Research article Special Issues

Weak convergence of the conditional single index $ U $-statistics for locally stationary functional time series

  • Received: 12 February 2024 Revised: 01 April 2024 Accepted: 12 April 2024 Published: 24 April 2024
  • MSC : 60F17, 62E17, 62G05, 62G08, 62G20, 62G35, 62G07, 62G32

  • In recent years, there has been a notable shift in focus towards the analysis of non-stationary time series, driven largely by the complexities associated with delineating significant asymptotic behaviors inherent to such processes. The genesis of the theory of locally stationary processes arises from the quest for asymptotic inference grounded in nonparametric statistics. This paper endeavors to formulate a comprehensive framework for conducting inference within the realm of locally stationary functional time series by harnessing the conditional $ U $-statistics methodology as propounded by W. Stute in 1991. The proposed methodology extends the Nadaraya-Watson regression function estimations. Within this context, a novel estimator was introduced for the single index conditional $ U $-statistics operator, adept at accommodating the non-stationary attributes inherent to the data-generating process. The primary objective of this paper was to establish the weak convergence of conditional $ U $-processes within the domain of locally stationary functional mixing data. Specifically, the investigation delved into scenarios of weak convergence involving functional explanatory variables, considering both bounded and unbounded sets of functions while adhering to specific moment requirements. The derived findings emanate from broad structural specifications applicable to the class of functions and models under scrutiny. The theoretical insights expounded in this study constitute pivotal tools for advancing the domain of functional data analysis.

    Citation: Salim Bouzebda. Weak convergence of the conditional single index $ U $-statistics for locally stationary functional time series[J]. AIMS Mathematics, 2024, 9(6): 14807-14898. doi: 10.3934/math.2024720

    Related Papers:

  • In recent years, there has been a notable shift in focus towards the analysis of non-stationary time series, driven largely by the complexities associated with delineating significant asymptotic behaviors inherent to such processes. The genesis of the theory of locally stationary processes arises from the quest for asymptotic inference grounded in nonparametric statistics. This paper endeavors to formulate a comprehensive framework for conducting inference within the realm of locally stationary functional time series by harnessing the conditional $ U $-statistics methodology as propounded by W. Stute in 1991. The proposed methodology extends the Nadaraya-Watson regression function estimations. Within this context, a novel estimator was introduced for the single index conditional $ U $-statistics operator, adept at accommodating the non-stationary attributes inherent to the data-generating process. The primary objective of this paper was to establish the weak convergence of conditional $ U $-processes within the domain of locally stationary functional mixing data. Specifically, the investigation delved into scenarios of weak convergence involving functional explanatory variables, considering both bounded and unbounded sets of functions while adhering to specific moment requirements. The derived findings emanate from broad structural specifications applicable to the class of functions and models under scrutiny. The theoretical insights expounded in this study constitute pivotal tools for advancing the domain of functional data analysis.



    加载中


    [1] J. Abrevaya, W. Jiang, A nonparametric approach to measuring and testing curvature, J. Bus. Econom. Statist., 23 (2005), 1–19. https://doi.org/10.1198/073500104000000316 doi: 10.1198/073500104000000316
    [2] A. Ait-Saïdi, F. Ferraty, R. Kassa, P. Vieu, Cross-validated estimations in the single-functional index model, Statistics, 42 (2008), 475–494. https://doi.org/10.1080/02331880801980377 doi: 10.1080/02331880801980377
    [3] I. M. Almanjahie, S. Bouzebda, Z. Chikr Elmezouar, A. Laksaci, The functional $k\text{NN}$ estimator of the conditional expectile: uniform consistency in number of neighbors, Stat. Risk Model., 38 (2022a), 47–63. https://doi.org/10.1515/strm-2019-0029 doi: 10.1515/strm-2019-0029
    [4] I. M. Almanjahie, S. Bouzebda, Z. Kaid, A. Laksaci, Nonparametric estimation of expectile regression in functional dependent data, J. Nonparametr. Stat., 34 (2022), 250–281. https://doi.org/10.1080/10485252.2022.2027412 doi: 10.1080/10485252.2022.2027412
    [5] I. M. Almanjahie, S. Bouzebda, Z. Kaid, A. Laksaci, The local linear functional $k$NN estimator of the conditional expectile: uniform consistency in number of neighbors, Metrika, 34 (2024), 1–29. https://doi.org/10.1007/s00184-023-00942-0 doi: 10.1007/s00184-023-00942-0
    [6] N. T. Andersen, The central limit theorem for non-separable valued functions, Z. Wahrscheinlichkeitstheor. Verw. Geb., 70 (1985), 445–455.
    [7] P. K. Andersen, O. R. Borgan, R. D. Gill, N. Keiding, Statistical Models Based on Counting Processes, New York: Springer, 1993.
    [8] G. Aneiros, R. Cao, R. Fraiman, C. Genest, P. Vieu, Recent advances in functional data analysis and high-dimensional statistics, J. Multivariate Anal., 170 (2019), 3–9. https://doi.org/10.1016/j.jmva.2018.11.007 doi: 10.1016/j.jmva.2018.11.007
    [9] A. Araujo, E. Giné, The Central Limit Theorem for Real and Banach Valued Random Variables, New York: John Wiley & Sons, 1980.
    [10] M. A. Arcones, The law of large numbers for $U$-statistics under absolute regularity, Electron. Comm. Probab., 3 (1998), 13–19.
    [11] M. A. Arcones, E. Giné, Limit theorems for $U$-processes, Ann. Probab., 21 (1993), 1494–1542.
