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1. Introduction

Many kinds of mathematical models have been developed to assist in the realization of some known
physical phenomena. The derivatives of unknown functions are involved in these models, even though
they yield differential equations (DEs). Since their development, the DEs have become an essential area
of mathematics [1]. Soon after the Newtonian variable equations were developed in the 1670s, Leibniz
and the Bernoulli brothers started working on DEs in the early 1680s. As a result, several writers
created a variety of applications in engineering and mechanical subjects, which in turn enhanced the
Leibnizian legacy and increased its multivariate form in the modern era [1]. Despite being more broad
than ordinary differential equations (ODEs), partial differential equations (PDEs) typically require a
distinct approach to be solved [2—4]. They encompass solving problems involving several independent
variables, making them more difficult and complex even when the subject matter is vast and important.
In fact, PDE solutions have drawn a lot of attention from scientists since certain phenomena have
found a way to be expressed through them [5]. The two most well-known examples of linear PDEs
are heat and wave equations, whereas the most well-known examples of nonlinear PDEs include
Schrodinger, Poisson, Korteweg-de Vries, water wave, Dirac, Fisher, and Klein-Gordon [6-8]. Since
many PDE types lack exact solutions, a variety of analytical and numerical techniques are described to
introduce approximate solutions for both linear and nonlinear PDEs [9, 10]. These techniques include
the Laplace transforms (LT) approach [11], Fourier transform technique [12], homotopy perturbation
and analysis method [13-15], operational calculus method [16], operational matrix method [17],
Adomian decomposition method [18], the residual power series (RPS) method [19], and variational
iteration method [20]. Fractional-order differential equations have emerged as powerful tools for
modeling complex dynamical systems in diverse fields such as fluid mechanics, wave propagation, and
control theory. Recent advancements have focused on developing analytical and numerical methods
to explore the behavior of these systems. Studies like Alshammari et al. [21] and Qin et al. [22]
have highlighted innovative approaches for solving fractional-order nonlinear systems, while others,
such as Alderremy et al. [23], have employed series solutions to tackle reaction-diffusion models.
The exploration of coupled systems, as presented by Al-Sawalha et al. [24], and soliton solutions for
perturbed equations, as investigated by Yasmin et al. [25], demonstrates the breadth of applications
for fractional calculus. Furthermore, techniques for controlling fractional evolution equations [26]
and analyzing fractional Navier-Stokes equations [27] have significantly advanced the field. Recent
works continue to extend these methodologies to electrical engineering [28-30], nonlinear control
systems [31, 32], and predictive modeling [34, 35]. These contributions underscore the growing
importance and versatility of fractional-order systems in solving real-world problems across various
disciplines.

The advection-dispersion equation (ADE) is derived from the study of particle dispersion and
advection occurring simultaneously when particles move in a fluid according to Brownian motion.
Since solute transport in anomalous diffusion is faster than the estimated square root of time provided
by Baeumer et al. [36], the fractional ADE (FADE) provides a better description of the phenomena of
anomalous diffusion of particles in the transport process. Numerous environmental problems have been
studied using this equation, including groundwater contamination, chemical solute diffusion, smoke
and dust pollution of the atmosphere, and pollutant discharges [37]. Thus, a number of academics are
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becoming interested in FADE.

PH@,Q)  IUD,Q)
02 ™50

DY (D, Q) -k =0, where 0 < p < 1. (1.1)

where Q is time, O is the spatial domain, W is the solute concentration, k, j are the average dispersion
coeflicient and fluid velocity, and "a" is the parameter that determines the order of the time-fractional
derivatives and the space-fractional derivatives. We look at the fractional derivative in the Caputo
sense. The generic response expression has parameters that govern the order of fractional derivatives,
and these parameters can be varied to produce a variety of outcomes. When p = 1, the fractional
equation reduces to the typical ADE. The basic solutions of the ADE over time will be Gaussian
densities whose variances and means depend on the values of the macroscopic transport coefficients k
and j. The space-time FADE has already been examined by several writers.

The residual power series method (RPSM) was founded by Omar Abu Arqub [38] in 2013. It
is created by combining the Taylor series with the residual error function. An infinite convergence
series provides a solution to DEs. The study of fractional-order differential equations continues to gain
prominence due to their ability to model systems with memory and hereditary properties. Innovative
analytical and numerical methods have been developed to address these equations, such as the iterative
techniques presented by Arqub et al. [39] and El-Ajou et al. [40]. Residual power series methods have
proven effective for constructing solutions, as demonstrated by Xu et al. [41] and Zhang et al. [42].
Additionally, the analysis of physical models with temporal and spatial memory effects [43, 44], as
well as bifurcation studies of fractional systems [45], highlights the versatility of fractional calculus
in capturing complex dynamics. Recent advancements, including hybrid techniques like Laplace
transform combined with power series approaches [46—48], further extend the applicability of these
methods to nonlinear and multidimensional systems. These contributions underline the significant
progress in solving fractional problems across various fields, from physics to engineering.

In this work, we introduce a novel approach that combines the RPSM with the Mohand transform
to approximate solutions to FADEs. It is evident that this computational series provides an accurate
solution after only a limited number of iterations, and the resulting series converges rapidly.

A key challenge with existing methodologies is the computational complexity and the substantial
effort required for their implementation. Our contribution is the development of a new iterative
approach for solving FADEs, termed the Mohand transform iterative method (MTIM). By
incorporating the Mohand transform into this iterative process, we reduce both the computational
complexity and the required effort, offering a more efficient solution.

In this paper, we solve the FADEs using both the Mohand RPSM (MRPSM) and MTIM. Through
comparison with other numerical techniques, we demonstrate that these methods outperform existing
approaches in terms of accuracy. A detailed comparison analysis of the numerical results further
supports the effectiveness and reliability of the proposed methods. The appeal of fractional-order
derivatives increases as their value rises, and our algorithms are fast, accurate, user-friendly, and
resilient to computational errors. This advancement will aid mathematicians in solving a wide range
of PDEs more effectively.
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2. Mohand transform key concepts

An overview of the Mohand transform (MT) and its key concepts will be given below to lay the
groundwork for this process.

Definition 2.1. The MT is defined by the integral equation:

M{Y(Q)} = s f ) e P(Q)Q = D(s)
0

Definition 2.2. The inverse MT is given by:

1 C+100 1
WQ) = M H{D(s)) = — f L o0d(s)ds, ceR
2700 Jocico 82

where M~ is the inverse operator of MT.

