The Weibull distribution, widely used in lifetime analysis, is characterized by its shape parameter. We analytically derived Wald-type confidence intervals using standard and modified profile likelihood methods. Performance was assessed through a simulation study examining coverage probability (CP) and average length (AL) across twelve scenarios, varying the shape parameter from 0.5 to 10, the scale parameter from 0.5 to 5, and a range of sample sizes from 5 to 200. The proposed intervals were compared with traditional Wald, profile likelihood, and modified profile likelihood intervals. Our results indicated that the proposed intervals, especially those based on modified profile likelihood, consistently outperformed traditional methods, particularly with small sample sizes. Reductions in either the shape or scale parameter led to shorter AL, as the shape parameter was inversely related to CP. For larger sample sizes (over 30), all interval methods performed similarly, confirming the robustness of the derived intervals across sample sizes. Additionally, the methods were applied to real data on hospital-acquired urinary tract infections, demonstrating their practical utility in healthcare settings.
Citation: Patchanok Srisuradetchai, Jatuporn Somsamai, Wikanda Phaphan. Modified likelihood approach for Wald-typed interval of the shape parameter in Weibull distribution[J]. AIMS Mathematics, 2025, 10(1): 1-20. doi: 10.3934/math.2025001
The Weibull distribution, widely used in lifetime analysis, is characterized by its shape parameter. We analytically derived Wald-type confidence intervals using standard and modified profile likelihood methods. Performance was assessed through a simulation study examining coverage probability (CP) and average length (AL) across twelve scenarios, varying the shape parameter from 0.5 to 10, the scale parameter from 0.5 to 5, and a range of sample sizes from 5 to 200. The proposed intervals were compared with traditional Wald, profile likelihood, and modified profile likelihood intervals. Our results indicated that the proposed intervals, especially those based on modified profile likelihood, consistently outperformed traditional methods, particularly with small sample sizes. Reductions in either the shape or scale parameter led to shorter AL, as the shape parameter was inversely related to CP. For larger sample sizes (over 30), all interval methods performed similarly, confirming the robustness of the derived intervals across sample sizes. Additionally, the methods were applied to real data on hospital-acquired urinary tract infections, demonstrating their practical utility in healthcare settings.
[1] |
W. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech., 18 (1951), 293–297. https://doi.org/10.1115/1.4010337 doi: 10.1115/1.4010337
![]() |
[2] | C. D. Lai, D. N. Murthy, M. Xie, Weibull distributions and their applications, In: H. Pham, Springer handbook of engineering statistics, Springer Handbooks, Springer, 2006, 63–78. https://doi.org/10.1007/978-1-84628-288-1_3 |
[3] | T. Vallée, J. R. Correia, T. Keller, A Weibull-based method to predict the strength of adhesively bonded joints of pultruded FRPs, In: E. E. Gdoutos, Fracture of nano and engineering materials and structures, Springer, Dordrecht, 2006. https://doi.org/10.1007/1-4020-4972-2_185 |
[4] |
C. A. Lewis, P. J. Withers, Weibull modelling of particle cracking in metal matrix composites, Acta Metall. Mater., 43 (1995), 3685–3699. https://doi.org/10.1016/0956-7151(95)90152-3 doi: 10.1016/0956-7151(95)90152-3
![]() |
[5] |
M. Albassam, M. Ahsan-ul-Haq, M. Aslam, Weibull distribution under indeterminacy with applications, AIMS Math., 8 (2023), 10745–10757. https://doi.org/10.3934/math.2023545 doi: 10.3934/math.2023545
![]() |
[6] |
M. G. M. Ghazal, H. M. M. Radwan, A reduced distribution of the modified Weibull distribution and its applications to medical and engineering data, Math. Biosci. Eng., 19 (2022), 13193–13213. https://doi.org/10.3934/mbe.2022617 doi: 10.3934/mbe.2022617
![]() |
[7] |
W. Emam, G. Alomani, Predictive modeling of reliability engineering data using a new version of the flexible Weibull model, Math. Biosci. Eng., 20 (2023), 9948–9964. https://doi.org/10.3934/mbe.2023436 doi: 10.3934/mbe.2023436
![]() |
[8] |
T. Xavier, S. Nadarajah, A weighted-Weibull distribution: properties and applications, Qual. Reliab. Eng. Int., 40 (2023), 863–875. https://doi.org/10.1002/qre.3439 doi: 10.1002/qre.3439
![]() |
[9] |
C. D. Lai, M. Xie, D. N. P. Murthy, A modified Weibull distribution, IEEE Trans. Reliab., 52 (2003), 33–37. https://doi.org/10.1109/TR.2002.805788 doi: 10.1109/TR.2002.805788
![]() |
[10] |
G. O. Silva, E. M. M. Ortega, G. M. Cordeiro, The beta modified Weibull distribution, Lifetime Data Anal., 16 (2010), 409–430. https://doi.org/10.1007/s10985-010-9161-1 doi: 10.1007/s10985-010-9161-1
![]() |
[11] |
D. Cousineau, Fitting the three-parameter Weibull distribution: review and evaluation of existing and new methods, IEEE Trans. Dielectr. Electr. Insul., 16 (2009), 281–288. https://doi.org/10.1109/TDEI.2009.4784578 doi: 10.1109/TDEI.2009.4784578
![]() |
[12] | D. N. P. Murthy, M. Xie, R. Jiang, Weibull models, John Wiley & Sons, Ltd., 2004. |
[13] | H. Rinne, The Weibull distribution, CRC Press, 2008. https://doi.org/10.1201/9781420087444 |
[14] | N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions, 2 Eds., Wiley, New York, NY, USA, 1994. |
[15] | S. Mahdi, One-sided confidence interval estimation for Weibull shape and scale parameters, Revista de Matemática: Teoría y Aplicaciones, 12 (2005), 61–72. |
[16] | P. Srisuradetchai, K. Dangsupa, On interval estimation of the geometric parameter in a zero–inflated geometric distribution, Thailand Stat., 21 (2023), 93–109. |
[17] |
P. Srisuradetchai, A. Niyomdecha, W. Phaphan, Wald intervals via profile likelihood for the mean of the inverse Gaussian distribution, Symmetry, 16 (2024), 93. https://doi.org/10.3390/sym16010093 doi: 10.3390/sym16010093
![]() |
[18] |
D. R. Cox, N. Reid, Parameter orthogonality and approximate conditional inference, J. Royal Stat. Soc.: Ser. B (Stat. Methodol.), 49 (1987), 1–18. https://doi.org/10.1111/j.2517-6161.1987.tb01422.x doi: 10.1111/j.2517-6161.1987.tb01422.x
![]() |
[19] |
Z. Yang, M. Xie, Efficient estimation of the Weibull shape parameter based on a modified profile likelihood, J. Stat. Comput. Simul., 73 (2003), 115–123. https://doi.org/10.1080/00949650215729 doi: 10.1080/00949650215729
![]() |
[20] |
X. Jia, A comparison of different least-squares methods for reliability of Weibull distribution based on right censored data, J. Stat. Comput. Simul., 91 (2021), 976–999. https://doi.org/10.1080/00949655.2020.1839466 doi: 10.1080/00949655.2020.1839466
![]() |
[21] | H. Panahi, S. Asadi, Estimation of the Weibull distribution based on Type-Ⅱ censored samples, Appl. Math. Sci., 5 (2011), 2549–2558. |
[22] |
R. M. Mweleli, L. A. Orawo, C. L. Tamba, J. O. Okenye, Interval estimation in a two-parameter Weibull distribution based on type-2 censored data, Open J. Stat., 10 (2020), 1039–1056. https://doi.org/10.4236/ojs.2020.106059 doi: 10.4236/ojs.2020.106059
![]() |
[23] |
J. H. Heo, J. Salas, K. D. Kim, Estimation of confidence intervals of quantiles for the Weibull distribution, Stoch. Env. Res. Risk Assess., 15 (2001), 284–309. https://doi.org/10.1007/s004770100071 doi: 10.1007/s004770100071
![]() |
[24] | H. P. T. N. Silva, T. S. G. Peiris, Accurate confidence intervals for Weibull percentiles using bootstrap calibration: a case study of weekly rainfall in Sri Lanka, Int. J. Ecol. Econ. Stat., 39 (2018), 67–76. |
[25] |
S. A. Vander Wiel, W. Q. Meeker, Accuracy of approximate confidence bounds using censored Weibull regression data from accelerated life tests, IEEE Trans. Reliab., 39 (1990), 346–351. https://doi.org/10.1109/24.103016 doi: 10.1109/24.103016
![]() |
[26] | S. T. A. Niaki, N. Fard, Bayes interval estimation on the parameters of the Weibull distribution for complete and censored tests, Int. J. Eng., 26 (2013), 985–996. |
[27] |
N. Jana, S. Bera, Interval estimation of multicomponent stress–strength reliability based on inverse Weibull distribution, Math. Comput. Simul., 191 (2022), 95–119. https://doi.org/10.1016/j.matcom.2021.07.026 doi: 10.1016/j.matcom.2021.07.026
![]() |
[28] |
C. Park, A note on Weibull parameter estimation with interval censoring using the EM algorithm, Mathematics, 11 (2023), 3156. https://doi.org/10.3390/math11143156 doi: 10.3390/math11143156
![]() |
[29] |
X. Yang, L. Xie, J. Song, B. Zhao, Y. Li, On interval estimation methods for the location parameter of the Weibull distribution: an application to alloy material fatigue failure data, Commun. Stat. -Theory Methods, 53 (2024), 6240–6251. https://doi.org/10.1080/03610926.2023.2242984 doi: 10.1080/03610926.2023.2242984
![]() |
[30] | J. Somsamai, P. Srisuradetchai, Modified and non-modified profile likelihood confidence intervals for the shape parameter of Weibull distribution (in Thai), The National and International Graduate Research Conference 2017, Pote Sarasin Building, Khon Kaen University, 2017,206–215. |
[31] |
A. Niyomdecha, P. Srisuradetchai, Complementary gamma zero-truncated Poisson distribution and its application, Mathematics, 11 (2023), 2584. https://doi.org/10.3390/math11112584 doi: 10.3390/math11112584
![]() |
[32] |
P. Srisuradetchai, A novel interval forecast for K-nearest neighbor time series: a case study of durian export in Thailand, IEEE Access, 12 (2024), 2032–2044. https://doi.org/10.1109/ACCESS.2023.3348078 doi: 10.1109/ACCESS.2023.3348078
![]() |
[33] |
U. Kummaraka, P. Srisuradetchai, Interval estimation of the dependence parameter in bivariate Clayton copulas, Emerg. Sci. J., 7 (2023), 1478–1490. https://doi.org/10.28991/ESJ-2023-07-05-02 doi: 10.28991/ESJ-2023-07-05-02
![]() |
[34] |
E. Santiago, J. Smith, Control charts based on the exponential distribution: adapting runs rules for the t chart, Qual. Eng., 25 (2013), 85–96. https://doi.org/10.1080/08982112.2012.740646 doi: 10.1080/08982112.2012.740646
![]() |
[35] |
C. Park, Weibullness test and parameter estimation of the three-parameter Weibull model using the sample correlation coefficient, Int. J. Ind. Eng. -Theory, Appl. Practice, 24 (2017), 376–391. https://doi.org/10.23055/ijietap.2017.24.4.2848 doi: 10.23055/ijietap.2017.24.4.2848
![]() |
[36] |
R. M. Vogel, C. N. Kroll, Low-flow frequency analysis using probability-plot correlation coefficients, J. Water Res. Plan. Manage., 115 (1989), 338–357. https://doi.org/10.1061/(ASCE)0733-9496(1989)115:3(338) doi: 10.1061/(ASCE)0733-9496(1989)115:3(338
![]() |
[37] |
S. Chaipitak, B. Choopradit, A new test for equality of two covariance matrices in high-dimensional data, Math. Stat., 12 (2024), 455–464. https://doi.org/10.13189/ms.2024.120507 doi: 10.13189/ms.2024.120507
![]() |