    [12] M. A. Arcones, E. Giné, On the law of the iterated logarithm for canonical $U$-statistics and processes, Stochast. Process. Appl., 58 (1995), 217–245. https://doi.org/10.1016/0304-4149(94)00023-M doi: 10.1016/0304-4149(94)00023-M
    [13] M. A. Arcones, B. Yu, Central limit theorems for empirical and $U$-processes of stationary mixing sequences, J. Theor. Probab., 7 (1994), 47–71. https://doi.org/10.1007/BF02213360 doi: 10.1007/BF02213360
    [14] M. A. Arcones, Z. Chen, E. Giné, Estimators related to $U$-processes with applications to multivariate medians: asymptotic normality, Ann. Statist., 22 (1994), 1460–1477.
    [15] S. Attaoui, N. Ling, Asymptotic results of a nonparametric conditional cumulative distribution estimator in the single functional index modeling for time series data with applications, Metrika, 79 (2016), 485–511. https://doi.org/10.1007/s00184-015-0564-6 doi: 10.1007/s00184-015-0564-6
    [16] S. Attaoui, B. Bentat, S. Bouzebda, A. Laksaci, The strong consistency and asymptotic normality of the kernel estimator type in functional single index model in presence of censored data, AIMS Math., 9 (2024), 7340–7371. http://dx.doi.org/10.3934/math.2024356 doi: 10.3934/math.2024356
    [17] A. K. Basu, A. Kundu, Limit distribution for conditional $U$-statistics for dependent processes, Calcutta Statist. Assoc. Bull., 52 (2002), 381–407. https://doi.org/10.1177/0008068320020522 doi: 10.1177/0008068320020522
    [18] A. Bellet, A. Habrard, Robustness and generalization for metric learning, Neurocomputing, 151 (2015), 259–267. https://doi.org/10.1016/j.neucom.2014.09.044 doi: 10.1016/j.neucom.2014.09.044
    [19] A. Bellet, A. Habrard, M. Sebban, A survey on metric learning for feature vectors and structured data, preprint paper, 2013. https://doi.org/10.48550/arXiv.1306.6709
    [20] K. Benhenni, F. Ferraty, M. Rachdi, P. Vieu, Local smoothing regression with functional data, Comput. Statist., 22 (2007), 353–369. https://doi.org/10.1007/s00180-007-0045-0 doi: 10.1007/s00180-007-0045-0
    [21] W. Bergsma, A. Dassios, A consistent test of independence based on a sign covariance related to Kendall's tau, Bernoulli, 20 (2014), 1006–1028.
    [22] S. Bernstein, Sur l'extension du théoréme limite du calcul des probabilités aux sommes de quantités dépendantes, Math. Ann., 97 (1927), 1–59. https://doi.org/10.1007/BF01447859 doi: 10.1007/BF01447859
    [23] S. Bhattacharjee, H. G. Müller, Single index Fréchet regression, Ann. Statist., 51 (2023), 1770–1798. https://doi.org/10.1214/23-AOS2307 doi: 10.1214/23-AOS2307
    [24] J. R. Blum, J. Kiefer, M. Rosenblatt, Distribution free tests of independence based on the sample distribution function, Ann. Math. Statist., 32 (1961), 485–498.
    [25] V. I. Bogachev, Gaussian measures, In: Mathematical Surveys and Monographs, Providence: American Mathematical Society, 1998.
    [26] E. G. Bongiorno, A. Goia, Classification methods for Hilbert data based on surrogate density, Comput. Statist. Data Anal., 99 (2016), 204–222. https://doi.org/10.1016/j.csda.2016.01.019 doi: 10.1016/j.csda.2016.01.019
    [27] E. G. Bongiorno, A. Goia, Some insights about the small-ball probability factorization for Hilbert random elements, Statist. Sinica, 27 (2017), 1949–1965.
    [28] E. G. Bongiorno, A. Goia, P. Vieu, Evaluating the complexity of some families of functional data, SORT, 42 (2018), 27–44.
    [29] S. Borovkova, R. Burton, H. Dehling, Consistency of the Takens estimator for the correlation dimension, Ann. Appl. Probab., 9 (1999), 376–390.
    [30] S. Borovkova, R. Burton, H. Dehling, Limit theorems for functionals of mixing processes with applications to $U$-statistics and dimension estimation, Trans. Amer. Math. Soc., 353 (2001), 4261–4318.
    [31] Y. V. Borovskikh, U-Statistics in Banach Spaces, Utrecht: VSP, 1996.
    [32] D. Bosq, Linear processes in function spaces, In: Lecture Notes in Statistics, New York: Springer, 2000.
    [33] S. Bouzebda, General tests of conditional independence based on empirical processes indexed by functions, Jpn. J. Stat. Data Sci., 6 (2023), 115–177. https://doi.org/10.1007/s42081-023-00193-3 doi: 10.1007/s42081-023-00193-3
    [34] S. Bouzebda, On the weak convergence and the uniform-in-bandwidth consistency of the general conditional $U$-processes based on the copula representation: multivariate setting, Hacet. J. Math. Stat., 52 (2023), 1303–1348.
