Research article Special Issues

Analysis of exceptional surfaces via Doppler- and Zeeman-affected non-Hermitian Hamiltonian in a three-level atomic system

  • Published: 01 July 2025
  • MSC : 15A18, 45A05, 45C05, 70H05, 78A10, 81-10, 81Q93

  • The exceptional surface of the Doppler- and Zeeman-affected non-Hermitian Hamiltonian of a three-level atomic medium, driven by one probe and two control fields, was controlled and modified. Multiple exceptional surfaces of the second and third orders were reported based on the real part of eigenstates and the real and imaginary parts of the eigenvalues of the non-Hermitian Hamiltonian. The exceptional surfaces and degeneracy regions were studied with variations in detunings, Rabi frequencies, decay rates, phases, and Doppler and Zeeman widths. The effect of the Doppler shift was obtained by the average of $ \lambda_i(kv) $ and $ S_i(kv) $ over the Maxwellian distribution, while the Zeeman shift was obtained by the average of $ \lambda_i(\mu B) $ and $ S_i(\mu B) $ over the Gaussian distribution. The exceptional surfaces shift with both Zeeman and Doppler shift. The degeneracy increases with an increase in the Zeeman effect. With an increase in Doppler width, the degeneracy in the real part of the eigenvalues also increases but decreases in the imaginary part of eigenvalues. The maximum range of degeneracy of Zeeman-affected exceptional surfaces was investigated with decay rates and Rabi frequencies of the coupled driving fields, while for Doppler-affected exceptional surfaces, it was investigated with detuning and Rabi frequencies. The modified results of exceptional surfaces are useful for hybrid quantum systems, artificial intelligence, entanglement physics, quantum state sensing, and optics.

    Citation: Abdul Majeed, Obaid J. Algahtani, Imdad Ullah, Amir Ali, Dragan Pamucar. Analysis of exceptional surfaces via Doppler- and Zeeman-affected non-Hermitian Hamiltonian in a three-level atomic system[J]. AIMS Mathematics, 2025, 10(7): 15165-15192. doi: 10.3934/math.2025680

    Related Papers:

  • The exceptional surface of the Doppler- and Zeeman-affected non-Hermitian Hamiltonian of a three-level atomic medium, driven by one probe and two control fields, was controlled and modified. Multiple exceptional surfaces of the second and third orders were reported based on the real part of eigenstates and the real and imaginary parts of the eigenvalues of the non-Hermitian Hamiltonian. The exceptional surfaces and degeneracy regions were studied with variations in detunings, Rabi frequencies, decay rates, phases, and Doppler and Zeeman widths. The effect of the Doppler shift was obtained by the average of $ \lambda_i(kv) $ and $ S_i(kv) $ over the Maxwellian distribution, while the Zeeman shift was obtained by the average of $ \lambda_i(\mu B) $ and $ S_i(\mu B) $ over the Gaussian distribution. The exceptional surfaces shift with both Zeeman and Doppler shift. The degeneracy increases with an increase in the Zeeman effect. With an increase in Doppler width, the degeneracy in the real part of the eigenvalues also increases but decreases in the imaginary part of eigenvalues. The maximum range of degeneracy of Zeeman-affected exceptional surfaces was investigated with decay rates and Rabi frequencies of the coupled driving fields, while for Doppler-affected exceptional surfaces, it was investigated with detuning and Rabi frequencies. The modified results of exceptional surfaces are useful for hybrid quantum systems, artificial intelligence, entanglement physics, quantum state sensing, and optics.



    加载中


    [1] M. Berry, M. Wilkinson, Diabolical points in the spectra of triangles, Proc. R. Soc. Lond. A, 392 (1984), 15–43. https://doi.org/10.1098/rspa.1984.0022 doi: 10.1098/rspa.1984.0022
    [2] W. Heiss, The physics of exceptional points, J. Phys. A: Math. Theor., 45 (2012), 444016. https://doi.org/10.1088/1751-8113/45/44/444016 doi: 10.1088/1751-8113/45/44/444016
    [3] C. Liang, Y. Tang, A. Xu, Y. Liu, Observation of exceptional points in thermal atomic ensembles, Phys. Rev. Lett., 130 (2023), 263601. https://doi.org/10.1103/PhysRevLett.130.263601 doi: 10.1103/PhysRevLett.130.263601
    [4] I. Ullah, A. Majeed, A. Ali, Z. Khan, Reflection and transmission solitons via high magneto optical medium, Chaos Soliton. Fract., 191 (2025), 115881. https://doi.org/10.1016/j.chaos.2024.115881 doi: 10.1016/j.chaos.2024.115881
    [5] I. Ullah, A. Majeed, M. Dalam, M. Almazah, A. Ali, Coherent manipulation of tunneling and super Gaussian based Goos-Hänchen shift in five level chiral atomic medium, Appl. Phys. A, 131 (2025), 89. https://doi.org/10.1007/s00339-024-08205-z doi: 10.1007/s00339-024-08205-z
    [6] Z. Khan, A. Majeed, I. Ullah, A. Ali, Coherent generation of superluminal and subluminal propagation of structured light in five level atomic medium, Appl. Phys. B, 131 (2025), 30. https://doi.org/10.1007/s00340-025-08394-2 doi: 10.1007/s00340-025-08394-2
    [7] H. Hodaei, A. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. Christodoulides, et al., Enhanced sensitivity at higher-order exceptional points, Nature, 548 (2017), 187–191. https://doi.org/10.1038/nature23280 doi: 10.1038/nature23280
    [8] W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, L. Yang, Exceptional points enhance sensing in an optical microcavity, Nature, 548 (2017), 192–196. https://doi.org/10.1038/nature23281 doi: 10.1038/nature23281
    [9] I. Arkhipov, A. Miranowicz, F. Minganti, F. Nori, Liouvillian exceptional points of any order in dissipative linear bosonic systems: coherence functions and switching between and anti-symmetries, Phys. Rev. A, 102 (2020), 033715. https://doi.org/10.1103/PhysRevA.102.033715 doi: 10.1103/PhysRevA.102.033715
    [10] C. Zheng, Y. An, Z. Wang, X. Qin, B. Eynard, M. Bricogne, et al., Knowledge-based engineering approach for defining robotic manufacturing system architectures, Int. J. Prod. Res., 61 (2023), 1436–1454. https://doi.org/10.1080/00207543.2022.2037025 doi: 10.1080/00207543.2022.2037025
    [11] G. Feng, S. Yu, T. Wang, Z. Zhang, Discussion on the weak equivalence principle for a Schwarzschild gravitational field based on the light-clock model, Ann. Phys., 473 (2024), 169903. https://doi.org/10.1016/j.aop.2024.169903 doi: 10.1016/j.aop.2024.169903
    [12] R. Thomas, H. Li, F. Ellis, T. Kottos, Giant nonreciprocity near exceptional-point degeneracies, Phys. Rev. A, 94 (2016), 043829. https://doi.org/10.1103/PhysRevA.94.043829 doi: 10.1103/PhysRevA.94.043829
    [13] Z. Wang, Y. Yang, F. Parastesh, S. Cao, J. Wang, Chaotic dynamics of a carbon nanotube oscillator with symmetry-breaking, Phys. Scr., 100 (2025), 015225. https://doi.org/10.1088/1402-4896/ad9552 doi: 10.1088/1402-4896/ad9552
    [14] P. Cejnar, J. Jolie, R. Casten, Quantum phase transitions in the shapes of atomic nuclei, Rev. Mod. Phys., 82 (2010), 2155. https://doi.org/10.1103/RevModPhys.82.2155 doi: 10.1103/RevModPhys.82.2155
