorting (FACS)[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4477-4490. doi: 10.3934/mbe.2019223
[1] | I. A. Zuleta, A. Aranda-Díaz, H. Li, et al., Dynamic characterization of growth and gene expression, Nat. Meth., 11 (2014), 443–450. |
[2] | H. Abe and E. T. Kool, Flow cytometric detection of specific RNAs in native human cells with quenched autoligating FRET probes, Proc. Nat. Acad. Sci., 103 (2006), 263–268. |
[3] | S. B. Joseph and K. T. Arrildt, A. E. Swanstrom, et al., Quantification of entry phenotypes of macrophage-tropic HIV-1 across a wide range of CD4 densities, J. Virol., 88 (2014), 1858–1869. |
[4] | N.E.Webb and B.Lee, Quantifying CD4/CCR5 usage efficiency of HIV-1 Env using the Affinofile system, HIV Prot., 1st edition, Springer, New York, 2016, 3–20. |
[5] | T. M. Ashhurst, A. L. Smith and N. J. C. King, High-dimensional fluorescence cytometry, Curr. Prot. Immun., 119 (2017), 1–38. |
[6] | B. Bourdin, E. Segura, M. Téreault, et al., Determination of the relative cell surface and total expression of recombinant ion channels using flow cytometry, J. Vis. Exp., 115 (2016), 54732. |
[7] | A. Adan, G. Alizada, Y. Kiraz, et al., Flow cytometry: basic principles and applications, Crit. Rev. Biotech., 37 (2017), 163–176. |
[8] | L. A. Herzenberg, D. Parks, B. Sahaf, et al., The history and future of the fluorescence activated cell sorter and flow cytometry: A view from Stanford, Clin. Chem., 48 (2002), 1819–1827. |
[9] | K. Lo, R. R. Brinkman and R. Gottardo, Automated gating of flow cytometry data via robust model-based clustering, J. Intl. Soc. Anal. Cyt., 73 (2008), 321–332. |
[10] | J. G. Kenna, G. N. Major and R. S. Williams, Methods for reducing non-specific antibody binding in enzyme-linked immunosorbent assays, J. Immun. Meth., 85 (1985), 409–419. |
[11] | C. P. Verschoor, A. Lelic, J. L. Bramson, et al., An introduction to automated flow cytometry gating tools and their implementation, Front. Immun., 6 (2015), 380. |
[12] | R.A.Burns, M.Y.El-Sayed and M.F.Roberts, Kinetic model for surface-active enzymes based on the Langmuir adsorption isotherm: phospholipase C (bacillus cereus) activity toward dimyristoyl phosphatidylcholine/detergent micelles, Natl. Acad. Sci. USA, 79 (1982), 4902–4906. |
[13] | K. Lange, Mathematical and statistical methods for genetic analysis, 1st edition, Springer-Verlag, New York, 1997. |
[14] | S. A. Mutch, B. S. Fujimoto, C. L. Kuyper, et al., Deconvolving single-molecule intensity distributions for quantitative microscopy measurements, Biophys J., 92 (2007), 2926–2943. |
[15] | European Committee for Antimicrobial Susceptibility Testing of the European Society of Clinical Microbiology and Infectious Diseases, Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution, Clin. Microbio. Infect., 9 (2003), 9–15. |
[16] | B. A. Mistry, M. R. D'Orsogna and T. Chou, The effects of statistical multiplicity of infection on virus quantification and infectivity assays, Biophysi J., 114 (2018), 2974–2985. |
[17] | J. P. Awe, P. C. Lee, C. Ramathal, et al., Generation and characterization of transgene-free human induced pluripotent stem cells and conversion to putative clinical-grade status, Stem Cell Res. Ther., 4 (2013), 87. |