    [35] S. Bouzebda, M. Cherfi, General bootstrap for dual $\phi$-divergence estimates, J. Probab. Stat., 2012 (2012), 834107. https://doi.org/10.1155/2012/834107 doi: 10.1155/2012/834107
    [36] S. Bouzebda, S. Didi, Multivariate wavelet density and regression estimators for stationary and ergodic discrete time processes: asymptotic results, Comm. Statist. Theory Methods, 46 (2017), 1367–1406. https://doi.org/10.1080/03610926.2015.1019144 doi: 10.1080/03610926.2015.1019144
    [37] S. Bouzebda, S. Didi, Some asymptotic properties of kernel regression estimators of the mode for stationary and ergodic continuous time processes, Rev. Mat. Complut., 34 (2021), 811–852. https://doi.org/10.1007/s13163-020-00368-6 doi: 10.1007/s13163-020-00368-6
    [38] S. Bouzebda, A. Keziou, A semiparametric maximum likelihood ratio test for the change point in copula models, Stat. Methodol., 14 (2013), 39–61. https://doi.org/10.1016/j.stamet.2013.02.003 doi: 10.1016/j.stamet.2013.02.003
    [39] S. Bouzebda, B. Nemouchi, Central limit theorems for conditional empirical and conditional $U$-processes of stationary mixing sequences, Math. Meth. Stat., 28 (2019), 169–207. https://doi.org/10.3103/S1066530719030013 doi: 10.3103/S1066530719030013
    [40] S. Bouzebda, B. Nemouchi, Weak-convergence of empirical conditional processes and conditional $U$-processes involving functional mixing data, Stat. Inference Stoch. Process., 26 (2023), 33–88. https://doi.org/10.1007/s11203-022-09276-6 doi: 10.1007/s11203-022-09276-6
    [41] S. Bouzebda, A. Nezzal, Uniform in number of neighbors consistency and weak convergence of $k$NN empirical conditional processes and $k$NN conditional $U$-processes involving functional mixing data, AIMS Math., 9 (2024), 4427–4550. https://doi.org/10.3934/math.2024218 doi: 10.3934/math.2024218
    [42] S. Bouzebda, Soukarieh, Non-parametric conditional $U$-processes for locally stationary functional random fields under stochastic sampling design, Mathematics, 11 (2023), 16. https://doi.org/10.3390/math11010016 doi: 10.3390/math11010016
    [43] S. Bouzebda, I. Soukarieh, Limit theorems for a class of processes generalizing the $U$-empirical process, Stochastics, 96 (2024), 799–845. https://doi.org/10.1080/17442508.2024.2320402 doi: 10.1080/17442508.2024.2320402
    [44] S. Bouzebda, N. Taachouche, On the variable bandwidth kernel estimation of conditional $U$-statistics at optimal rates in sup-norm, Phys. A Stat. Mechan. Appl., 625 (2023), 129000. https://doi.org/10.1016/j.physa.2023.129000 doi: 10.1016/j.physa.2023.129000
    [45] S. Bouzebda, N. Taachouche, Rates of the strong uniform consistency for the kernel-type regression function estimators with general kernels on manifolds, Math. Meth. Stat., 32 (2023), 27–80. https://doi.org/10.3103/S1066530723010027 doi: 10.3103/S1066530723010027
    [46] S. Bouzebda, N. Taachouche, Rates of the strong uniform consistency with rates for conditional $U$-statistics estimators with general kernels on manifolds, Math. Meth. Stat., in press, 2023.
    [47] S. Bouzebda, S. Didi, L. El Hajj, Multivariate wavelet density and regression estimators for stationary and ergodic continuous time processes: asymptotic results, Math. Meth. Stat., 24 (2015), 163–199. https://doi.org/10.3103/S1066530715030011 doi: 10.3103/S1066530715030011
    [48] S. Bouzebda, I. Elhattab, B. Nemouchi, On the uniform-in-bandwidth consistency of the general conditional $U$-statistics based on the copula representation, J. Nonparametr. Stat., 33 (2021), 321–358. https://doi.org/10.1080/10485252.2021.1937621 doi: 10.1080/10485252.2021.1937621
    [49] S. Bouzebda, A. Laksaci, M. Mohammedi, The $k$-nearest neighbors method in single index regression model for functional quasi-associated time series data, Rev. Mat. Complut., 36 (2023), 361–391. https://doi.org/10.1007/s13163-022-00436-z doi: 10.1007/s13163-022-00436-z
    [50] Q. Cao, Z. C. Guo, Y. Ying, Generalization bounds for metric and similarity learning, Mach. Learn., 102 (2016), 115–132. https://doi.org/10.1007/s10994-015-5499-7 doi: 10.1007/s10994-015-5499-7
    [51] A. Carbonez, L. Györfi, E. C. van der Meulen, Partitioning-estimates of a regression function under random censoring, Stat. Risk Model., 13 (1995), 21–37. https://doi.org/10.1524/strm.1995.13.1.21 doi: 10.1524/strm.1995.13.1.21
    [52] D. Chen, P. Hall, H. G. Müller, Single and multiple index functional regression models with nonparametric link, Ann. Statist., 39 (2011), 1720–1747. https://doi.org/10.1214/11-AOS882 doi: 10.1214/11-AOS882
    [53] Y. Chen, S. Datta, Adjustments of multi-sample $U$-statistics to right censored data and confounding covariates, Comput. Statist. Data Anal., 135 (2019), 1–14. https://doi.org/10.1016/j.csda.2019.01.012 doi: 10.1016/j.csda.2019.01.012
    [54] S. Clémençon, I. Colin, A. Bellet, Scaling-up empirical risk minimization: optimization of incomplete $U$-statistics, J. Mach. Learn. Res., 17 (2016), 1–36.