Definition 2.3. [50]: The MT equation has the following fractional derivative:

n—1 k
M[¥?(Q)] = s"R(s) — Z rO
k=0

Definition 2.4. Some of the features relating to MT are as follows:

1. M[¥'(Q)] = sR(s) — s*R(0),
2. M[¥"(Q)] = s2R(s) — $3R(0) — s2R’(0),

3. M[P"(Q)] = s"R(s) — s""'R(0) — s"R’(0) — - - - — s"R"1(0).

Lemma 2.1. Y(®,Q) denotes the exponential order function. The equation M[R(s)] = Y(®,Q)
describes the MT in this context.
r—1

MIDP¥(®, Q)] = sR(s) — Z sP DINY(@,0),0 < p < 1, 2.1)
j=0

where ® = (®,D,,--- ,®,) € R?, p e N, and D = D}.Dy,. - -+ .Dg(r — times)

Proof. Using mathematical induction, it is feasible to verify Eq 2.1. The subsequent results are
obtained when r = 1 is placed into Eq 2.1:

MIDPW(®, Q)] = sR(s) — s~ W(®,0) — 5" DL W(®, 0).

The definition 2.3 indicates that Eq 2.1 is valid for » = 1. When r = 2 is substituted into Eq 2.1, we
get:
2 2 2p-1 -1
M[DP¥(D, Q)] = s7R(s) — 7 P(D,0) — s Dy ¥(D, 0). (2.2)

Using Eq 2.2 left-hand side (L.H.S), the resulting expression is achieved.

LHS = M[D"¥(®,Q)]. (2.3)
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Equation 2.3 can also be written as:

L.HS = M[Dg‘P((D,Q)]. 2.4)
Assume
72(D, Q) = Dg‘I’(CD, Q). (2.5
Hence, Eq 2.4 becomes
LHS =M [Dgz((D, Q)]. (2.6)

The Caputo derivative leads to the modification of Eq 2.6.
LHS = M[J'"™7Z (D, Q)]. (2.7)

The Riemann-Liouville (R-L) integral for MT is given by Eq 2.7, from which more details can be

derived: ,
M[z (D, Q
Lus = ME@D] 2.8)
si—P
By employing the differentiability characteristic of the MT, the subsequent expression of Eq 2.8 is
derived:

D,0
LHS = 'Z(®,5) - 2 - ) (2.9)
s
Equation 2.5 is employed to obtain the following outcome.
Y(®,0
Z@.5) = s"R(s) — 20
si—p
In this case, M[z(Q2, )] = Z(®D, s). Thus, Eq 2.9 is modified to the following form:
Y(D,0) DLY(D,0
L.HS = s*"R(s) - (@,0) _ Dot ), (2.10)

s1—2p sl-p

For r = K, both Egs 2.1 and 2.10 are consistent. Suppose that for r = K, Eq 2.1 is true. So, putr = K

in Eq 2.1
K-1

MID¥(@, Q)] = s"7R(s) = ) s DIDFW(@,0), 0 < p< 1. @1
=0

Finally, we have to show that Eq 2.1 is true for » = K + 1. We may write Eq 2.1 as:

K
MIDE P W@, Q)] = sEPR(s) = > 7 ED I DIPB(@, 0). (2.12)
Jj=0

The following outcome is obtained by examining the left side of Eq 2.12.
L.H.S = M[DS'(DE)]. (2.13)

Let
DY’ = g(@,Q).
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From Eq 2.13, we obtain:
L.H.S = M[Dgg(®,Q)]. (2.14)

Eq 2.14 can yield the subsequent outcome by employing the R-L integral and the Caputo derivative.

®,0
LHS = s"MIDE (@, Q)] - & < ) (2.15)
S
By utilizing Eq 2.11, it is feasible to get Eq 2.15.
r—1 .
LHS = s7R(s)- Y s"" "' DI¥(®,0), (2.16)

Jj=0
This result was obtained by solving the Eq 2.16.
L.HS = M[DJ¥(®,0)].

It is proved that Eq 2.1 is true for r = K + 1. Therefore, Eq 2.1 is valid for all positive integers when
the mathematical induction method is applied. O

Lemma 2.2. Let the function Y(®, Q) be exponential order and the MT be ¥Y(®, Q) is M[P(D, Q)] =
R(s). Then, the following is the MT representation in the multiple fractional Taylor series (MFTS)
form:

O (D)
R(s)= D s >0, (2.17)
r=0

where, @ = (51, Dy,--- ,D,) €RP, pe N.
Proof. Suppose this form of Taylor’s series:

Y(D, Q) = hip(P) + 7y (D ¥ ho (D Qv 2.18
,Q) = + — + + —— :
(@, Q) = hp(P) + 7y ( )F[p 1 2 )F[Zp T (2.18)
We obtain the following outcome when MT is applied on Eq 2.18:

P

I'lp+1]

M[Y(D,Q)] = M [7ip(D)] + M |71, (D) +M

Q2
ST 11] ’

When the MT’s features are utilized, the following results are obtained:

r 1] 1 12 1] 1
[p+1] + (@) [2p + 1]
I[p+ 1] srt! I'2p + 1] s?r+!

1
M¥(®, Q)] = ho(P)~ + (D)

As a result, an MT-specific form of Taylor’s series is produced, denoted as Eq 2.17. O

Lemma 2.3. M[WY(®D, Q)] = R(s) is the new form of Taylor’s series 2.17, which is used to represent the
multiple fractional power series (MFPS).

ho(®) = lim sR(s) = P(D,0). (2.19)
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Proof. The modified new form of Taylor’s series is as follows:

ho<®>:sR(s>_@_@_...

(2.20)

The required solution, which can be determined as /im,_, ., is implemented through Eq 2.19 and a short

computation, as illustrated in 2.20.

O

Theorem 2.4. Consider the function M[Y(®, )], then the R(s) denoted in MFPS form is given below:

)
R(s)= )~ s> 0,

r=0

where ® = (O, Dy, -+ ,®,) € R and p € N. Then, we have
7 (®) = D)PY(D,0),

where, D) = D.Dy). -+ .Dg(r — times).
Proof. Consider the Taylor series:

ni(®) = s"'R(s) — s"ho(D) — @ GO

Taking limy_,, of Eq 2.21 to deduce:

P2 _ i

sP s§—00 s2P

h(®) = }L%(S””MS) = $"To(®)) — lim
we get the following equality by taking the limit:
(@) = }iglo(S””R(S) — s Tig(D)).
Lemma 2.1 and Eq 2.22 are used to get the following outcome:
(@) = lim(sM [DGP(@, Q)](5))-
Eq 2.23 is further modified using Lemma 2.2:
1 () = DLW(D,0).

By employing the lim,_,., and using Taylor series once more, we deduce:

Ia(®) = s R(s) — s ho(®) — 5”1 (D) — M,SD) _

Lemma 2.2 is used to obtain:

Fio (@) = lim s(s*”R(s) — s*PFig(D) — 5P~y (D)).

Py(@)

2.21)

(2.22)

(2.23)

(2.24)
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In a specific way, we use Eq 2.3 and Lemma 2.1 to make the following changes in Eq 2.24:

ha(®) = D(®, 0).
Using the same process, we can get:
(@) = lim s(M[D¥(@. p)I(s)).
To obtain the final result, we use Lemma 2.3:
h3(®) = DV(®, 0).

