This study presented a comprehensive analysis of nonlinear fractional systems governed by the advection-dispersion equations (ADE), utilizing the Mohand transform iterative method (MTIM) and the Mohand residual power series method (MRPSM). By incorporating the Caputo fractional derivative, we enhanced the modeling capability for fractional-order differential equations, accounting for nonlocal effects and memory in the systems dynamics. We demonstrated that both MTIM and MRPSM were effective for solving fractional ADEs, providing accurate numerical solutions that were validated against exact results. The steady-state solutions, complemented by graphical representations, highlighted the behavior of the system for varying fractional orders and showcased the flexibility and robustness of the methods. These findings contributed significantly to the field of computational physics, offering powerful tools for tackling complex fractional-order systems and advancing research in related fields.
Citation: Azzh Saad Alshehry, Humaira Yasmin, Ali M. Mahnashi. Exploring fractional Advection-Dispersion equations with computational methods: Caputo operator and Mohand techniques[J]. AIMS Mathematics, 2025, 10(1): 234-269. doi: 10.3934/math.2025012
This study presented a comprehensive analysis of nonlinear fractional systems governed by the advection-dispersion equations (ADE), utilizing the Mohand transform iterative method (MTIM) and the Mohand residual power series method (MRPSM). By incorporating the Caputo fractional derivative, we enhanced the modeling capability for fractional-order differential equations, accounting for nonlocal effects and memory in the systems dynamics. We demonstrated that both MTIM and MRPSM were effective for solving fractional ADEs, providing accurate numerical solutions that were validated against exact results. The steady-state solutions, complemented by graphical representations, highlighted the behavior of the system for varying fractional orders and showcased the flexibility and robustness of the methods. These findings contributed significantly to the field of computational physics, offering powerful tools for tackling complex fractional-order systems and advancing research in related fields.
[1] | J. Gray, Change and variations: A history of differential equations to 1900, New York, NY, USA: (2021) Springer. https://doi.org/10.1007/978-3-030-70575-6 |
[2] | H. T. Davis, Introduction to nonlinear differential and integral equations. US Atomic Energy Commission, 1960. |
[3] |
X. Zheng, J. Jia, X. Guo, Eliminating solution singularity of variably distributed-order time-fractional diffusion equation via strongly singular initial distribution, Chaos, Soliton. Fract., 174 (2023), 113908. https://doi.org/10.1007/978-3-030-70575-6 doi: 10.1007/978-3-030-70575-6
![]() |
[4] |
X. H. Zhao, Multi-solitons and integrability for a (2+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation, Appl. Math. Lett., 149 (2024), 108895. https://doi.org/10.1016/j.aml.2023.108895 doi: 10.1016/j.aml.2023.108895
![]() |
[5] |
Z. Z. Lan, Semirational rogue waves of the three coupled higher-order nonlinear Schrodinger equations, Appl. Math. Lett., 147 (2024), 108845. https://doi.org/10.1016/j.aml.2023.108845 doi: 10.1016/j.aml.2023.108845
![]() |
[6] |
Y. Kai, Z. Yin, On the Gaussian traveling wave solution to a special kind of Schrodinger equation with logarithmic nonlinearity, Mod. Phys. Lett. B, 36 (2021), 2150543. https://doi.org/10.1142/S0217984921505436 doi: 10.1142/S0217984921505436