    [15] J. Wiersig, Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection, Phys. Rev. Lett., 112 (2014), 203901. https://doi.org/10.1103/PhysRevLett.112.203901 doi: 10.1103/PhysRevLett.112.203901
    [16] N. Mortensen, P. Gonçalves, M. Khajavikhan, D. Christodoulides, C. Tserkezis, C. Wolff, Fluctuations and noise-limited sensing near the exceptional point of parity-time-symmetric resonator systems, Optica, 5 (2018), 1342–1346. https://doi.org/10.1364/OPTICA.5.001342 doi: 10.1364/OPTICA.5.001342
    [17] M. Mohammad-Ali, A. Alu, Exceptional points in optics and photonics, Science, 363 (2019), 7709. https://doi.org/10.1126/science.aar7709 doi: 10.1126/science.aar7709
    [18] J. Bouchaud, M. Potters, Theory of financial risk and derivative pricing: from statistical physics to risk management, Cambridge: Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511753893
    [19] Y. Zhou, X. Wu, X. Cai, H. Xu, Q. Li, W. Xiong, et al., Smart meta-device powered by stray microwave energies: a green approach to shielding external interference and detection, Appl. Energ., 378 (2025), 124770. https://doi.org/10.1016/j.apenergy.2024.124770 doi: 10.1016/j.apenergy.2024.124770
    [20] Y. Lai, Y. Lu, M. Suh, K. Vahala, Enhanced sensitivity operation of an optical gyroscope near an exceptional point, Nature, 576 (2019), 65–69. https://doi.org/10.1038/s41586-019-1777-z doi: 10.1038/s41586-019-1777-z
    [21] H. Jing, Ş. Özdemir, H. Lü, F. Nori, High-order exceptional points in optomechanics, Sci. Rep., 7 (2017), 3386. https://doi.org/10.1038/s41598-017-03546-7 doi: 10.1038/s41598-017-03546-7
    [22] H. Zhao, Z. Chen, R. Zhao, L. Feng, Exceptional point engineered glass slide for microscopic thermal mapping, Nat. Commun., 9 (2018), 1764. https://doi.org/10.1038/s41467-018-04251-3 doi: 10.1038/s41467-018-04251-3
    [23] W. Sun, Y. Jin, G. Lu, Genuine multipartite entanglement from a thermodynamic perspective, Phys. Rev. A, 109 (2024), 042422. https://doi.org/10.1103/PhysRevA.109.042422 doi: 10.1103/PhysRevA.109.042422
    [24] S. Abo, P. Tulewicz, K. Bartkiewicz, Ş. Özdemir, A. Miranowicz, Experimental Liouvillian exceptional points in a quantum system without Hamiltonian singularities, New J. Phys., 26 (2024), 123032. https://doi.org/10.1088/1367-2630/ad98b6 doi: 10.1088/1367-2630/ad98b6
    [25] C. Shi, D. Wang, W. Li, X. Fang, B. Zhang, D. Wang, Atomic imaging and optical properties of InAs/In0.5Ga0.5As0.5Sb0.5 type Ⅱ superlattice, Appl. Phys. Lett., 124 (2024), 251101. https://doi.org/10.1063/5.0209805 doi: 10.1063/5.0209805
    [26] A. Lakhtakia, T. Mackay, C. Zhou, Electromagnetic surface waves at exceptional points, Eur. J. Phys., 42 (2020), 015302. https://doi.org/10.1088/1361-6404/abb6c7 doi: 10.1088/1361-6404/abb6c7
    [27] M. Scheffer, J. Bascompte, W. Brock, V. Brovkin, S. Carpenter, V. Dakos, et al., Early-warning signals for critical transitions, Nature, 461 (2009), 53–59. https://doi.org/10.1038/nature08227 doi: 10.1038/nature08227
    [28] Ş. Özdemir, S. Rotter, F. Nori, L. Yang, Parity-time symmetry and exceptional points in photonics, Nat. Mater., 18 (2019), 783–798. https://doi.org/10.1038/s41563-019-0304-9 doi: 10.1038/s41563-019-0304-9
    [29] Y. Wu, P. Zhou, T. Li, W. Wan, Y. Zou, High-order exceptional point based optical sensor, Opt. Express, 29 (2021), 6080–6091. https://doi.org/10.1364/OE.418644 doi: 10.1364/OE.418644
    [30] R. Duggan, S. Mann, A. Alù, Limitations of sensing at an exceptional point, ACS Photonics, 9 (2022), 1554–1566. https://doi.org/10.1021/acsphotonics.1c01535 doi: 10.1021/acsphotonics.1c01535