Generally,
7, (@) = DFY(D,0).

Proved.

O

The following theorem contains a description and illustration of the concepts that affect the

convergence of the modified version of Taylor’s series.

Theorem 2.5. In Lemma 2.2, a formula for MFTS is provided and can be expressed as follows:
M[YP(Q,D)] = R(s). When IS“M[DgGDp‘P(CD, D) <T, forall s > 0and 0 < p < 1, the residual

Hg (D, s) of the new MFTS satisfied the inequality:

T
|HK((D, S)| < W’ s > 0.

Proof. Consider M[Dg‘l’(d), O)](s) is defined on s > O for r = 0,1,2,--- ,K + 1 and suppose
|sM[Dqr«1'P(®, Q)]| < T. This relationship can be found by employing the revised Taylor’s series:

K

Hy(®, 5) = R(s) = )

r=0

(D)

srptl :

Theorem 2.4 is employed to transform Eq 2.25.

K rp\P (I)
Hyg(®, s) = R(s) — Z DQ—(’O)

rp+1
r=0 §

To resolve this problem, multiply both sides by s *D*! in order to obtain:

K
sEEDP (@, 5) = s(sKHDPR(s) — Z sEH=IP I DI, 0)).
r=0

Lemma 2.1 is applied to Eq 2.27 to obtain the subsequent result:
sEP (@, 5) = sMIDS P (@, Q).
Calculating the absolute value of Eq 2.28 yields the following:

s 0P Hyg (@, 5)] = 1sMIDg ™" (@, ).

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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The subsequent result is obtained by using the condition from Eq 2.29.

G(K+Dp+1 < Hg(®,5) < SK+Dp+” (2.30)
From Eq 2.30, we get.
|HK((I)a S)l < W
In this way, a novel condition for the series’ convergence is established. O

3. Road map of MT combination with RPSM method

This section outlines the process of constructing the MT with RPSM in order to provide an
approximate solution to PDEs.
Step 1: Consider the PDE:

Do¥ (D, Q) + HPIN(Y) - 6(D, W) =0, (3.1)
Step 2: Taking the MT of Eq 3.1 to obtain:

M[DL¥(D, Q) + HDIN(Y) - §(®,¥)] =0, (3.2)

Using Lemma 2.1, we can get the following result:

q-1 nyJj
R(s) = Z Dy¥(@,0) ﬂ(cb)_Y(s) . F@, s)’

s+l sJp sJp

(3.3)

J=

where, M[5(D, V)] = F(D, 5), M[N(W)] = Y(s).
Step 3: Solving Eq 3.3, we deduce:

[ee)

R(s):Z@ s> 0,

rp+1°
r=0 5

Step 4: Now, use the following procedure to obtain the solution:

fip(®) = lim sR(s) = ¥(D,0),
Utilize Theorem 2.5 to get the subsequent result:

() = DR Y(D,0),

Iia(®) = DIPP(®, 0),

1/(@) = Dy"¥(®, 0),
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Step 5: To get the K™ truncated series R(s), apply the following formula:

K
RK(S):Z@ s >0,

rp+1°
r=0 §

R (s) =

(@) (D) (@) s (D)
. +—+-- + Z

sptl swptl srptl’
r=w+l1

Step 6: Determine the following by calculating the Mohand residual function (MRF) from 3.3

separately of the K"'-truncated Mohand residual function:

Q

=\ DLY(®,0) L H@Y(s)  F(@,5)

MRes(®, s) = R(s) — Gipt1 §ip sip

T
o

and

-Q
._.

‘P(q) 0) N HD)Y(s)  F(D,s)

MR€S1(((D S) = RK(S) Sjp+1 sip s/pP

Il
(=

j
Step 7: Instead of its expansion form, Eq 3.4 can be formulated in terms of Rx(s).

Ro(®) 7y (D) (@) s T D)
. + +--- + Z )

Sp+1 swp+1 Srp+1

MResg (D, s) = (

r=w+l

‘IZ DL¥(®,0) L VDY) F(@.5)

s/p+1 sJp sJp
Step 8: Multiplying sKI”Jr1 with Eq 3.5:

K
K M Res (D, 5) = SK,,+1(ho(®) L@ (@) 3 1,(D)

s Sp+1 Swp+1 srp+1
r=w+1
&S DLP(@,0) L, DY) F(®,s)
Z s/p+1 sip P )
Step 9: Taking llms_,oo of Eq 3.6 to obtain:
. . fip(®) 7y () (D) o (D)
Kp+1 _ Kp+1('0 1 -
}LIgS ’ MReSK((D’ S) h }Ll'gs ! ( Ky + sp+1 + swpl Zl s+l
r=w+

"Zi D} ¥(®,0) | HDY() _ F(@, s))

= s/p+l /P /P

Step 10: 71x(®) values can be obtained using Eq 3.6.
lim (s*7*' MResg(®, s)) = 0

§—00

where K =1+w,2+w,---.

(3.4)

(3.5)

(3.6)

Step 11: The K"-approximation of Eq 3.3 is obtained by substituting 7ix(®) with a K-truncated series

of R(s).
Step 12: The final solution W (®, Q) is obtained using the inverse operator of MT.
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3.1. New iterative method combined with MT

Consider the following PDE:
DI Y(D,Q) = T(‘I’(CD, Q), DYY(D, Q), DXV (D, Q), DXY(D, Q)), 0<p,Q<1, (3.7)

Initial conditions
YOD,0) =My, k=0,1,2,--- ,m—1, (3.8)

with W(®, Q) denoting the function that we are required to identify, while 'I’(‘P((D, Q), Dg‘P((D, Q)
,DXY(D,Q), DPY(D, Q)) are nonlinear or linear operators of ¥(®, Q), Dg¥(®, Q), D2¥(P, Q) and

DEDQ‘P((D, Q). The expression that follows is obtained by applying the MT to both sides of Equation
3.7.

1 (’”Zl YO (D, 0)

MI¥(@.Q)] = — S M T(¥(@, Q). DY@, Q). DI, Q). D (@.Q))]). (3.9)

k=0

The inverse MT gives the subsequent result in this case:

P(D,Q) = M—l[i(mz_l m

= +M[T(‘I’(CD, Q), D2Y(®, Q), DIXY(D, Q), DIY(D, Q))])] (3.10)

1-p+k
k=0 §

The MTIM gives the infinite series solution as given below.
W(@,Q) = > ¥, (3.11)
i=0

The operators T(‘P, DY, DY, D?DQ‘P) decompose as given below:

T(¥, DR, DI, DIW) = Y(¥o, DR¥o. DiWo, DI, )

N i i—1
+ )| 0D (e DE¥e D, D)) = Y( ) (i DEW D D)) |- ©-12)
= =0 k=1

By substituting the values of Eq 3.11 and Eq 3.12 in Eq 3.10, the subsequent equation can be obtained.