![]() |
[7] |
J. Xie, Z. Xie, H. Xu, Z. Li, W. Shi, J. Ren, et al., Resonance and attraction domain analysis of asymmetric duffing systems with fractional damping in two degrees of freedom, Chaos, Soliton. Fract., 187 (2024), 115440. https://doi.org/10.1016/j.chaos.2024.115440 doi: 10.1016/j.chaos.2024.115440
![]() |
[8] |
C. Zhu, S. A. Idris, M. E. M. Abdalla, S. Rezapour, S. Shateyi, B. Gunay, Analytical study of nonlinear models using a modified Schrodinger's equation and logarithmic transformation, Results Phys., 55 (2023), 107183. https://doi.org/10.1016/j.rinp.2023.107183 doi: 10.1016/j.rinp.2023.107183
![]() |
[9] |
G. Shuangjian, D. Apurba, Cohomology and deformations of generalized reynolds operators on leibniz algebras, Rocky Mt. J. Math., 54 (2024), 161–178. https://doi.org/10.1216/rmj.2024.54.161 doi: 10.1216/rmj.2024.54.161
![]() |
[10] |
T. A. A. Ali, Z. Xiao, H. Jiang, B. Li, A class of digital integrators based on trigonometric quadrature rules, IEEE T. Ind. Electron., 71 (2024), 6128–6138. https://doi.org/10.1109/TIE.2023.3290247 doi: 10.1109/TIE.2023.3290247
![]() |
[11] |
Z. Z. Lan, Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-de Vries equation in optical fibers, Chinese Phys. B, 33 (2024), 060201. https://doi.org/10.1088/1674-1056/ad39d7 doi: 10.1088/1674-1056/ad39d7
![]() |
[12] |
Z. Z. Lan, N-soliton solutions, Backlund transformation and Lax Pair for a generalized variable-coefficient cylindrical Kadomtsev-Petviashvili equation, Appl. Math. Lett., 158 (2024), 109239. https://doi.org/10.1016/j.aml.2024.109239 doi: 10.1016/j.aml.2024.109239
![]() |
[13] |
Z. Z. Lan, Multiple Soliton Asymptotics in a Spin-1 Bose-Einstein Condensate, Chinese Phys. Lett., 41 (2024), 090501. https://doi.org/10.1088/0256-307X/41/9/090501 doi: 10.1088/0256-307X/41/9/090501
![]() |
[14] |
M. Z. Liu, D. Li, Properties of analytic solution and numerical solution of multi-pantograph equation, Appl. Math. Comput., 155 (2004), 853–871. https://doi.org/10.1016/j.amc.2003.07.017 doi: 10.1016/j.amc.2003.07.017
![]() |
[15] | A. El-Ajou, Z. Odibat, S. Momani, A. Alawneh, Construction of analytical solutions to fractional differential equations using homotopy analysis method, IAENG Int. J. Appl. Math., 40 (2010). |
[16] |
Y. F. Luchko, H. M. Srivastava, The exact solution of certain differential equations of fractional order by using operational calculus, Comput. Math. Appl., 29 (1995), 73–85. https://doi.org/10.1016/0898-1221(95)00031-S doi: 10.1016/0898-1221(95)00031-S
![]() |
[17] |
A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59 (2010), 1326–1336. https://doi.org/10.1016/j.camwa.2009.07.006 doi: 10.1016/j.camwa.2009.07.006
![]() |
[18] |
A. M. Wazwaz, The modified decomposition method for analytic treatment of differential equations, Appl. Math. Comput., 173 (2006), 165–176. https://doi.org/10.1016/j.amc.2005.02.048 doi: 10.1016/j.amc.2005.02.048
![]() |
[19] |
A. El-Ajou, O. A. Arqub, S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm, J. Comput. Phys., 293 (2015), 81–95. https://doi.org/10.1016/j.jcp.2014.08.004 doi: 10.1016/j.jcp.2014.08.004
![]() |
[20] |
S. Das, Analytical solution of a fractional diffusion equation by variational iteration method, Comput. Math. Appl., 57 (2009), 483–487. https://doi.org/10.1016/j.camwa.2008.09.045 doi: 10.1016/j.camwa.2008.09.045
![]() |
[21] |
