Research article Special Issues

Expectation formulas for $ q $-probability distributions: a new extension via Andrews-Askey integral

  • Received: 02 December 2024 Revised: 07 January 2025 Accepted: 15 January 2025 Published: 22 January 2025
  • MSC : Primary 05A19, Secondary 33D15

  • In this paper, we utilize the $ q $-Chu-Vandermonde formula to derive a novel expectation formula for the $ q $-probability distribution $ W(x, y; q) $, extending previously known results. Several applications are presented, including a broader generalization of the Andrews-Askey integral. Although fractional $ q $-calculus is not directly employed in this work, its potential for future extensions is discussed, as non-integer order derivatives and integrals could offer deeper insights into $ q $-series and probability distributions.

    Citation: Qiuxia Hu, Bilal Khan, Serkan Araci. Expectation formulas for $ q $-probability distributions: a new extension via Andrews-Askey integral[J]. AIMS Mathematics, 2025, 10(1): 1448-1462. doi: 10.3934/math.2025067

    Related Papers:

  • In this paper, we utilize the $ q $-Chu-Vandermonde formula to derive a novel expectation formula for the $ q $-probability distribution $ W(x, y; q) $, extending previously known results. Several applications are presented, including a broader generalization of the Andrews-Askey integral. Although fractional $ q $-calculus is not directly employed in this work, its potential for future extensions is discussed, as non-integer order derivatives and integrals could offer deeper insights into $ q $-series and probability distributions.



    加载中


    [1] R. Chapman, A probabilistic proof of the Andrews-Gordon identities, Discrete Math., 290 (2005), 79–84. https://doi.org/10.1016/j.disc.2004.10.018 doi: 10.1016/j.disc.2004.10.018
    [2] J. Fulman, A probabilistic proof of the Rogers-Ramanujan identities, Bull. London. Math. Soc., 33 (2001), 397–407. https://doi.org/10.1017/S0024609301008207 doi: 10.1017/S0024609301008207
    [3] K. W. J. Kadell, A probabilistic proof of Ramanujan's $_1\psi_1$ sum, SIAM J. Math. Anal., 18 (1987), 1539–1548. https://doi.org/10.1137/0518110 doi: 10.1137/0518110
    [4] M. Wang, A new probability distribution with applications, Pac. J. Math., 247 (2010), 241–255. https://doi.org/10.2140/pjm.2010.247.241 doi: 10.2140/pjm.2010.247.241
    [5] M. Wang, An expectation formula with applications, J. Math. Anal. Appl., 379 (2011), 461–468. https://doi.org/10.1016/j.jmaa.2011.01.044 doi: 10.1016/j.jmaa.2011.01.044
    [6] M. Wang, Two Ramanujan's formulas and normal distribution, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20 (2017), 1750006. https://doi.org/10.1142/S0219025717500060 doi: 10.1142/S0219025717500060
    [7] M. Wang, A new discrete probability space with applications, J. Math. Anal. Appl., 455 (2017), 1733–1742. https://doi.org/10.1016/j.jmaa.2017.06.069 doi: 10.1016/j.jmaa.2017.06.069
    [8] G. Gasper, M. Rahman, Basic hypergeometric series, 2 Eds., Cambridge: Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511526251
    [9] M. Wang, An expectation formula based on a Maclaurin expansion, Taiwan. J. Math., 23 (2019), 563–574. https://doi.org/10.11650/tjm/180802 doi: 10.11650/tjm/180802
    [10] F. Jackson, On $q$-definite integrals, Q. J. Pure Appl. Math., 50 (1910), 101–112.
    [11] G. E. Andrews, R. Askey, Another $q$-extension of the beta function, Proc. Amer. Math. Soc., 81 (1981), 97–100. https://doi.org/10.2307/2043995 doi: 10.2307/2043995
    [12] W. Al-Salam, A. Verma, Some remarks on $q$-beta integral, Proc. Amer. Math. Soc., 85 (1982), 360–362. https://doi.org/10.1090/S0002-9939-1982-0656102-7 doi: 10.1090/S0002-9939-1982-0656102-7
    [13] W. A. Al-Salam, Some fractional $q$-integrals and $q$-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. https://doi.org/10.1017/S0013091500011469 doi: 10.1017/S0013091500011469
    [14] R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Math. Proc. Cambridge Philos. Soc., 66 (1969), 365–370. https://doi.org/10.1017/S0305004100045060 doi: 10.1017/S0305004100045060
    [15] M. D. Ali, D. L. Suthar, On the fractional $q$-integral operators involving $q$-analogue of Mittag-Leffler function, Analysis, 44 (2024), 245–251. https://doi.org/10.1515/anly-2023-0107 doi: 10.1515/anly-2023-0107
    [16] M. E. H. Ismail, K. Zhou, $q$-fractional integral operators with two parameters, Adv. Appl. Math., 154 (2024), 102638. https://doi.org/10.1016/j.aam.2023.102638 doi: 10.1016/j.aam.2023.102638
    [17] H. L. Zhou, J. Cao, S. Arjika, A note on fractional $q$-integrals, J. Fract. Calc. Appl., 13 (2022), 82–94.
    [18] D. B. Sears, On the transformation theory of basic hypergeometric functions, Proc. Lond. Math. Soc., 53 (1951), 158–180. https://doi.org/10.1112/plms/s2-53.2.158 doi: 10.1112/plms/s2-53.2.158
    [19] Z. Liu, Some operator identities and $q$-series transformation formulas, Discrete Math., 265 (2003), 119–139. https://doi.org/10.1016/S0012-365X(02)00626-X doi: 10.1016/S0012-365X(02)00626-X
    [20] H. M. Srivastava, V. K. Jain, Some multilinear generating functions for $q$-Hermite polynomials, J. Math. Anal. Appl., 144 (1989), 147–157. https://doi.org/10.1016/0022-247X(89)90365-X doi: 10.1016/0022-247X(89)90365-X
    [21] A. Karagenc, M. Acikgoz, S. Araci, Exploring probabilistic Bernstein polynomials: identities andapplications, Appl. Math. Sci. Eng., 32 (2024), 2398591. https://doi.org/10.1080/27690911.2024.2398591 doi: 10.1080/27690911.2024.2398591
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(347) PDF downloads(43) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog