In this paper, we propose a detrital-based mangrove food chain system with Holling type Ⅱ functional response, intraspecific competition, and delay effects. First, we prove the solution of this system is positive and bounded with the positive initial conditions. Second, we calculate the equilibria and investigate the asymptotical stability of equilibria with and without delays. Then, by taking the delay as the bifurcation parameter and using bifurcation theory, the bifurcation conditions for the system to undergo Hopf bifurcation at the interior equilibrium point are obtained. Furthermore, we also conduct the length estimation of delay to preserve the stability by using the Nyquist criterion. Finally, with the suitable choices of the parameters, numerical simulations have been carried out to substantiate our analytical results.
Citation: Hanqi Zhu, Yan Yan. Dynamics of a detrital-based mangrove food chain system driven by Holling type Ⅱ functional response and intraspecific competition[J]. AIMS Mathematics, 2025, 10(7): 15433-15456. doi: 10.3934/math.2025692
In this paper, we propose a detrital-based mangrove food chain system with Holling type Ⅱ functional response, intraspecific competition, and delay effects. First, we prove the solution of this system is positive and bounded with the positive initial conditions. Second, we calculate the equilibria and investigate the asymptotical stability of equilibria with and without delays. Then, by taking the delay as the bifurcation parameter and using bifurcation theory, the bifurcation conditions for the system to undergo Hopf bifurcation at the interior equilibrium point are obtained. Furthermore, we also conduct the length estimation of delay to preserve the stability by using the Nyquist criterion. Finally, with the suitable choices of the parameters, numerical simulations have been carried out to substantiate our analytical results.
| [1] |
D. M. Alongi, Global significance of mangrove blue carbon in climate change mitigation, Sci., 2 (2020), 67. https://doi.org/10.3390/sci2030067 doi: 10.3390/sci2030067
|
| [2] |
E. B. Barbier, The protective service of mangrove ecosystems: A review of valuation methods, Mar. Pollut. Bull., 81 (2011), 169–193. https://doi.org/10.1016/j.marpolbul.2016.01.033 doi: 10.1016/j.marpolbul.2016.01.033
|
| [3] |
A. Dabala, F. Dahdouh-Guebas, D. C. Dunn, J. D. Everett, C. E. Lovelock, J. O. Hanson, et al., Priority areas to protect mangroves and maximise ecosystem services, Nat. Commun., 14 (2023), 5863. https://doi.org/10.1038/s41467-023-41333-3 doi: 10.1038/s41467-023-41333-3
|
| [4] |
D. C. Donato, J. B. Kauffman, D. Murdiyarso, J. D. Everett, C. E. Lovelock, J. O. Hanson, Mangroves among the most carbon-rich forests in the tropics, Nat. Geosci., 4 (2011), 293–297. https://doi.org/10.1038/ngeo1123 doi: 10.1038/ngeo1123
|
| [5] | Y. Y. Liu, Y. Z. Zhang, Q. M. Cheng, J. J. Feng, M. C. Chao, J. Y. Tsou, Mangrove monitoring and change analysis with landsat images: A case study in pearl river estuary (China), Ecol. Indic., 160 (2024), 111763. |
| [6] |
F. Sidik, B. Supriyanto, H. Krisnawati, M. Z. Muttaqin, Mangrove conservation for climate change mitigation in indonesia, Wires. Clim. Change., 9 (2018), e529. https://doi.org/10.1002/wcc.529 doi: 10.1002/wcc.529
|
| [7] |
J. Lelkes, T. Kalmar-Nagy, Bifurcation analysis of a forced delay equation for machine tool vibrations, Nonlinear Dyn., 98 (2010), 2961–2974. https://doi.org/10.1007/s11071-019-04984-w doi: 10.1007/s11071-019-04984-w
|
| [8] |
Y. Song, Y. Peng, T. Zhang, The spatially inhomogeneous Hopf bifurcation induced by memory delay in a memory based diffusion system, J. Differ. Equ., 300 (2021), 597–624. https://doi.org/10.48550/arXiv.2104.00330 doi: 10.48550/arXiv.2104.00330
|
| [9] | D. Mukherjee, S. Ray, D. K. Sinha, Bifurcation analysis of a detritus-based ecosystem with time delay, J. Biol. Syst., 8 (2000), 255–261. |
| [10] |
R. Bhattacharyya, B. Mukhopadhyay, Oscillation and persistence in a mangrove ecosystem in presence of delays, J. Biol. Syst., 11 (2003), 351–364. https://doi.org/10.1142/S021833900300097X doi: 10.1142/S021833900300097X
|
| [11] |
B. Mukhopadhyay, R. Bhattacharyya, Diffusion induced shift of bifurcation point in a mangrove ecosystem food-chain model with harvesting, Nat. Resour. Model., 22 (2009), 415–436. https://doi.org/10.1111/j.1939-7445.2009.00043.x doi: 10.1111/j.1939-7445.2009.00043.x
|
| [12] |
X. D. Wang, M. Peng, X. Y. Liu, Stability and hopf bifurcation analysis of a ratio-dependent predator-prey model with two time delays and holling type iii functional response, Appl. Math. Comput., 268 (2015), 496–508. https://doi.org/10.1016/j.amc.2015.06.108 doi: 10.1016/j.amc.2015.06.108