S. Alshammari, M. M. Al-Sawalha, R. Shah, Approximate analytical methods for a fractional-order nonlinear system of Jaulent-Miodek equation with energy-dependent Schrodinger potential, Fractal Fract., 7 (2023), 140. https://doi.org/10.3390/fractalfract7020140 doi: 10.3390/fractalfract7020140
![]() |
[22] |
Y. Qin, A. Khan, I. Ali, M. Al Qurashi, H. Khan, D. Baleanu, An efficient analytical approach for the solution of certain fractional-order dynamical systems. Energies, 13 (2020), 2725. https://doi.org/10.3390/en13112725 doi: 10.3390/en13112725
![]() |
[23] |
A. A. Alderremy, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944
![]() |
[24] |
M. M. Al-Sawalha, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Math., 7 (2022), 18334–18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010
![]() |
[25] |
H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, Perturbed Gerdjikov-Ivanov equation: Soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
![]() |
[26] |
A. U. K. Niazi, N. Iqbal, F. Wannalookkhee, K. Nonlaopon, Controllability for fuzzy fractional evolution equations in credibility space, Fractal Fract., 5 (2021), 112. https://doi.org/10.3390/fractalfract5030112 doi: 10.3390/fractalfract5030112
![]() |
[27] |
E. M. Elsayed, K. Nonlaopon, The analysis of the fractional-order Navier-Stokes equations by a novel approach, J. Funct. Space., 2022 (2022), 8979447. https://doi.org/10.1155/2022/8979447 doi: 10.1155/2022/8979447
![]() |
[28] |
M. Naeem, H. Rezazadeh, A. A. Khammash, S. Zaland, Analysis of the fuzzy fractional-order solitary wave solutions for the KdV equation in the sense of Caputo-Fabrizio derivative, J. Math., 2022 (2022), 3688916. https://doi.org/10.1155/2022/3688916 doi: 10.1155/2022/3688916
![]() |
[29] |
M. Alqhtani, K. M. Saad, R. Shah, W. M. Hamanah, Discovering novel soliton solutions for (3+1)-modified fractional Zakharov-Kuznetsov equation in electrical engineering through an analytical approach, Opt. Quant. Electron., 55 (2023), 1149. https://doi.org/10.1007/s11082-023-05407-2 doi: 10.1007/s11082-023-05407-2
![]() |
[30] |
S. Meng, F. Meng, F. Zhang, Q. Li, Y. Zhang, A. Zemouche, Observer design method for nonlinear generalized systems with nonlinear algebraic constraints with applications, Automatica, 162 (2024), 111512. https://doi.org/10.1016/j.automatica.2024.111512 doi: 10.1016/j.automatica.2024.111512
![]() |
[31] |
F. Meng, A. Pang, X. Dong, C. Han, X. Sha, H-$\infty$ optimal performance design of an unstable plant under bode integral constraint, Complexity, 2018 (2018), 4942906. https://doi.org/10.1155/2018/4942906 doi: 10.1155/2018/4942906
![]() |
[32] |
F. Meng, D. Wang, P. Yang, G. Xie, Application of sum of squares method in nonlinear H-$\infty$ control for satellite attitude maneuvers, Complexity, 2019 (2019), 5124108. https://doi.org/10.1155/2019/5124108 doi: 10.1155/2019/5124108
![]() |
[33] |
S. Liang, Y. Gao, C. Hu, A. Hao, H. Qin, Efficient photon beam diffusion for directional subsurface scattering, IEEE T. Vis. Comput. Gr., (2024). https://doi.org/10.1109/TVCG.2024.3447668 doi: 10.1109/TVCG.2024.3447668
![]() |
[34] |
J. Wang, J. Ji, Z. Jiang, L. Sun, Traffic flow prediction based on spatiotemporal potential energy fields, IEEE T. Knowl. Data En., 35 (2022), 9073–9087. https://doi.org/10.1109/TKDE.2022.3221183 doi: 10.1109/TKDE.2022.3221183
![]() |
[35] |
T. Zhang, S. Xu, W. Zhang, New approach to feedback stabilization of linear discrete time-varying stochastic systems, IEEE T. Automat. Contr., (2024). https://doi.org/10.1109/TAC.2024.3482119 doi: 10.1109/TAC.2024.3482119
![]() |
[36] |
B. O. R. I. S. Baeumer, D. A. Benson, M. M. Meerschaert, Advection and dispersion in time and space, Physica A, 350 (2005), 245–262. https://doi.org/10.1016/j.physa.2004.11.008 doi: 10.1016/j.physa.2004.11.008
![]() |
[37] |
S. Momani, Z. Odibat, Numerical solutions of the space-time fractional advection-dispersion equation, Numer. Meth. Part. D. E., 24 (2008), 1416–1429. https://doi.org/10.1002/num.20324 doi: 10.1002/num.20324
![]() |
[38] |
O. A. Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math., 5 (2013), 31–52. https://doi.org/10.5373/jaram.1447.051912 doi: 10.5373/jaram.1447.051912
![]() |
[39] |
O. A. Arqub, A. El-Ajou, Z. A. Zhour, S. Momani, Multiple solutions of nonlinear boundary value problems of fractional order: A new analytic iterative technique, Entropy, 16 (2014), 471–493. https://doi.org/10.3390/e16010471 doi: 10.3390/e16010471
![]() |
[40] |
A. El-Ajou, O. A. Arqub, S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm, J. Comput. Phys., 293 (2015), 81–95. https://doi.org/10.1016/j.jcp.2014.08.004 doi: 10.1016/j.jcp.2014.08.004
![]() |
[41] |
F. Xu, Y. Gao, X. Yang, H. Zhang, Construction of fractional power series solutions to fractional Boussinesq equations using residual power series method, Math. Probl. Eng., 2016 (2016). https://doi.org/10.1155/2016/5492535 doi: 10.1155/2016/5492535
![]() |
[42] |
J. Zhang, Z. Wei, L. Li, C. Zhou, Least-squares residual power series method for the time-fractional differential equations, Complexity, 2019 (2019), 1–15. https://doi.org/10.1155/2019/6159024 doi: 10.1155/2019/6159024
![]() |
[43] |
I. Jaradat, M. Alquran, R. Abdel-Muhsen, An analytical framework of 2D diffusion, wave-like, telegraph, and Burgers' models with twofold Caputo derivatives ordering, Nonlinear Dynam., 93 (2018), 1911–1922. https://doi.org/10.1007/s11071-018-4297-8 doi: 10.1007/s11071-018-4297-8
![]() |
[44] |
I. Jaradat, M. Alquran, K. Al-Khaled, An analytical study of physical models with inherited temporal and spatial memory, Eur. Phys. J. Plus, 133 (2018), 1–11. https://doi.org/10.1140/epjp/i2018-12007-1 doi: 10.1140/epjp/i2018-12007-1
![]() |
[45] | M. Alquran, K. Al-Khaled, S. Sivasundaram, H. M. Jaradat, Mathematical and numerical study of existence of bifurcations of the generalized fractional Burgers-Huxley equation, Nonlinear Stud., 24 (2017), 235–244. |
[46] |
M. Alquran, M. Ali, M. Alsukhour, I. Jaradat, Promoted residual power series technique with Laplace transform to solve some time-fractional problems arising in physics, Results Phys., 19 (2020), 103667. https://doi.org/10.1016/j.rinp.2020.103667 doi: 10.1016/j.rinp.2020.103667
![]() |
[47] |
T. Eriqat, A. El-Ajou, N. O. Moa'ath, Z. Al-Zhour, S. Momani, A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations, Chaos, Soliton. Fract., 138 (2020), 109957. https://doi.org/10.1016/j.chaos.2020.109957 doi: 10.1016/j.chaos.2020.109957
![]() |
[48] |
M. Alquran, M. Alsukhour, M. Ali, I. Jaradat, Combination of Laplace transform and residual power series techniques to solve autonomous n-dimensional fractional nonlinear systems, Nonlinear Eng., 10 (2021), 282–292. https://doi.org/10.1515/nleng-2021-0022 doi: 10.1515/nleng-2021-0022
![]() |
[49] | M. Mohand, A. Mahgoub, The new integral transform "Mohand Transform", Adv. Theor. Appl. Math., 12 (2017), 113–120. |
[50] |
M. Nadeem, J. H. He, A. Islam, The homotopy perturbation method for fractional differential equations: Part 1 Mohand transform, Int. J. Numer. Meth. H., 31 (2021), 3490–3504. https://doi.org/10.1108/HFF-11-2020-0703 doi: 10.1108/HFF-11-2020-0703
![]() |