    [55] G. B. Cybis, M. Valk, S. R. C. Lopes, Clustering and classification problems in genetics through $U$-statistics, J. Stat. Comput. Simul., 88 (2018), 1882–1902. https://doi.org/10.1080/00949655.2017.1374387 doi: 10.1080/00949655.2017.1374387
    [56] R. Dahlhaus, On the Kullback-Leibler information divergence of locally stationary processes, Stochastic Process. Appl., 62 (1996), 139–168. https://doi.org/10.1016/0304-4149(95)00090-9 doi: 10.1016/0304-4149(95)00090-9
    [57] R. Dahlhaus, Fitting time series models to non-stationary processes, Ann. Statist., 25 (1997), 1–37. https://doi.org/10.1214/aos/1034276620 doi: 10.1214/aos/1034276620
    [58] R. Dahlhaus, W. Polonik, Nonparametric quasi-maximum likelihood estimation for Gaussian locally stationary processes, Ann. Statist., 34 (2006), 2790–2824. https://doi.org/10.1214/009053606000000867 doi: 10.1214/009053606000000867
    [59] R. Dahlhaus, W. Polonik, Empirical spectral processes for locally stationary time series, Bernoulli, 15 (2009), 1–39. https://doi.org/10.3150/08-BEJ137 doi: 10.3150/08-BEJ137
    [60] S. Datta, D. Bandyopadhyay, G. A. Satten, Inverse probability of censoring weighted $U$-statistics for right-censored data with an application to testing hypotheses, Scand. J. Stat., 37 (2010), 680–700. https://doi.org/10.1111/j.1467-9469.2010.00697.x doi: 10.1111/j.1467-9469.2010.00697.x
    [61] J. A. Davydov, Convergence of distributions generated by stationary stochastic processes, Theory Probab. Appl., 13 (1968), 691–696. https://doi.org/10.1137/1113086 doi: 10.1137/1113086
    [62] J. A. Davydov, Mixing conditions for Markov chains, Theory Probab. Appl., 18 (1973), 312–328. https://doi.org/10.1137/1118033 doi: 10.1137/1118033
    [63] V. H. de la Peña, Decoupling and Khintchine's inequalities for $U$-statistics, Ann. Probab., 20 (1992), 1877–1892.
    [64] V. H. de la Peña, E. Giné, Decoupling, In: Probability and its Applications, New York: Springer, 1999.
    [65] P. Deheuvels, One bootstrap suffices to generate sharp uniform bounds in functional estimation, Kybernetika, 47 (2011), 855–865.
    [66] M. Denker, G. Keller, On $U$-statistics and v. Mises' statistics for weakly dependent processes, Z. Wahrsch. Verw. Gebiete, 64 (1983), 505–522. https://doi.org/10.1007/BF00534953 doi: 10.1007/BF00534953
    [67] L. Devroye, G. Lugosi, Combinatorial Methods in Density Estimation, New York: Springer, 2001.
    [68] S. Didi, S. Bouzebda, Wavelet density and regression estimators for continuous time functional stationary and ergodic processes, Mathematics, 10 (2022), 4356. https://doi.org/10.3390/math10224356 doi: 10.3390/math10224356
    [69] S. Didi, A. Al Harby, S. Bouzebda, Wavelet density and regression estimators for functional stationary and ergodic data: discrete time, Mathematics, 10 (2022), 3433. https://doi.org/10.3390/math10193433 doi: 10.3390/math10193433
    [70] R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal., 1 (1967), 290–330.
    [71] R. M. Dudley, An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions, In: Probability in Banach Spaces V. Lecture Notes in Mathematics, Springer, 1153 (1985), 141–178. https://doi.org/10.1007/BFb0074949
    [72] R. M. Dudley, Uniform central limit theorems, In: Cambridge Studies in Advanced Mathematics, 2 Eds., New York: Cambridge University Press, 2014.
    [73] E. Eberlein, Weak convergence of partial sums of absolutely regular sequences, Statist. Probab. Lett., 2 (1984), 291–293. https://doi.org/10.1016/0167-7152(84)90067-1 doi: 10.1016/0167-7152(84)90067-1
    [74] P. P. B. Eggermont, V. N. LaRiccia, Maximum Penalized Likelihood Estimation, New York: Springer, 2001.
    [75] L. Faivishevsky, J. Goldberger, ICA based on a smooth estimation of the differential entropy, In: Advances in Neural Information Processing Systems, Inc: Curran Associates, 2008.
    [76] S. Feng, P. Tian, Y. Hu, G. Li, Estimation in functional single-index varying coefficient model, J. Statist. Plann. Inference, 214 (2021), 62–75. https://doi.org/10.1016/j.jspi.2021.01.003 doi: 10.1016/j.jspi.2021.01.003
    [77] F. Ferraty, P. Vieu, Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination, In: The International Conference on Recent Trends and Directions in Nonparametric Statistics, J. Nonparametr. Stat., 16 (2004), 111–125. https://doi.org/10.1080/10485250310001622686 doi: 10.1080/10485250310001622686
    [78] F. Ferraty, P. Vieu, Nonparametric Functional Data Analysis, New York: Springer, 2006.
    [79] F. Ferraty, A. Peuch, P. Vieu, Modèle à indice fonctionnel simple, C. R. Math. Acad. Sci. Paris, 336 (2003), 1025–1028. https://doi.org/10.1016/S1631-073X(03)00239-5 doi: 10.1016/S1631-073X(03)00239-5
    [80] F. Ferraty, A. Laksaci, P. Vieu, Estimating some characteristics of the conditional distribution in nonparametric functional models, Stat. Infer. Stoch. Process., 9 (2006), 47–76. https://doi.org/10.1007/s11203-004-3561-3 doi: 10.1007/s11203-004-3561-3
    [81] F. Ferraty, A. Mas, P. Vieu, Nonparametric regression on functional data: inference and practical aspects, Aust. N.Z. J. Stat., 49 (2007), 267–286. https://doi.org/10.1111/j.1467-842X.2007.00480.x doi: 10.1111/j.1467-842X.2007.00480.x
    [82] F. Ferraty, A. Laksaci, A. Tadj, P. Vieu, Rate of uniform consistency for nonparametric estimates with functional variables, J. Statist. Plann. Inference, 140 (2010), 335–352. https://doi.org/10.1016/j.jspi.2009.07.019 doi: 10.1016/j.jspi.2009.07.019
    [83] F. Ferraty, N. Kudraszow, P. Vieu, Nonparametric estimation of a surrogate density function in infinite-dimensional spaces, J. Nonparametr. Stat., 24 (2012), 447–464. https://doi.org/10.1080/10485252.2012.671943 doi: 10.1080/10485252.2012.671943
    [84] A. Földes, L. Rejtő, A LIL type result for the product limit estimator, Z. Wahrsch. Verw. Gebiete, 56 (1981), 75–86. https://doi.org/10.1007/BF00531975 doi: 10.1007/BF00531975
    [85] E. W. Frees, Infinite order $U$-statistics, Scand. J. Statist., 16 (1989), 29–45.