|
| [13] |
D. P. Hu, H. J. Cao, Stability and bifurcation analysis in a predator-prey system with michaelis-menten type predator harvesting, Nonlinear Anal. Real., 33 (2017), 58–82. https://doi.org/10.1016/j.nonrwa.2016.05.010 doi: 10.1016/j.nonrwa.2016.05.010
|
| [14] |
F. Li, H. W. Li, Hopf bifurcation of a predator-prey model with time delay and stage structure for the prey, Math. Comput. Model., 55 (2012), 672–679. https://doi.org/10.1016/j.mcm.2011.08.041 doi: 10.1016/j.mcm.2011.08.041
|
| [15] |
H. Akkocaoglu, H. Merdan, C. Celik, Hopf bifurcation analysis of a general non-linear differential equation with delay, J. Comput. Appl. Math., 237 (2013), 565–575. https://doi.org/10.1016/j.cam.2012.06.029 doi: 10.1016/j.cam.2012.06.029
|
| [16] |
R. Yafia, M. A. Aziz-Alaoui, H. Merdan, J. J. Tewa, Bifurcation and stability in a delayed predator-prey model with mixed functional responses, In. J. Bifurcat. Chaos, 25 (2015), 1–17. https://doi.org/10.1142/S0218127415400143 doi: 10.1142/S0218127415400143
|
| [17] |
C. Arancibia-Ibarra, J. D. Flores, G. Pettet, P. V. Heijster, A hollingtanner predator-prey model with strong allee effect, Int. J. Bifurcat. Chaos, 29 (2019), 1930032. https://doi.org/10.1142/S0218127419300325 doi: 10.1142/S0218127419300325
|
| [18] |
W. Abid, R. Yafia, M. A. Aziz-Alaoui, H. Bouhafa, A. Abichou, Global dynamics of a three species predator-prey competition model with Holling type Ⅱ functional response on a circular domain, J. Appl. Nonlinear Dyn., 5 (2016), 93–104. https://doi.org/10.5890/JAND.2016.03.007 doi: 10.5890/JAND.2016.03.007
|
| [19] |
C. X. Huang, H. Zhang, J. D. Cao, H. J. Hu, Stability and hopf bifurcation of a delayed prey-predator model with disease in the predator, Int. J. Bifurcat. Chaos, 29 (2019), 23. https://doi.org/10.1142/S0218127419500913 doi: 10.1142/S0218127419500913
|
| [20] |
H. S. Zhang, Y. L. Cai, S. M. Fu, W. M. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356 (2019), 328–337. https://doi.org/10.1016/j.amc.2019.03.034 doi: 10.1016/j.amc.2019.03.034
|
| [21] |
G. Barabas, M. J. Michalska-Smith, S. Allesina, The effect of intra-and interspecific competition on coexistence in multispecies communities, Am. Nat., 188 (2016), 1–68. https://doi.org/10.1086/686901 doi: 10.1086/686901
|
| [22] |
Z. Z. Li, B. X. Dai, Analysis of dynamics in a general intraguild predation model with intraspecific competition, J. Appl. Anal. Comput., 9 (2019), 1493–1526. https://doi.org/10.11948/2156-907X.20180296 doi: 10.11948/2156-907X.20180296
|
| [23] |
M. X. Chen, X. Z. Li, C. R. Tian, Spatiotemporal dynamics in a three-component predator-prey model, Appl. Math. Lett., 163 (2025), 109424. https://doi.org/10.1016/j.aml.2024.109424 doi: 10.1016/j.aml.2024.109424
|
| [24] |
M. Bandyopadhyay, S. Banerjee, A stage-structured prey-predator model with discrete time delay, Appl. Math. Comput., 182 (2006), 1385–1398. https://doi.org/10.1016/j.amc.2006.05.025 doi: 10.1016/j.amc.2006.05.025
|
| [25] |
S. Kundu, S. Maitra, Dynamics of a delayed predator-prey system with stage structure and cooperation for preys, Chaos Soliton. Fract., 114 (2018), 453–460. https://doi.org/10.1016/j.chaos.2018.07.013 doi: 10.1016/j.chaos.2018.07.013
|
| [26] |
F. Ganjisaffar, T. M. Perring, Prey stage preference and functional response of the predatory mite Galendromus flumenis to Oligonychus pratensis, Biol. Control, 82 (2015), 40–45. https://doi.org/10.1016/j.biocontrol.2014.12.004 doi: 10.1016/j.biocontrol.2014.12.004
|
| [27] |
N. R. Kamel, M. S. Jasim, The dynamical analysis of a prey-predator model with a refuge-stage structure prey population, Int. J. Differ. Equat., 2016 (2016), 1–10. https://doi.org/10.1155/2016/2010464 doi: 10.1155/2016/2010464
|
| [28] |
J. Li, M. Vincx, P. M. J. Herman, A model of nematode dynamics in the Westerschelde Estuary, Ecol Model., 90 (1996), 271–284. https://doi.org/10.1016/0304-3800(95)00154-9 doi: 10.1016/0304-3800(95)00154-9
|
| [29] |
X. Y. Meng, H. F. Huo, H. Xiang, Q. Y. Yin, Stability in a predator-prey model with Crowley-Martin function and stage structure for prey, Appl. Math. Comput., 232 (2014), 810–819. https://doi.org/10.1016/j.amc.2014.01.139 doi: 10.1016/j.amc.2014.01.139
|
| [30] |
S. Pandey, A. Sarkar, D. Das, S. Chakraborty, Dynamics of a delay-induced prey-redator system with interaction between immature prey and predators, Int. J. Biomath., 17 (2024), 2350016. https://doi.org/10.1142/s179352452350016x doi: 10.1142/s179352452350016x
|