1 (”’Z‘l YO (D, 0)

D Wi @,Q) =M [s—p S + MIT(¥o, DYy, D, D3]]
i=0

+ M [Slp(M[ i (r Z(‘Pk, DYP, Dy, D)) (3.13)
i=0 k=0
i—1

- [ (m|(r Y (8 DS D, D))

k=1
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Py(D, Q) = M‘l[i(mz_i M)],

2—p+k
k=0 5

ar !
¥i(@,Q) = M [ (MIT(¥o, DEWo, Do, D ¥o)l) .

Wi (0,Q) = M~ 1p (M > (00 > (Wi, DS, DI, D))
k=0

§ i=0
i-1
1
-1 Q 20 30 . _ .
M [S—p(M[(‘I’ kZ;(‘Pk,Dq,‘Pk,D@ W, D)) i =1.2.
The following expression can be used to obtain the i-terms of Eq 3.7 analytically:

m—1

P(D, Q) = Z ¥,
i=0

4. Applications

4.1. Problem 1 solution using MRPSM
Suppose the following time FADE:

FY(D,Q) ¥(D,Q)

DL¥(@.Q) —a— o +

=0, where 0 < p < 1.
Initial condition
P(D,0) = e®,
and exact solution
YD, Q) = £@HDP,

Eq 4.2 and the MT are used to get the following result from Eq 4.1.

e® a [azlp(cb, s)] 1 [8‘1’(@, s)

@, 9) = === 5 e P

|=o0.

sP

The k™ terms of the series that are truncated are:

k
()
lP((I),S):—e + E fr( > S) r=1,2,3,4---
r=1

Residual Mohand function is given by:

e®  a®YD,s)7 1 0P(D,s)
MaRes(@.5) = ¥(®.5) - — - S| — 5=+ S| —5—=

sP sP

o

(3.14)

(3.15)

4.1)

4.2)

4.3)

4.4)

4.5)

(4.6)
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and the k”"-MRFs as:

- a [62‘I‘k(<1>, S)] + i[a‘l’k(d), s)

e
MaResi(®, s) = Vi(D, s) — 5 HD2 sP oD

|=o. “.7)

The following procedures should be implemented to determine the value of f.(®,s) forr = 1,2,3, ...
replace the "-Mohand residual function Eq 4.7 for the r"-truncated series Eq 4.5, and multiply the
expression by s7*! for solving the relation, lim,_.(s"”*)MqResy (®,s)) = 0 for r = 1,2,3,---.
Some terms that we obtain are as follows:

fi®,5) = (a+ 1e®, (4.8)
H(®D,5) = (a+1)e?, (4.9)
£(@,5) = (a+1)e™®, (4.10)
fa(@,5) = (a+ 1) ®, (4.11)

and so on.
To obtain the desired result, the function f,(®, s) should be substituted into Eq (4.5).

e® @+De® (@+1D?® (@+1)e® (a+1)e™®

(D, 5) = B ——— 2P+ 3P+l AP+ (4.12)
Apply the inverse operator of MT to obtain the final solution:
p,—P 202p ,—P 303p ,— 404p ,—0
‘P((D,Q):e_q)+(a+1)ge +(a+1)Q e +(a+1)Q e +(a+1)Q e L @13)
I'(p+1) I'Cp+1) I'Gp+1) F'dp+1)
4.2. Problem 1 solution using MTIM
Suppose the following time FADE:
PY(D,Q) YD, Q
DIY(®,Q) =a (;q)z ) _ gq} ), where 0 < p < 1. (4.14)
Initial condition
P(D,0) =e®. (4.15)
Apply the MT on Eq 4.14:
1, ¥Y®O(@,0) PY(D,Q) 0¥(D,Q)
V4 — —’ ) _ Py
M[DL¥(®, Q)] = s”(kz_(; S+ Mla— ) (4.16)
Apply the inverse operator of MT on Eq 4.16:
1 ,"& wO@, 5, 0) PY(D,Q)  IV(D,Q)
_ —1 - s s s _ ’
(D, Q) =M [S”(kZ:;‘ i tMa— ! (4.17)
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Iteratively utilize the MT to get the following result:

Fo(0,Q) = M—l[i(mj PO,

P 2—-p+k
S e S

Y(P,0
:M‘l[ (s2 )]

=e®.

Eq 4.14 is solved using the R-L integral to obtain:

PV (D, Q) ¥(D,Q)
—_ -0 > _ £l
¥(0,Q) = ¢+ Mla e prs | (4.18)
Some of the terms that the MITM method produce are as follows:
Fo(@,Q) = €7, (4.19)
HQPe™®
Yi(D,Q) = lat ¥e 7 , (4.20)
I'(p+1)
(a+1)2Q%re?
Y (D, Q) = 4.21
2(0, Q) rep+) (4.21)
1 3Q3p —-®
Wy, Q) = DT 4.22)
I'Gp+1)
(a+1)*Qre?
Yy(D,Q) = . 4.23
4(0,Q) Tap+ D) (4.23)
The final solution is:
Y(D, Q) = Vo(D, Q) + ¥ (D, Q) + Vo (D, Q) + P3(D, Q) + Vy(D, Q) +---, (4.24)
+ 1DQ? -0 +1 ZQZp -O +1 393[) ) +1 4Q4p —®
W, Q) = o0 4 G DX (ar VQPe? fay DOQPeT (at DIQXPe” 405

I'(p+1) I'2p+1) I'Gp+1) IF'dp+1)

Table 1 presents the error comparison between the solutions obtained using the MRPSM and the
MTIM for the function WY(®,€2). This comparison highlights the accuracy of both methods, where
the error values demonstrate that the MTIM and MRPSM provide very close approximations to the
exact solution, with MTIM showing slightly lower error in most cases. Figure 1 displays the exact
and approximate solutions of W(®, Q), for p = 1 and Q = 0.1. Panel (a) presents the exact solution,
providing a clear benchmark for comparison, while panel (b) shows the approximate solution obtained
using the proposed methods. The graphical comparison indicates that the approximation closely
matches the exact solution, highlighting the effectiveness of the methods in capturing the underlying
dynamics of the system. Figure 2 offers a side-by-side comparison of the exact and approximate
solutions of W(®,Q), for p = 1 and Q = 0.1. Panel (a) shows the exact solution, while panel (b)
illustrates the approximate solution. The slight deviations between the two solutions in the graph are
due to the inherent approximation process, but the overall agreement between them emphasizes the
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reliability and accuracy of both MRPSM and MTIM. Figure 3 presents a 3D graphical representation
of the approximate solution for p of WY(®,Q), for Q = 0.1. The 3D plot effectively illustrates how
the solution varies with respect to both, providing a visual understanding of the solution’s behavior for
varying fractional orders. The surface plot reveals smooth transitions and complex interactions between
the variables, demonstrating the robustness of the methods in handling fractional-order differential
equations. Figure 4 shows a 2D graphical representation of the approximate solution for different
values of p of Y(®,Q), for Q = 0.1 is presented for multiple fractional orders. The 2D plots highlight
how the solution’s shape changes with different values of p, providing further insight into the dynamics
of fractional systems. The consistency in the graphs demonstrates the stability of the methods over
varying parameters. Overall, the graphical results confirm the accuracy and reliability of the MRPSM
and MTIM in approximating solutions to the FADEs, providing a comprehensive visual understanding

of the solution behavior across different conditions.