    [31] G. Zhang, Z. Chen, D. Xu, N. Shammah, M. Liao, T. Li, et al., Exceptional point and cross-relaxation effect in a hybrid quantum system, PRX Quantum, 2 (2021), 020307. https://doi.org/10.1103/PRXQuantum.2.020307 doi: 10.1103/PRXQuantum.2.020307
    [32] T. Goldzak, A. Mailybaev, N. Moiseyev, Light stops at exceptional points, Phys. Rev. Lett., 120 (2018), 013901. https://doi.org/10.1103/PhysRevLett.120.013901 doi: 10.1103/PhysRevLett.120.013901
    [33] I. Mandal, E. Bergholtz, Symmetry and higher-order exceptional points, Phys. Rev. Lett., 127 (2021), 186601. https://doi.org/10.1103/PhysRevLett.127.186601 doi: 10.1103/PhysRevLett.127.186601
    [34] X. Zhang, C. Chan, Dynamically encircling exceptional points in a three-mod waveguide system, Commun. Phys., 2 (2019), 63. https://doi.org/10.1038/s42005-019-0171-3 doi: 10.1038/s42005-019-0171-3
    [35] K. Kawabata, Exceptional sensing and transport, Physics, 16 (2023), 107. https://doi.org/10.1103/Physics.16.107 doi: 10.1103/Physics.16.107
    [36] S. Ramezanpour, A. Bogdanov, Tuning exceptional points with Kerr nonlinearity, Phys. Rev. A, 103 (2021), 043510. https://doi.org/10.1103/PhysRevA.103.043510 doi: 10.1103/PhysRevA.103.043510
    [37] M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. Türeci, et al., Reversing the pump dependence of a laser at an exceptional point, Nat. Commun., 5 (2014), 4034. https://doi.org/10.1038/ncomms5034 doi: 10.1038/ncomms5034
    [38] A. Kodigala, T. Lepetit, B. Kanté, Exceptional points in three-dimensional plasmonic nanostructures, Phys. Rev. B, 94 (2016), 201103(R). https://doi.org/10.1103/PhysRevB.94.201103 doi: 10.1103/PhysRevB.94.201103
    [39] H. Chen, T. Liu, H. Luan, R. Liu, X. Wang, X. Zhu, et al., Revealing the missing dimension at an exceptional point, Nat. Phys., 16 (2020), 571–578. https://doi.org/10.1038/s41567-020-0807-y doi: 10.1038/s41567-020-0807-y
    [40] J. Zhang, B. Peng, Ş. Özdemir, K. Pichler, D. Krimer, G. Zhao, et al., A phonon laser operating at an exceptional point, Nature Photon., 12 (2018), 479–484. https://doi.org/10.1038/s41566-018-0213-5 doi: 10.1038/s41566-018-0213-5
    [41] C. Wolff, C. Tserkezis, N. Mortensen, On the time evolution at a fluctuating exceptional point, Nanophotonics, 8 (2019), 1319–1326. https://doi.org/10.1515/nanoph-2019-0036 doi: 10.1515/nanoph-2019-0036
    [42] N. Even, B. Nennig, G. Lefebvre, E. Perrey-Debain, Experimental observation of exceptional points in coupled pendulums, J. Sound Vib., 575 (2024), 118239. https://doi.org/10.1016/j.jsv.2024.118239 doi: 10.1016/j.jsv.2024.118239
    [43] E. Bulgakov, K. Pichugin, A. Sadreev, Exceptional points in a dielectric spheroid, Phys. Rev. A, 104 (2021), 053507. https://doi.org/10.1103/PhysRevA.104.053507 doi: 10.1103/PhysRevA.104.053507
    [44] H. Iqbal, M. Idrees, M. Javed, B. Bacha, S. Khan, S. Ullah, Goos-Hänchen shift from cold and hot atomic media using Kerr nonlinearity, J. Russ. Laser Res., 38 (2017), 426–436. https://doi.org/10.1007/s10946-017-9663-3 doi: 10.1007/s10946-017-9663-3
    [45] K. Ding, G. Ma, M. Xiao, Z. Zhang, C. Chan, Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization, Phys. Rev. X, 6 (2016), 021007. https://doi.org/10.1103/PhysRevX.6.021007 doi: 10.1103/PhysRevX.6.021007
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(882) PDF downloads(61) Cited by(7)

Article outline

Figures and Tables

Figures(27)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog