Research article

Unraveling multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials via fractional operators

  • Received: 05 March 2024 Revised: 22 April 2024 Accepted: 30 April 2024 Published: 20 May 2024
  • MSC : 11T23, 33B10, 33C45, 33E20, 33E30

  • This study explores the evolution and application of integral transformations, initially rooted in mathematical physics but now widely employed across diverse mathematical disciplines. Integral transformations offer a comprehensive framework comprising recurrence relations, generating expressions, operational formalism, and special functions, enabling the construction and analysis of specialized polynomials. Specifically, the research investigates a novel extended family of Frobenius-Genocchi polynomials of the Hermite-Apostol-type, incorporating multivariable variables defined through fractional operators. It introduces an operational rule for this generalized family, establishes a generating connection, and derives recurring relations. Moreover, the study highlights the practical applications of this generalized family, demonstrating its potential to provide solutions for specific scenarios.

    Citation: Mohra Zayed, Shahid Ahmad Wani, Georgia Irina Oros, William Ramírez. Unraveling multivariable Hermite-Apostol-type Frobenius-Genocchi polynomials via fractional operators[J]. AIMS Mathematics, 2024, 9(7): 17291-17304. doi: 10.3934/math.2024840

    Related Papers:

  • This study explores the evolution and application of integral transformations, initially rooted in mathematical physics but now widely employed across diverse mathematical disciplines. Integral transformations offer a comprehensive framework comprising recurrence relations, generating expressions, operational formalism, and special functions, enabling the construction and analysis of specialized polynomials. Specifically, the research investigates a novel extended family of Frobenius-Genocchi polynomials of the Hermite-Apostol-type, incorporating multivariable variables defined through fractional operators. It introduces an operational rule for this generalized family, establishes a generating connection, and derives recurring relations. Moreover, the study highlights the practical applications of this generalized family, demonstrating its potential to provide solutions for specific scenarios.



    加载中


    [1] G. Dattotli, S. Lorenzutta, C. Cesarano, Bernstein polynomials and operational methods, J. Comput. Anal. Appl., 8 (2006), 369–377.
    [2] G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle, In: Advanced special functions and applications, Rome: Aracne Editrice, 2000,147–164.
    [3] T. Nahid, J. Choi, Certain hybrid matrix polynomials related to the Laguerre-Sheffer family, Fractal Fract., 6 (2022), 211. https://doi.org/10.3390/fractalfract6040211 doi: 10.3390/fractalfract6040211
    [4] S. A. Wani, K. Abuasbeh, G. I. Oros, S. Trabelsi, Studies on special polynomials involving degenerate Appell polynomials and fractional derivative, Symmetry, 15 (2023), 840. https://doi.org/10.3390/sym15040840 doi: 10.3390/sym15040840
    [5] R. Alyusof, S. A. Wani, Certain properties and applications of $\Delta_h$ hybrid special polynomials associated with Appell sequences, Fractal Fract., 7 (2023), 233. https://doi.org/10.3390/fractalfract7030233 doi: 10.3390/fractalfract7030233
    [6] H. M. Srivastava, G. Yasmin, A. Muhyi, S. Araci, Certain results for the twice-iterated 2D $q$-Appell polynomials, Symmetry, 11 (2019), 1307. https://doi.org/10.3390/sym11101307 doi: 10.3390/sym11101307
    [7] A. M. Obad, A. Khan, K. S. Nisar, A. Morsy, q-Binomial convolution and transformations of $q$-Appell polynomials, Axioms, 10 (2021), 70. https://doi.org/10.3390/axioms10020070 doi: 10.3390/axioms10020070
    [8] D. Bedoya, O. Ortega, W. Ramírez, U. Urieles, New biparametric families of Apostol-Frobenius- Euler polynomials of level m, Mat. Stud., 55 (2021), 10–23. https://doi.org/10.30970/ms.55.1.10-23 doi: 10.30970/ms.55.1.10-23
    [9] G. Dattoli, Generalized polynomials operational identities and their applications, J. Comput. Appl. Math., 118 (2000), 111–123. https://doi.org/10.1016/S0377-0427(00)00283-1 doi: 10.1016/S0377-0427(00)00283-1
    [10] P. Appell, J. K. de Fériet, Fonctions hyperg${\acute{e}}$om${\acute{e}}$triques et hypersph${\acute{e}}$riques: polyn${\hat{o}}$mes d'Hermite, Paris: Gauthier-Villars, 1926.
    [11] L. C. Andrews, Special functions for engineers and applied mathematicians, New York: Macmillan Publishing Company, 1985.
    [12] G. Dattoli, Summation formulae of special functions and multivariable Hermite polynomials, Nuovo Cimento B, 119B (2004), 479–488. https://doi.org/10.1393/ncb/i2004-10111-1 doi: 10.1393/ncb/i2004-10111-1
    [13] M. A. Özarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math. Appl., 62 (2011), 2452–2462. https://doi.org/10.1016/j.camwa.2011.07.031 doi: 10.1016/j.camwa.2011.07.031
    [14] Q. M. Luo, Apostol-Euler polynomials of higher order and the Gaussian hypergeometric function, Taiwanese J. Math., 10 (2006), 917–925. https://doi.org/10.11650/twjm/1500403883 doi: 10.11650/twjm/1500403883
    [15] A. Erd${\rm\acute e}$lyi, Higher transcendental functions, McGraw-Hill Book Company, 1955.
    [16] L. Carlitz, Eulerian numbers and polynomials, Math. Mag., 32 (1959), 247–260. https://doi.org/10.2307/3029225 doi: 10.2307/3029225
    [17] K. B. Oldham, J. Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, New York: Academic Press, 1974.
    [18] D. V. Widder, An introduction to transform theory, New York: Academic Press, 1971.
    [19] G. Dattoli, P. E. Ricci, C. Cesarano, L. Vázquez, Special polynomials and fractional calculus, Math. Comput. Modell., 37 (2003), 729–733. https://doi.org/10.1016/S0895-7177(03)00080-3 doi: 10.1016/S0895-7177(03)00080-3
    [20] D. Assante, C. Cesarano, C. Fornaro, L. Vazquez, Higher order and fractional diffusive equations, J. Eng. Sci. Technol. Rev., 8 (2015), 202–204. https://doi.org/10.25103/JESTR.085.25 doi: 10.25103/JESTR.085.25
    [21] J. F. Steffensen, The poweriod, an extension of the mathematical notion of power, Acta. Math., 73 (1941), 333–366.
    [22] B. Kurt, Y. Simsek, Frobenius-Euler type polynomials related to Hermite-Bernoulli polyomials, AIP Conf. Proc., 1389 (2011), 385–388. https://doi.org/10.1063/1.3636743 doi: 10.1063/1.3636743
    [23] Y. Simsek, Generating functions for $q$-Apostol-type Frobenius-Euler numbers and polynomials, Axioms, 1 (2012), 395–403. https://doi.org/10.3390/axioms1030395 doi: 10.3390/axioms1030395
    [24] D. S. Kim, T. Kim, Some new identities of Frobenius-Euler numbers and polynomials, J. Inequal. Appl., 307 (2012), 307. https://doi.org/10.1186/1029-242X-2012-307 doi: 10.1186/1029-242X-2012-307
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(573) PDF downloads(46) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog