Citation: Lisa Sattenspiel, Jessica Dimka, Carolyn Orbann. Using cultural, historical, and epidemiological data to inform, calibrate, and verify model structures in agent-based simulations[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 3071-3093. doi: 10.3934/mbe.2019152
[1] | D. Bernoulli, Essai d'une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l'inoculation pour la prévenir, Mém. Math. Phys. Acad. Roy. Sci., Paris, (1760), 1–45. |
[2] | R. Dunbar and M. Spoors, Social networks, support cliques, and kinship, Hum. Nat., 6 (1995), 273–290. |
[3] | G. Bruno, P. Nicola, V. Alessandro, et al., Modeling users' activity on twitter networks: Validation of Dunbar's number, PLoS ONE, 6 (2011), e22656. |
[4] | R. A. Hill and R. I. Dunbar, Social network size in humans, Hum. Nat., 14 (2003), 53–72. |
[5] | F. Ball and P. Neal, A general model for stochastic SIR epidemics with two levels of mixing, Math. Biosci., 180 (2002), 73–102. |
[6] | F. Ball and P. Neal, Network epidemic models with two levels of mixing, Math. Biosci., 212 (2008), 69–87. |
[7] | F. Ball, D. Sirl and P. Trapman, Analysis of a stochastic SIR epidemic on a random network incorporating household structure, Math. Biosci., 224 (2010), 53–73. |
[8] | B. Heath, R. Hill and F. Ciarallo, A survey of agent-based modeling practices (January 1998 to July 2008), J. Artif. Soc. Soc. Simul., 12 (2009), 9. |
[9] | J. M. Epstein, Generative Social Science: Studies in Agent-Based Computational Modeling, Princeton University Press, (2006). |
[10] | R. Boero and F. Squazzoni, Does empirical embeddedness matter? Methodological issues on agent-based models for analytical social science, J. Artif. Soc. Soc. Simul., 8 (2005), 6. |
[11] | C. Graebner, How to relate models to reality? An epistemological framework for the validation and verification of computational models, J. Artif. Soc. Soc. Simul., 21 (2018), 8. |
[12] | J. S. Lee, T. Filatova, A. Ligmann-Zielinska, et al., The complexities of agent-based modeling output analysis, J. Artif. Soc. Soc. Simul., 18 (2015), 4. |
[13] | E. Borgonovo and E. Plischke, Sensitivity analysis: a review of recent advances, Eur. J. Oper. Res., 248 (2016), 869–887. |
[14] | B. G. Marcot, P. H. Singleton and N. H. Schumaker, Analysis of sensitivity and uncertainty in an individual‐based model of a threatened wildlife species, Nat. Resour. Model., 28 (2015), 37–58. |
[15] | E. O. Nsoesie, R. J. Beckman and M. V. Marathe, Sensitivity analysis of an individual-based model for simulation of influenza epidemics, PLoS ONE, 7 (2012), e45414. |
[16] | F. Pianosi, K. Beven, J. Freer, et al., Sensitivity analysis of environmental models: A systematic review with practical workflow, Environ. Model. Softw., 79 (2016), 214–232. |
[17] | G. ten Broeke, G. van Voorn and A. Ligtenberg, Which sensitivity analysis method should I use for my agent-based model?, J. Artif. Soc. Soc. Simul., 19 (2016), 5. |
[18] | F. Ferretti, A. Saltelli and S. Tarantola, Trends in sensitivity analysis practice in the last decade, Sci. Total Environ., 568 (2016), 666–670. |
[19] | A. Saltelli and P. Annoni, How to avoid a perfunctory sensitivity analysis, Environ. Model. Softw., 25 (2010), 1508–1517. |
[20] | J. Dimka, C. Orbann and L. Sattenspiel, Applications of agent-based modeling techniques to studies of historical epidemics: The 1918 flu in Newfoundland and Labrador, J. Can. Hist. Assoc., 25 (2014), 265–296. |
[21] | C. Orbann, J. Dimka, E. Miller, et al., Agent‐based modeling and the second epidemiologic transition, in Modern Environments and Human Health: Revisiting the Second Epidemiological Transition (ed. M. K. Zuckerman), Wiley-Blackwell, (2014), 105–122. |
[22] | L. Sattenspiel, E. Miller, J. Dimka, et al., Epidemic models with and without mortality: When does it matter?, in Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases (eds. G. Chowell and M. J. Hyman), Springer International Publishing, (2016), 313–327. |
[23] | M. C. Bootsma and N. M. Ferguson, The effect of public health measures on the 1918 influenza pandemic in US cities, Proc. Natl. Acad. Sci. USA., 104 (2007), 7588–7593. |
[24] | R. M. Eggo, S. Cauchemez and N. M. Ferguson, Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States, J. R. Soc. Interface, 8 (2011), 233–243. |
[25] | C. E. Mills, J. M. Robins and M. Lipsitch, Transmissibility of 1918 pandemic influenza, Nature, 432 (2004), 904–906. |
[26] | D. Davis, The family and social change in the Newfoundland outport, Culture, 3 (1983), 19–32. |
[27] | M. M. Firestone, Brothers and Rivals: Patrilocality in Savage Cove, Institute of Social and Economic Research, Memorial University of Newfoundland, (1967). |
[28] | T. F. Nemec, "I Fish with My Brother": The Structure and Behaviour of Agnatic-based Fishing Crews in a Newfoundland Irish Outport, Institute of Social and Economic Research, Memorial University of Newfoundland, (1970). |
[29] | M. Porter, "She was skipper of the shore-crew:" Notes on the history of the sexual division of labour in Newfoundland, Labour-Travail, 15 (1985), 105–123. |
[30] | S. A. Queen and R. W. Habenstein, The Family in Various Cultures, Lippincott, (1974). |
[31] | Newfoundland Colonial Secretary's Office, Census of Newfoundland and Labrador 1921, Colonial Secretary's Office, (1923). |
[32] | Newfoundland's Grand Banks, Genealogical and historical data for the province of Newfoundland and Labrador, (2013). Available from: http://ngb.chebucto.org. |
[33] | Department of Hygiene, Japanese Ministry of Interior, Chapter 7, Section 2. Epidemic records and preventive methods of influenza in the United States of America, in Influenza (Ryukousei Kanbou), Ministry of Interior, (1922), 431–484. |
[34] | P. Neal, A household SIR epidemic model incorporating time of day effects, J. Appl. Probab., 53 (2016), 489–501. |
[35] | S. Towers and G. Chowell, Impact of weekday social contact patterns on the modeling of influenza transmission, and determination of the influenza latent period, J. Theor. Biol., 312 (2012), 87–95. |
[36] | E. Colman, K. Spies and S. Bansal, The reachability of contagion in temporal contact networks: How disease latency can exploit the rhythm of human behavior, BMC Infect. Dis., 18 (2018), 219. |