    [86] K. A. Fu, An application of $U$-statistics to nonparametric functional data analysis, Commun. Stat. Theory Meth., 41 (2012), 1532–1542. https://doi.org/10.1080/03610926.2010.526747 doi: 10.1080/03610926.2010.526747
    [87] T. Gasser, P. Hall, B. Presnell, Nonparametric estimation of the mode of a distribution of random curves, J. R. Stat. Soc. Ser. B Stat. Methodol., 60 (1998), 681–691. https://doi.org/10.1111/1467-9868.00148 doi: 10.1111/1467-9868.00148
    [88] S. Ghosal, A. Sen, A. W. van der Vaart, Testing monotonicity of regression, Ann. Statist., 28 (2000), 1054–1082.
    [89] E. Giné, J. Zinn, Some limit theorems for empirical processes, Ann. Probab., 12 (1984), 929–998.
    [90] A. Goia, P. Vieu, An introduction to recent advances in high/infinite dimensional statistics, J. Multivar. Anal., 146 (2016), 1–6. https://doi.org/10.1016/j.jmva.2015.12.001 doi: 10.1016/j.jmva.2015.12.001
    [91] L. Gu, L. Yang, Oracally efficient estimation for single-index link function with simultaneous confidence band, Electron. J. Stat., 9 (2015), 1540–1561. https://doi.org/10.1214/15-EJS1051 doi: 10.1214/15-EJS1051
    [92] P. Hall, Asymptotic properties of integrated square error and cross-validation for kernel estimation of a regression function, Z. Wahrsch. Verw. Gebiete, 67 (1984), 175–196. https://doi.org/10.1007/BF00535267 doi: 10.1007/BF00535267
    [93] P. R. Halmos, The theory of unbiased estimation, Ann. Math. Statist,, 17 (1946), 34–43. https://doi.org/10.1214/aoms/1177731020
    [94] F. Han, T. Qian, On inference validity of weighted U-statistics under data heterogeneity, Electron. J. Statist., 12 (2018), 2637–2708. https://doi.org/10.1214/18-EJS1462 doi: 10.1214/18-EJS1462
    [95] W. Härdle, Applied nonparametric regression, In: Econometric Society Monographs, Cambridge: Cambridge University Press, 1990.
    [96] W. Härdle, J. S. Marron, Optimal bandwidth selection in nonparametric regression function estimation, Ann. Statist., 13 (1985), 1465–1481.
    [97] M. Harel, M. L. Puri, Conditional $U$-statistics for dependent random variables, J. Multivar. Anal., 57 (1996), 84–100. https://doi.org/10.1006/jmva.1996.0023 doi: 10.1006/jmva.1996.0023
    [98] C. Heilig, D. Nolan, Limit theorems for the infinite-degree $U$-process, Statist. Sinica, 11 (2001), 289–302.
    [99] W. Hoeffding, A class of statistics with asymptotically normal distribution, Ann. Math. Stat., 19 (1948), 293–325.
    [100] J. Hoffmann-Jørgensen, Stochastic processes on Polish spaces, In: Various Publications Series, Aarhus: Aarhus Universitet, Matematisk Institut, 1991.
    [101] M. Hollander, F. Proschan, Testing whether new is better than used, Ann. Math. Statist., 43 (1972), 1136–1146. https://doi.org/10.1214/aoms/1177692466 doi: 10.1214/aoms/1177692466
    [102] L. Horváth, P. Kokoszka, Inference for Functional Data with Applications, New York: Springer, 2012.
    [103] I. A. Ibragimov, V. N. Solev, A certain condition for the regularity of Gaussian stationary sequence, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 12 (1969), 113–125.
    [104] S. Jadhav, S. Ma, An association test for functional data based on Kendall's tau, J. Multivar. Anal., 184 (2021), 104740. https://doi.org/10.1016/j.jmva.2021.104740 doi: 10.1016/j.jmva.2021.104740
    [105] C. Jentsch, S. Subba Rao, A test for second order stationarity of a multivariate time series, J. Econometrics, 185 (2015), 124–161. https://doi.org/10.1016/j.jeconom.2014.09.010 doi: 10.1016/j.jeconom.2014.09.010
    [106] Z. Jiang, Z. Huang, J. Zhang, Functional single-index composite quantile regression, Metrika, 86 (2023), 595–603. https://doi.org/10.1007/s00184-022-00887-w doi: 10.1007/s00184-022-00887-w
    [107] R. Jin, S. Wang, Y. Zhou, Regularized distance metric learning: theory and algorithm, In: Advances in Neural Information Processing Systems, Inc: Curran Associates, 2009.
    [108] E. L. Kaplan, P. Meier, Nonparametric estimation from incomplete observations, J. Amer. Statist. Assoc., 53 (1958), 457–481.
    [109] L. Kara-Zaitri, A. Laksaci, M. Rachdi, P. Vieu, Uniform in bandwidth consistency for various kernel estimators involving functional data, J. Nonparametr. Stat., 29 (2017), 85–107. https://doi.org/10.1080/10485252.2016.1254780 doi: 10.1080/10485252.2016.1254780
    [110] M. G. Kendall, A new measure of rank correlation, Biometrika, 30 (1938), 81–93.
    [111] M. Kohler, K. Máthé, M. Pintér, Prediction from randomly right censored data, J. Multivar. Anal., 80 (2002), 73–100. https://doi.org/10.1006/jmva.2000.1973 doi: 10.1006/jmva.2000.1973
    [112] A. N. Kolmogorov, V. M. Tihomirov, $\varepsilon $-entropy and $\varepsilon $-capacity of sets in function spaces, Uspehi. Mat. Nauk., 14 (1959), 3–86.
    [113] V. S. Koroljuk, Y. V. Borovskich, Theory of $U$-statistics, In: Mathematics and its Applications, Dordrecht: Kluwer Academic Publishers Group, 1994.
    [114] M. R. Kosorok, Introduction to Empirical Processes and Semiparametric Inference, New York: Springer, 2008.
    [115] J. P. Kreiss, E. Paparoditis, Bootstrapping locally stationary processes, J. R. Stat. Soc. Ser. B. Stat. Methodol., 77 (2015), 267–290. https://doi.org/10.1111/rssb.12068 doi: 10.1111/rssb.12068
    [116] D. Kurisu, Nonparametric regression for locally stationary functional time series, Electron. J. Statist., 16 (2022), 3973–3995. https://doi.org/10.1214/22-EJS2041 doi: 10.1214/22-EJS2041
    [117] A. J. Lee, $U$-statistics, In: Statistics: Textbooks and Monographs, New York: Marcel Dekker, 1990.
    [118] S. Lee, O. Linton, Y. J. Whang, Testing for stochastic monotonicity, Econometrica, 77 (2009), 585–602. https://doi.org/10.3982/ECTA7145 doi: 10.3982/ECTA7145
    [119] A. Leucht, Degenerate $U$- and $V$-statistics under weak dependence: asymptotic theory and bootstrap consistency, Bernoulli, 18 (2012), 552–585. https://doi.org/10.3150/11-BEJ354 doi: 10.3150/11-BEJ354
    [120] A. Leucht, M. H. Neumann, Degenerate $U$- and $V$-statistics under ergodicity: asymptotics, bootstrap and applications in statistics, Ann. Inst. Stat. Math., 65 (2013), 349–386. https://doi.org/10.1007/s10463-012-0374-9 doi: 10.1007/s10463-012-0374-9
    [121] J. Li, C. Huang, Z. Hongtu, A functional varying-coefficient single-index model for functional response data, J. Amer. Stat. Assoc., 112 (2017), 1169–1181. https://doi.org/10.1080/01621459.2016.1195742 doi: 10.1080/01621459.2016.1195742
    [122] W. V. Li, Q. M. Shao, Gaussian processes: inequalities, small-ball probabilities and applications, Handbook Stat., 19 (2001), 533–597. https://doi.org/10.1016/S0169-7161(01)19019-X doi: 10.1016/S0169-7161(01)19019-X
    [123] H. Liang, X. Liu, R. Li, C. L. Tsai, Estimation and testing for partially linear single-index models, Ann. Stat., 38 (2010), 3811–3836. https://doi.org/10.1214/10-AOS835 doi: 10.1214/10-AOS835
    [124] E. Liebscher, Strong convergence of sums of $\alpha$-mixing random variables with applications to density estimation, Stochast. Process. Appl., 65 (1996), 69–80. https://doi.org/10.1016/S0304-4149(96)00096-8 doi: 10.1016/S0304-4149(96)00096-8
    [125] F. Lim, V. M. Stojanovic, On $U$-statistics and compressed sensing I: non-asymptotic average-case analysis, IEEE T. Signal Process., 61 (2013), 2473–2485. https://doi.org/10.1109/TSP.2013.2247598 doi: 10.1109/TSP.2013.2247598
    [126] N. Ling, P. Vieu, Nonparametric modelling for functional data: selected survey and tracks for future, Statistics, 52 (2018), 934–949. https://doi.org/10.1080/02331888.2018.1487120 doi: 10.1080/02331888.2018.1487120
    [127] N. Ling, L. Cheng, P. Vieu, Single functional index model under responses MAR and dependent observations, In: Functional and High-Dimensional Statistics and Related Fields. IWFOS 2020. Contributions to Statistics. Springer, Cham., 2020.
    [128] N. Ling, L. Cheng, P. Vieu, H. Ding, Missing responses at random in functional single index model for time series data, Stat. Papers, 63 (2022), 665–692. https://doi.org/10.1007/s00362-021-01251-2 doi: 10.1007/s00362-021-01251-2
    [129] Q. Liu, J. Lee, M. Jordan, A kernelized stein discrepancy for goodness-of-fit tests, In: Proceedings of The 33rd International Conference on Machine Learning, PMLR, 48 (2016), 276–284.
    [130] B. Maillot, V. Viallon, Uniform limit laws of the logarithm for nonparametric estimators of the regression function in presence of censored data, Math. Meth. Stat., 18 (2009), 159–184. https://doi.org/10.3103/S1066530709020045 doi: 10.3103/S1066530709020045
    [131] T. Masak, S. Sarkar, V. M. Panaretos, Principal separable component analysis via the partial inner product, Stat. Theory, 2020.
    [132] D. M. Mason, Proving consistency of non-standard kernel estimators, Stat. Inference Stoch. Process., 15 (2012), 151–176. https://doi.org/10.1007/s11203-012-9068-4 doi: 10.1007/s11203-012-9068-4
    [133] E. Masry, Nonparametric regression estimation for dependent functional data: asymptotic normality, Stochast. Process. Appl., 115 (2005), 155–177. https://doi.org/10.1016/j.spa.2004.07.006 doi: 10.1016/j.spa.2004.07.006
    [134] U. Mayer, H. Zähle, Z. Zhou, Functional weak limit theorem for a local empirical process of non-stationary time series and its application, Bernoulli, 26 (2020), 1891–1911. https://doi.org/10.3150/19-BEJ1174 doi: 10.3150/19-BEJ1174
    [135] E. Mayer-Wolf, O. Zeitouni, The probability of small Gaussian ellipsoids and associated conditional moments, Ann. Probab., 21 (1993), 14–24.