Table 1. MRPSM and MTIM solution absolute error with exact solution for ¥(®, Q) of
problem 1.

MRPSM  MRPSM  MRPSM  MRPSM  MRPSM

MTIM

Q

Errorp,—o.

Error,—g,

Error,—o3

Error,_o4

Error,—os

Error,—os

0.01

1.8771808
0.6905762
0.2540487
0.0934593
0.0343817
0.0126483

0.8154997
0.3000055
0.1103658
0.0406013
0.0149363
0.0054947

0.4094808
0.1506395
0.0554172
0.0203868
0.0074999
0.0027590

0.2235174
0.0822274
0.0302497
0.0111282
0.0040938
0.0015060

0.1262354
0.0464394
0.0170841
0.0062848
0.0023120
0.0008505

0.1262354
0.0464394
0.0170841
0.0062848
0.0023120
0.0008505

0.05

2.6258573
0.9659989
0.3553711
0.1307337
0.0480942
0.0176928

1.4029278
0.5161082
0.1898656
0.0698476
0.0256955
0.0094528

0.7966979
0.2930888
0.1078213
0.0396652
0.0145920
0.0053681

0.4774295
0.1756365
0.0646130
0.0237698
0.0087444
0.0032168

0.2945283
0.1083509
0.0398600
0.0146637
0.0053944
0.0019845

0.2945283
0.1083509
0.0398600
0.0146637
0.0053944
0.0019845

0.10

N AR WD = O WA WD~V RAWNR~O G

3.0338831
1.1161032
0.4105914
0.1510481
0.0555675
0.0204421

1.8058633
0.6643399
0.2443970
0.0899086
0.0330755
0.0121678

1.0962378
0.4032833
0.1483596
0.0545784
0.0200782
0.0073863

0.6851275
0.2520443
0.0927219
0.0341104
0.0125485
0.0046163

0.4362119
0.1604734
0.0590348
0.0217177
0.0079895
0.0029391

0.4362119
0.1604734
0.0590348
0.0217177
0.0079895
0.0029391
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Figure 1. Graphical representation of approximate solution and exact solution for different
values of p of Y(®, Q) for Q = 0.1.

AIMS Mathematics Volume 10, Issue 1, 234-269.



250

05

Exact

~.
______

(e) p=0.5

Exact

L
......

() p=0.6

12

10[

.
08
06
04

02

Exact

. ApproxlmateP:0 7

.
......

(g) p=0.7

Exact

- Approximatep_q g

s
-~
......

(h) p=0.8
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~
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Figure 3. Graphical representation of approximate solution and exact solution for p = 0.9 of
(D, Q) for Q =0.1.
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Figure 4. 2D comparison of approximate solution for different values of p of Y(®, Q) for
Q=0.1.

Table 2 provides a solution comparison for the fractional order p of ¥Y(®, Q2) using both the MRPSM
and the MTIM for Q = 0.1. The comparison reveals that both methods yield highly similar results,
with slight variations depending on the fractional order p. This table reinforces the reliability and
accuracy of both methods in approximating the solution, showing that both MRPSM and MTIM are
effective in solving fractional-order differential equations. Figure 5 illustrates the solutions of W(®, Q)
for p = 1 and Q = 0.1 using both MRPSM and MTIM. Panel (a) shows the MRPSM solution,
while panel (b) presents the MTIM solution. Both graphs exhibit nearly identical solution profiles,
demonstrating the consistency between the two methods. The solutions are smooth and exhibit the
expected characteristics of the FADESs, confirming that both methods provide accurate approximations.
Figure 6 provides a side-by-side comparison of the MRPSM and MTIM solutions for ¥(®, Q) for p = 1
and Q = 0.1. Panel (a) shows the MRPSM solution, while panel (b) shows the MTIM solution. The
visual comparison reinforces the earlier finding that both methods produce nearly identical results,
validating that MTIM and MRPSM are robust and reliable for this problem. The solutions’ close
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agreement further suggests that either method can be used for efficient computation of FADE:s.

(a) Exact Solution (a) Approximate Solution

Figure 5. (a) Exact solution and (b) approximate solution of ¥(®, Q) for p = 1 and Q = 0.1.

W
B
I\
10
\
A
A\
08 & Exact
\
A"
0.6 “
s‘ ----- Approximate
0.4+ N
-
~
‘ﬁ
021 "'-..M_
1 1 --I ------ T e e ow L ¢
1 2 3 4 5

Figure 6. (a) Exact solution and (b) approximate solution comparison of WY (®, Q) for p = 1
and Q = 0.1.
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Table 2. MRPSM and MTIM solution absolute error with exact solution for ¥Y(®, Q) of
problem 1.

MRPSM  MRPSM  MRPSM  MRPSM MRPS M MTIM
Q O© Erroryeos Errorp—o; Error,os Error,o9 Error,- Error,-
0 0.0711952 0.0387171 0.0191468 0.0072487 1.344480x107'2  1.344480x107'2
1 0.0261912 0.0142432 0.0070437 0.0026666 4.946598x107'3®  4.946598x10713
0.01 2 0.0096352 0.0052397 0.0025912 0.0009810 1.819377x10°3  1.819377x10°!3
) 3 0.0035446 0.0019276 0.0009532 0.0003608 6.694644x107'*  6.694644x107'4
4 0.0013039 0.0007091 0.0003506 0.0001327 2.463307x107'* 2.463307x107 4
5 0.0004797 0.0002608 0.0001290 0.0000488 9.061328x10°">  9.061328x107 13
0 0.1816240 0.1080370 0.0583301 0.0240053 4.232785x10™°  4.232785x107°
1 0.0668158 0.0397445 0.0214584 0.0088310 1.557154x107° 1.557154x107°
0.05 2 0.0245802 0.0146212 0.0078941 0.0032487 5.728452x107'0  5.728452x10710
’ 3 0.0090425 0.0053788 0.0029040 0.0011951 2.107380x107'° 2.107380x107'°
4 0.0033265 0.0019787 0.0010683 0.0004396 7.752618x107''  7.752618x107!!
5 0.0012237 0.0007279 0.0003930 0.0001617 2.852028x10°'"  2.852028x107!!
0 0.2767880 0.1693540 0.0940604 0.0398121 1.367088x10~7  1.3670887x107’
1 0.1018250 0.0623018 0.0346029 0.0146460 5.029238x107%  5.0292383x108
0.10 2 0.0374592 0.0229195 0.0127297 0.0053879 1.850153x10™®  1.8501533x1078
’ 3 0.0137805 0.0084316 0.0046829 0.0019821 6.806333x10™°  6.8063339x10~°
4 0.0050695 0.0031018 0.0017227 0.0007291 2.503910x107°  2.5039103x10~°
5 0.0018649 0.0011411 0.0006337 0.0002682 9.211371x107'° 9.2113713x1071°
4.3. Problem 2 solution using MRPSM
Suppose the following time FADE:
PP(D,Q) YD, Q
DLY(D,Q) —a 8((1)2 ) (M) )~ 0, where 0< p<1. (4.26)
Initial condition
¥(D,0) = O - D7, (4.27)
Eq 4.27 and the MT is used to get the following result from Eq (4.26).
D - D>  a [ PPD,s) 1 [ O¥(D, s)
_ _ = ’ il e Sal ety oo 4.28
P(D, 5) > [ s |+ > | 0 |=o. (4.28)
The k" terms of the series that are truncated are:
D - D & fA(D,s)
(@, 5) = — +Z‘ e r=123.40 (4.29)
Residual Mohand function is given by:
D - D>  a [ PPD,s) 1 (0P (D, s)
MQR€S((D, S) = \P((D, S) - T - S_P[W:I + ;[GT] = 0, (430)
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and the k”"-MRFs as:

(D3 - (D2 _ ﬁ[az‘l’k((b, S)] + l[a‘l’k((l), S)

002 oD
The following procedures should be implemented to determine the value of f.(®,s) forr = 1,2,3, ...
replace the r-Mohand residual function Eq 4.31 for the r”-truncated series Eq 4.29, and multiply
the expression by s"7*! for solving the relation, lims_)oo(s’p“)MQRes\p,r(CD, s))=0forr=1,2,3,---.
Some terms that we obtain are as follows:

MaResi(®, s) = Vi(D, s) —

] = 0. (4.31)

S sP sP

Fi(D, 5) = a(6D - 2) + D2 — 3D), (4.32)
fo(D,5) = —12a + 6D — 2, (4.33)
f(@, s) = -6, (4.34)

Jfa(®,5) =0, (4.35)

and so on.
To obtain the desired result, the function f,(®, s) should be substituted into Eq (4.29).

O’ - @? 60 —-2)+d2-30) —-12a+6D -2 6 0
(@, ) = L X )+ & ) l2at __5 (4.36)
ad 2+l §3p+l s4p+l
Apply the inverse operator of MT to obtain the final solution:
6D —2) + O2 - 3D)Q”  2(6a — 3D + 1)Q? 6Q°”
W@, 0) = (@ o2 + WOP =D+ DC Z Q)N 2(6a - 3D+ DT _ T
I(p+1) I'2p+1) I'Gp+1)
(4.37)
4.4. Problem 2 solution using MTIM
Suppose the following time FADE:
Y (D,Q) 0¥(D,Q)
DYY(D,Q) =a Fr I where 0 < p < 1. (4.38)
Initial condition
P(D,0) = O - . (4.39)
Apply the MT on Eq 4.38:
m—1
1 YO (D, 0) *Y(D,Q) YD, Q)
p I —’ 9 _ o
MIDL¥(@, Q)] = —( 2, M|a— ) (4.40)
Apply the inverse operator of MT on Eq 4.40:
1 ,"& wO@, 5, 0) PY(D,Q)  IV(D,Q)
_ —1 - s s s _ ’
Y(D,Q) = M [SP(Z — e M|a e 0 D] (4.41)

k=0
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Iteratively utilize the MT to get the following result:

15 P9 (@,0
Po(@, Q) = M ; )]

¥(D,0)
]
=@ - P

=M

Eq 4.38 is solved using the R-L integral to obtain:

PY(D,Q) Y(D,Q)
—®3 2 » 5
H(@.Q) = ©* - O+ Mla—o— - — | (442)
Some of the terms that the MITM method produces are as follows:
Po(D, Q) = O — P, (4.43)
(a(6® —2) + D2 — 30))Q2?
Y (D,Q) = .
2(6a — 3D + 1)Q*
Wy, Q) = 204 =30 + DT (4.45)
I'2p+1)
3p
Y3(D,Q) = —L, (4.46)
I'Gp+1)
Y, (D, Q) = 0. (4.47)
The final solution is:
Y(D,Q) = Yo(D,Q) + (D, Q) + V1 (D, Q) + V3(D, Q) + Vy(D, Q) + - - -, (4.48)
O —2)+ D2 -3D)QP  2(6a 3D+ 1)Q¥ Qr
WD, Q) = (@ - p? 4 0P =D+ P2 - 30)Q" 2(6a - 30 + DT 6 e
I'(p+1) Ir'2p+1) I'Gp+1)
(4.49)

Figure 7 presents a 3D graphical representation of the approximate solution for W(®, Q) for p = 1
and Q = 0.1 constant. The 3D plot effectively demonstrates how the solution changes as the fractional
order p varies. The surface reveals the intricate relationships between p and the solution, showcasing
how the solution becomes more complex with increasing fractional order. This 3D representation
highlights the flexibility of the methods in handling different fractional orders.

Figure 8 shows a 2D graphical representation of the approximate solution for varying fractional
orders p of Y(®, Q) for Q = 0.1. The 2D plots provide a clearer view of the solutions dependence on
the fractional order p, allowing for an intuitive understanding of how the solution evolves as p changes.
These plots help visualize the impact of fractional derivatives on the solution and demonstrate the
power of both MRPSM and MTIM in modeling fractional systems. Figure 9, graphical representation
of approximate solution for different values of p of W(®,Q) for Q = 0.1. Figure 10, (a) MRPSM
solution and (b) MTIM solution of ¥(®, Q) for p = 1 and Q = 0.1. Figure 11, (a) MRPSM solution
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and (b) MTIM solution comparison of W(®,Q) for p = 1 and Q = 0.1. Table 3, the approximate

solution comparison for the fractional order p of WY(®,Q) for Q = 0.1 of problem 2. Table 4, the

0.1 of problem 2.

approximate solution comparison for the fractional order p of ¥(®, Q) for Q

(b) p=0.2

(a) p=0.1

(d) p=0.4

-~ 5

0.00

(e) p=0.5

0.1.

Figure 7. Graphical representation of approximate solution for different values of p of

Y(D, Q) for Q
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@) p=0.9

Figure 8. Graphical representation of approximate solution for different values of p of
Y(D, Q) for Q =0.1.
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Figure 9. Graphical representation of approximate solution for different values of p of
Y(D,Q) for Q =0.1.
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0005

(a) MRPSM Solution (b) MTIM Solution

Figure 10. (a) MRPSM solution and (b) MTIM solution of ¥(®, Q) for p = 1 and Q = 0.1.
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Figure 11. (a) MRPSM solution and (b) MTIM solution comparison of ¥(®, Q) for p = 1
and Q =0.1.

Table 3. The approximate solution comparison for the fractional order p of ¥Y(®,Q) for
Q = 0.1 of problem 2.

® MRPSM,, MRPSM,,;, MRPSM,,; MRPSM, ., MRPSM, s MTIM, o5
0.1 -42739432 22705525  -1.1345749  -0.5412512  -0.2480652 -0.2480652
0.2 -3.7877746  -1.9446238  -0.9241210  -0.4101038  -0.1696735  -0.1696735
03  -3.3597029  -1.6679266  -0.7551737  -0.3138778  -0.1206913  -0.1206913
0.4 -2.9837281  -1.4344608  -0.6217331  -0.2465733  -0.0951186  -0.0951186
0.5 -2.6538501  -1.2382265  -0.5177991  -0.2021903  -0.0869554  -0.0869554
0.6 -2.3640690  -1.0732237  -0.4373717  -0.1747287  -0.0902017  -0.0902017
0.7 -2.1083848  -0.9334523  -0.3744510  -0.1581885  -0.0988575  -0.0988575
0.8 -1.8807974  -0.8129124  -0.3230370  -0.1465699  -0.1069227  -0.1069227
0.9 -1.6753069  -0.7056040  -0.2771295  -0.1338726  -0.1083975  -0.1083975
1.0 -1.4859133  -0.6055270  -0.2307288  -0.1140968  -0.0972817  -0.0972817
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Table 4. The approximate solution comparison for the fractional order p of ¥(®, Q) for
Q = 0.1 of problem 2.

® MRPSM,o6 MRPSM,—o;7 MRPSM,os MRPSM, o9 MRPSM,_ o MTIM,
0.1 -0.1089106 -0.0451462 -0.0171733 -0.0058199 -0.0020000  -0.0020000
0.2  -0.0649407 -0.0234443 -0.0098919 -0.0079637 -0.0104000  -0.0104000
0.3 -0.0458382 -0.0229178 -0.0208205 -0.0259612 -0.0328000  -0.0328000
0.4 -0.0456031 -0.0375666 -0.0439590 -0.0538126 -0.0632000  -0.0632000
0.5 -0.0582355 -0.0613906 -0.0733075 -0.0855179 -0.0956000  -0.0956000
0.6 -0.0777353 -0.0883899 -0.1028658 -0.1150770 -0.1239999  -0.1239999
0.7 -0.0981026 -0.1125645 -0.1266341 -0.1364899 -0.1424000  -0.1424000
0.8 -0.1133373 -0.1279144 -0.1386123 -0.1437566 -0.1448000  -0.1448000
09 -0.1174395 -0.1284395 -0.1328005 -0.1308772 -0.1252000  -0.1252000
1.0 -0.1044091 -0.1081400 -0.1031985 -0.0918517 -0.0776000  -0.0776000
4.5. Problem 3 solution using MRPSM
Suppose the following time FADE:
PP(D,Q) YD, Q)
DY (D,Q) —a 307 + & - 0, where 0 < p < 1. (4.50)
Initial condition
Y (D, 0) = cos(D), 4.51)
Eq 4.51 and the MT are used to get the following result from Eq 4.50.
cos(®) a (d*P(D, s) 1 [ O¥(D, s)
ittt AN i Salt el IR = 4.52
P(D, 5) » sp[ s ]+sp[ 0 ] 0. (4.52)
The k" terms of the series that are truncated are:
_cos(@) o fH{D,s)
(@, 5) = — +Z; e r=123.400 (4.53)
Residual Mohand function is given by:
3 cos(®) a (0*P(D, s) 1 1 0¥(D,5)7
MaRes(@, ) = ¥(®,5) = —— ~ s_p[W] + E[ e |=o0. (4.54)
and the k"-MRFs as:
B cos(®)  a [ PY(D,5) 1 0¥(D,5)
MQResk((D, S) = lPk(CD, S) - T - s—p[w] + ;[T] =0. (455)

The following procedures should be implemented to determine the value of f.(®,s) forr = 1,2,3, ...
replace the r"-Mohand residual function Eq 4.55 for the r”-truncated series Eq 4.53, and multiply

AIMS Mathematics Volume 10, Issue 1, 234-269.



260

the expression by s"P+1 for solving the relation, limHoo(srp“)MQRes\p,r((I), s))=0forr=1,2,3,---.
Some terms that we obtain are as follows:

fi(®, 5) = sin(®) — a cos(P), (4.56)
H(®, 5) = (a® - 1) cos(®) — 2asin(®), (4.57)
£(@,5) = (3a* = 1) sin(®) - a(a® - 3) cos(®), (4.58)
fo(@, 5) = (a* - 6a° + 1) cos(®) — 4a(a® - 1) sin(®), (4.59)

and so on.
To obtain the desired result, the function f,(®, s) should be substituted into Eq 4.53.

cos(D) N sin(®) — a cos(P) . (a2 - 1) cos(P) — 2a sin(D) .\ (3a2 - 1) sin(®@) — a (a2 - 3) cos(D)

Y(D,s) =

sp+1 S2p+1 S3p+1
(a* - 6a% + 1) cos(®) - 4a(a® - 1) sin(®)
+ + PR
S4p+1
(4.60)
Apply the inverse operator of MT to obtain the final solution:
QP (sin(P) — o)) Q¥ ((a® - 1)cos(®) — 2asin(D)
D) = con@) + LEM® —acos@) (@~ 1) )
I'(p+1) I'Rp+1)
Q" ((a* - 6> + 1) cos(®) — 4a (a* — 1) sin(®)) @ (a((a* - 3) cos(®) - 3asin(®P)) + sin(®))
" T@p+ 1) TGp+ 1) L
(4.61)
4.6. Problem 3 solution using MTIM
Suppose the following time FADE:
Y (D, Q) ¥(D,Q
DIY(D,Q) =a 6(61)2 ) _ ;(D ), where 0 < p < 1. (4.62)
Initial condition
Y(D,0) = cos(D). (4.63)
Apply the MT on Eq 4.62:
1,5 v0(@,0) PY(D,Q) 0Y(D,Q)
V4 —_ —’ 9 _ .
M[DL¥(®, Q)] = S”<kz=:§ S+ M[a— ) (4.64)
Apply the inverse operator of MT on Eq 4.64:
1 ,"& wO@, 5, 0) PY(D,Q)  IV(D,Q)
_ —1 . s s s _ ’
W@.Q) = M (Y~ Mla— 3 ! (4.65)

k=0
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Iteratively utilize the MT to get the following result:

Wo(®, Q) = M—l[l(f @, O]

2—-p+k
sP §e7P
k=0

Eq 4.62 1s solved using the R-L integral to get:

PV (D,Q) ¥(D,Q)
¥(0,Q) = cos(®) + M|a T | (4.66)
Some of the terms that the MITM method produces are as follows:
Yo(D, Q) = cos(D), (4.67)
_ Q7(sin(®) — acos(D))
Y(0,Q) = T+ 1) , (4.68)
2 2 _ _ .
(.0 = Q% ((a® - 1) cos(®) - 2a sm((D))’ .69
I'ep+1)
(0.0 - _Q31’ (a ((a2 - 3) cos(®) — 3a sin(d))) + sin(CD))’ 4.70)
I'Gp+1)
Q" ((a* - 6a> + 1) cos(®) — 4a(a* - 1) sin(®))
_ 4.71
Wa(P,Q) = Tap+ D) . (4.71)
The final solution is:
Y(D,Q) = Yy(D,Q) + ¥ (D, Q) + V1(D, Q) + P3(D, Q) + Vy(D,Q) + -+, (4.72)

QP (sin(®) — acos(D)) ((a2 - 1) cos(®D) — 2a sin(d)))
Tp+1) " r2p+1)
Q3 (a ((a2 - 3) cos(®) - 3a sin(cb)) + sin((l))) Q¥ ((a4 — 6% + 1) cos(®) — 4a (a2 - 1) sin(cp))

Y(D, Q) = cos(D) +

—+ + .-

I'Gp+1) I'dp+1)
(4.73)

Figure 12, graphical representation of approximate solution for different values of p of W(®, Q)
for Q = 0.1. Figure 13, graphical representation of approximate solution for different values of p
of ¥(®,Q) for Q = 0.1. Figure 14, comparison of approximate solution for different values of p of
Y(®,Q) for Q = 0.1. Figure 15, (a) MRPSM solution and (b) MTIM solution of ¥(®, Q) for p = 1
and Q = 0.1. Figure 16, (a) MRPSM solution and (b) MTIM solution comparison of ¥(®, Q) for
p =1and Q = 0.1. Table 5, the approximate solution comparison for the fractional order p of ‘Y(®, Q)
for Q = 0.1 of problem 3. Table 6, the approximate solution comparison for the fractional order p of
Y(®, Q) for Q = 0.1 of problem 3.
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In summary, the graphical results in Figures 12 to 16 further confirm the accuracy and effectiveness
of the MRPSM and MTIM methods in solving FADEs. Both methods provide consistent and reliable
solutions, and the visualizations of the solutions in both 2D and 3D formats offer valuable insights into
the behavior of fractional-order systems. These results demonstrate the power of the proposed methods
in solving complex fractional-order differential equations.

Figure 12. Graphical representation of approximate solution for different values of p of
Y(D,Q) for Q =0.1.
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(h) p=0.8

(i) p=0.9

Figure 13. Graphical representation of approximate solution for different values of p of
Y(D, Q) for Q = 0.1.

= p=01
= p=02
= p=0.3
- p=04
= p=05
= p=06
= p=0.7

p=08
= p=09
= p=1.0

Figure 14. Comparison of approximate solution for different values of p of ¥(®, Q) for
Q=0.1.
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(a) MRPSM Solution

(b) MTIM Solution
Figure 15. (a) MRPSM solution and (b) MTIM solution of ¥(®, Q) for p = 1 and Q = 0.1.

Figure 16. (a) MRPSM solution and (b) MTIM solution comparison of ¥(®, Q) for p = 1

and Q = 0.1.

Table 5. The approximate solution comparison for the fractional order p of ¥Y(®, Q) for
Q = 0.1 of problem 3.

® MRPSM,.o, MRPSM,.;, MRPSM,—3 MRPSM, o, MRPSM,,s MTIM, s
1 0.7263668 0.7249992 0.7448338 0.7512493 0.7395935 0.7395935
2 -0.0400597 0.0523319 0.0460541 -0.0085039 -0.0779225  -0.0779225
3 -0.7696556 -0.6684490 -0.6950675 -0.7604387 -0.8237969  -0.8237969
4 -0.7916336 -0.7746611 -0.7971473 -0.8132296 -0.8122762  -0.8122762
5 -0.0857873 -0.1686533 -0.1663335 -0.1183409 -0.0539524  -0.0539524
6 0.6989314 0.5924135 0.6174065 0.6853498 0.7539749 0.7539749
7 0.8410559 0.8088181 0.8335058 0.8589331 0.8687013  0.8687013
8 0.2099174 0.2815990 0.2832837 0.2428172 0.1847476 0.1847476
9 -0.6142181 -0.5045209 -0.5273881 -0.5965436 -0.6690621  -0.6690621
10  -0.8736444 -0.8267866 -0.8531818 -0.8874451 -0.9077392  -0.9077392
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Table 6. The approximate solution comparison for the fractional order p of ¥(®, <) for
Q = 0.1 of problem 3.

® MRPSM,os MRPSM,o; MRPSM,o5 MRPSM,o9 MRPSM,., MTIM,_,
1 07163360  0.6885956  0.6611363  0.6364310  0.6154248  0.6154248
2 -0.1452003  -0.2036107  -0.2516376  -0.2899815  -0.3200728  -0.3200728
3 -0.8732402  -0.9086184  -0.9330571  -0.9497864  -0.9612970  -0.9612970
4 07984270  -0.7782464  -0.7566282  -0.7363620  -0.7187091  -0.7187091
5 00104562 00676417  0.1154411  0.1540702  0.1846566  0.1846566
6 08097261  0.8513404  0.8813745 09028510 09182499  0.9182499
7 0.8645375  0.8523206  0.8369761  0.8215547  0.8076084  0.8076084
8  0.1244970  0.0696812  0.0230658  -0.0150751  -0.0455444  -0.0455444
9  -0.7300053  -0.7770228  -0.8120511  -0.8378450  -0.8568240  -0.8568240
10 -0.9133442  -0.9093356  -0.9005720  -0.8903040  -0.8803435  -0.8803435

5. Conclusions

In this study, we have effectively applied the MTIM and the MRPSM to solve the nonlinear FADE:s.
By incorporating the Caputo operator, we have enhanced the modeling of systems characterized by
complex behaviors, improving the understanding of fractional-order differential equations. Our results
demonstrate that both MTIM and MRPSM provide accurate approximate solutions that closely align
with the exact ones, as shown by the accompanying tables and figures. These methods offer a robust
framework for investigating the nonlinear behaviors of fractional systems, which are prevalent in
physical sciences, engineering, and other fields. The inclusion of fractional derivatives defined by
the Caputo operator introduces an added layer of complexity, enabling a more precise representation
of nonlocal behaviors in the systems studied. The graphical analyses further confirm the utility of these
methods in computational physics, where precise and efficient solutions are invaluable. Overall, this
work contributes to advancing the field of fractional calculus, offering novel techniques for scholars
working with nonlinear systems. The approaches presented here lay the groundwork for future research
and exploration in this area.
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