    [136] M. Mohammedi, S. Bouzebda, A. Laksaci, The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data, J. Multivar. Anal., 181 (2021), 104673. https://doi.org/10.1016/j.jmva.2020.104673 doi: 10.1016/j.jmva.2020.104673
    [137] M. Mohammedi, S. Bouzebda, A. Laksaci, O. Bouanani, Asymptotic normality of the k-NN single index regression estimator for functional weak dependence data, Commun. Stat. Theory Meth., 53 (2024), 3143–3168. https://doi.org/10.1080/03610926.2022.2150823 doi: 10.1080/03610926.2022.2150823
    [138] J. S. Morris, Functional regression, Annu. Rev. Stat. Appl., 2 (2015), 321–359. https://doi.org/10.1146/annurev-statistics-010814-020413
    [139] E. A. Nadaraja, On a regression estimate, Teor. Verojatnost. Primenen., 9 (1964), 157–159.
    [140] E. A. Nadaraya, Nonparametric estimation of probability densities and regression curves, In: Mathematics and its Applications (Soviet Series), Dordrecht: Kluwer Academic Publishers Group, 1989.
    [141] G. P. Nason, R. von Sachs, G. Kroisandt, Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum, J. R. Stat. Soc. Ser. B Stat. Methodol., 62 (2000), 271–292. https://doi.org/10.1111/1467-9868.00231 doi: 10.1111/1467-9868.00231
    [142] M. H. Neumann, R. von Sachs, Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra, Ann. Statist., 25 (1997), 38–76. https://doi.org/10.1214/aos/1034276621 doi: 10.1214/aos/1034276621
    [143] Y. Nie, L. Wang, J. Cao, Estimating functional single index models with compact support, Environmetrics, 34 (2023), e2784. https://doi.org/10.1002/env.2784 doi: 10.1002/env.2784
    [144] D. Nolan, D. Pollard, $U$-processes: rates of convergence, Ann. Statist., 15 (1987), 780–799.
    [145] S. Novo, G. Aneiros, P. Vieu, Automatic and location-adaptive estimation in functional single-index regression, J. Nonparametr. Stat., 31 (2019), 364–392. https://doi.org/10.1080/10485252.2019.1567726 doi: 10.1080/10485252.2019.1567726
    [146] W. Peng, T. Coleman, L. Mentch, Rates of convergence for random forests via generalized $U$-statistics, Electron. J. Stat., 16 (2022), 232–292. https://doi.org/10.1214/21-EJS1958 doi: 10.1214/21-EJS1958
    [147] N. Phandoidaen, S. Richter, Empirical process theory for locally stationary processes, Bernoulli, 28 (2022), 453–480. https://doi.org/10.3150/21-BEJ1351 doi: 10.3150/21-BEJ1351
    [148] B. L. S. Prakasa Rao, A. Sen, Limit distributions of conditional $U$-statistics, J. Theoret. Probab., 8 (1995), 261–301. https://doi.org/10.1007/BF02212880 doi: 10.1007/BF02212880
    [149] M. B. Priestley, Evolutionary spectra and non-stationary processes, J. Roy. Statist. Soc. Ser. B, 27 (1965), 204–237. https://doi.org/10.1111/j.2517-6161.1965.tb01488.x doi: 10.1111/j.2517-6161.1965.tb01488.x
    [150] M. Rachdi, P. Vieu, Nonparametric regression for functional data: automatic smoothing parameter selection, J. Statist. Plann. Inference, 137 (2007), 2784–2801. https://doi.org/10.1016/j.jspi.2006.10.001 doi: 10.1016/j.jspi.2006.10.001
    [151] J. O. Ramsay, B. W. Silverman, Applied Functional Data Analysis, New York: Springer, 2002.
    [152] G. Rempala, A. Gupta, Weak limits of $U$-statistics of infinite order, Random Oper. Stoch. Equ., 7 (1999), 39–52. https://doi.org/10.1515/rose.1999.7.1.39 doi: 10.1515/rose.1999.7.1.39
    [153] K. Sakiyama, M. Taniguchi, Discriminant analysis for locally stationary processes, J. Multivar. Anal., 90 (2004), 282–300. https://doi.org/10.1016/j.jmva.2003.08.002 doi: 10.1016/j.jmva.2003.08.002
    [154] A. Sen, Uniform strong consistency rates for conditional $U$-statistics, Sankhyā Ind. J. Stat. Ser. A, 56 (1994), 179–194.
    [155] R. J. Serfling, Approximation Theorems of Mathematical Statistics, New York: John Wiley & Sons, 1980.
    [156] H. L. Shang, Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density, J. Nonparametr. Stat., 26 (2014), 599–615. https://doi.org/10.1080/10485252.2014.916806 doi: 10.1080/10485252.2014.916806
    [157] R. P. Sherman, The limiting distribution of the maximum rank correlation estimator, Econometrica, 61 (1993), 123–137.
    [158] R. P. Sherman, Maximal inequalities for degenerate $U$-processes with applications to optimization estimators, Ann. Statist., 22 (1994), 439–459. https://doi.org/10.1214/aos/1176325377 doi: 10.1214/aos/1176325377
    [159] B. W. Silverman, Distances on circles, toruses and spheres, J. Appl. Probab., 15 (1978), 136–143. https://doi.org/10.2307/3213243
    [160] B. W. Silverman, Density Estimation for Statistics and Data Analysis, London: Chapman & Hall, 1986.
    [161] R. A. Silverman, Locally stationary random processes, IRE T. Inform. Theory, 3 (1957), 182–187. https://doi.org/10.1109/TIT.1957.1057413 doi: 10.1109/TIT.1957.1057413
    [162] Y. Song, X. Chen, K. Kato, Approximating high-dimensional infinite-order $U$-statistics: statistical and computational guarantees, Electron. J. Stat., 13 (2019), 4794–4848. https://doi.org/10.1214/19-EJS1643 doi: 10.1214/19-EJS1643
    [163] I. Soukarieh, S. Bouzebda, Exchangeably weighted bootstraps of general Markov $U$-process, Mathematics, 10 (2022), 3745. https://doi.org/10.3390/math10203745 doi: 10.3390/math10203745
    [164] I. Soukarieh, S. Bouzebda, Renewal type bootstrap for increasing degree $U$-process of a Markov chain, J. Multivar. Anal., 195 (2023), 105143. https://doi.org/10.1016/j.jmva.2022.105143 doi: 10.1016/j.jmva.2022.105143
    [165] I. Soukarieh, S. Bouzebda, Weak convergence of the conditional $U$-statistics for locally stationary functional time series, Stat. Inference Stoch. Process., 17 (2024), 227–304. https://doi.org/10.1007/s11203-023-09305-y doi: 10.1007/s11203-023-09305-y
    [166] W. Stute, Conditional $U$-statistics, Ann. Probab., 19 (1991), 812–825.
    [167] W. Stute, $L^p$-convergence of conditional $U$-statistics, J. Multivar. Anal., 51 (1994), 71–82. https://doi.org/10.1006/jmva.1994.1050 doi: 10.1006/jmva.1994.1050
    [168] W. Stute, Universally consistent conditional $U$-statistics, Ann. Statist., 22 (1994), 460–473. https://doi.org/10.1214/aos/1176325378 doi: 10.1214/aos/1176325378
    [169] W. Stute, Symmetrized NN-conditional $U$-statistics. In: Research Developments in Probability and Statistics, 231–237, 1996.
    [170] W. Stute, W. and Wang, Multi-sample $U$-statistics for censored data, Scand. J. Statist., 20 (1993), 369–374.
    [171] W. Stute, L. X. Zhu, Nonparametric checks for single-index models, Ann. Statist., 33 (2005), https://doi.org/10.1214/009053605000000020 1048–1083.
    [172] K. K. Sudheesh, S. Anjana, M. Xie, U-statistics for left truncated and right censored data, Statistics, 57 (2023), 900–917. https://doi.org/10.1080/02331888.2023.2217314 doi: 10.1080/02331888.2023.2217314
    [173] Q. Tang, L. Kong, D. Rupper, R. J. Karunamuni, Partial functional partially linear single-index models, Statist. Sinica, 31 (2021), 107–133.
    [174] W. Y. Tsai, N. P. Jewell, M. C. Wang, A note on the product-limit estimator under right censoring and left truncation, Biometrika, 74 (1987), 883–886. https://doi.org/10.1093/biomet/74.4.883 doi: 10.1093/biomet/74.4.883
    [175] A. van Delft, H. Dette, A general framework to quantify deviations from structural assumptions in the analysis of non-stationary function-valued processes, preprint paper, 2022. https://doi.org/10.48550/arXiv.2208.10158
    [176] A. van Delft, M. Eichler, Locally stationary functional time series, Electron. J. Stat., 12 (2018), 107–170. https://doi.org/10.1214/17-EJS1384 doi: 10.1214/17-EJS1384
    [177] A. van der Vaart, New donsker classes, Ann. Probab., 24 (1996), 2128–2140. https://doi.org/10.1214/aop/1041903221
    [178] A. W. van der Vaart, J. A. Wellner, Weak Convergence and Empirical Processes, New York: Springer, 1996.
    [179] M. Vogt, Nonparametric regression for locally stationary time series, Ann. Statist., 40 (2012), 2601–2633. https://doi.org/10.1214/12-AOS1043 doi: 10.1214/12-AOS1043
    [180] V. A. Volkonskiui, Y. A. Rozanov, Some limit theorems for random functions I, Theory Probab. Appl., 4 (1959), 178–197. https://doi.org/10.1137/1104015 doi: 10.1137/1104015
    [181] R. von Mises, On the asymptotic distribution of differentiable statistical functions, Ann. Math. Stat., 18 (1947), 309–348.
    [182] M. P. Wand, M. C. Jones, Kernel smoothing, In: Monographs on Statistics and Applied Probability, London: Chapman and Hall, 1995.
    [183] J. L. Wang, J. M. Chiou, H. G. Müller, Functional data analysis, Annu. Rev. Stat. Appl., 3 (2016), 257–295. https://doi.org/10.1146/annurev-statistics-041715-033624 doi: 10.1146/annurev-statistics-041715-033624
    [184] G. S. Watson, Smooth regression analysis, Sankhyā Ind. J. Stat. Ser. A, 26 (1964), 359–372.
    [185] J. Yang, Z. Zhou, Spectral inference under complex temporal dynamics, J. Amer. Statist. Assoc., 117 (2022), 133–155. https://doi.org/10.1080/01621459.2020.1764365 doi: 10.1080/01621459.2020.1764365
    [186] A. Yuan, M. Giurcanu, G. Luta, M. T. Tan, U-statistics with conditional kernels for incomplete data models, Ann. Inst. Statist. Math., 69 (2017), 271–302. https://doi.org/10.1007/s10463-015-0537-6 doi: 10.1007/s10463-015-0537-6
    [187] Y. Zhou, P. S. F. Yip, A strong representation of the product-limit estimator for left truncated and right censored data, J. Multivar. Anal., 69 (1999), 261–280. https://doi.org/10.1006/jmva.1998.1806 doi: 10.1006/jmva.1998.1806
    [188] H. Zhu, R. Zhang, Y. Liu, H. Ding, Robust estimation for a general functional single index model via quantile regression, J. Korean Stat. Soc., 51 (2022), 1041–1070. https://doi.org/10.1007/s42952-022-00174-4 doi: 10.1007/s42952-022-00174-4
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(852) PDF downloads(74) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog