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Abstract: Inrecent years, there has been a notable shift in focus towards the analysis of non-stationary
time series, driven largely by the complexities associated with delineating significant asymptotic
behaviors inherent to such processes. The genesis of the theory of locally stationary processes arises
from the quest for asymptotic inference grounded in nonparametric statistics. This paper endeavors to
formulate a comprehensive framework for conducting inference within the realm of locally stationary
functional time series by harnessing the conditional U-statistics methodology as propounded by
W. Stute in 1991. The proposed methodology extends the Nadaraya-Watson regression function
estimations. Within this context, a novel estimator was introduced for the single index conditional U-
statistics operator, adept at accommodating the non-stationary attributes inherent to the data-generating
process. The primary objective of this paper was to establish the weak convergence of conditional U-
processes within the domain of locally stationary functional mixing data. Specifically, the investigation
delved into scenarios of weak convergence involving functional explanatory variables, considering
both bounded and unbounded sets of functions while adhering to specific moment requirements. The
derived findings emanate from broad structural specifications applicable to the class of functions and
models under scrutiny. The theoretical insights expounded in this study constitute pivotal tools for
advancing the domain of functional data analysis.
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1. Introduction and motivations

In the evolutionary trajectory of asymptotic outcomes related to U-statistics, with a particular
emphasis on independent and identically distributed random variables, pivotal contributions can be
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ascribed to esteemed figures like [93,99, 181], among others. When extending these advancements to
accommodate scenarios involving weak dependency assumptions, notable references
include [30, 39,40, 66, 119, 120]. For a comprehensive grasp of U-statistics and U-processes, scholars
are directed to seminal works such as [11,12, 14,31, 113,117]. A substantial leap forward in the
theoretical landscape of U-processes is accredited to [64], who made significant contributions by
assimilating insights from empirical process theory. Their introduction of innovative techniques,
including decoupling inequality and randomization, played a pivotal role in propelling the theoretical
framework forward.  The applications of U-processes traverse diverse statistical domains,
encompassing testing for qualitative features of functions in nonparametric statistics [1, 88, 118],
cross-validation for density estimation [144], and establishing limiting distributions of
M-estimators [11, 64, 157, 158]. In the realm of machine learning, U-statistics find multifaceted
applications in clustering, image recognition, ranking, and learning on graphs. The natural estimates
of risk prevalent in various machine learning contexts often manifest in the form of U-statistics, as
elucidated in [54]. Instances of U-statistics are also discerned in various contexts, such as empirical
performance measures in metric learning, exemplified by [50]. When confronted with U-statistics
characterized by random kernels exhibiting diverging orders, pertinent literature includes
contributions from [85, 98, 152, 162]. Infinite-order U-statistics manifest as invaluable tools for
constructing simultaneous prediction intervals, providing insights into the uncertainty inherent in
ensemble methods like subbagging and random forests, as explicated in [146]. The MeanNN
approach, introduced by [75] for estimating differential entropy, intricately involves the utilization of
the U-statistic. Additionally, [129] proposes a novel test statistic for goodness-of-fit tests, employing
U-statistics. A model-free approach to clustering and classifying genetic data based on U-statistics is
explored by [55], presenting alternative perspectives driven by the adaptability of U-statistics to a
diverse array of genetic issues and their capability to accommodate various data types.
Furthermore, [125] advocates for the natural application of U-statistics in examining random
compressed sensing matrices in the non-asymptotic regime. For the latest references in this context,
please consult [43, 163, 164]. In the realm of nonparametric density and regression function
estimation, [166] introduces a class of estimators for r™ (¢, t), referred to as conditional U-statistics.
These estimators can be perceived as an extension of the Nadaraya-Watson estimates for regression
functions, initially proposed by [139, 184]. The nonparametric domain of density and regression
function estimation has been a focal point for statisticians and probabilists over numerous years,
resulting in the evolution of various methodologies. Kernel nonparametric function estimation
methods, in particular, have garnered substantial attention. For a thorough exploration of the research
literature  and  statistical  applications in  this field, one is encouraged to
consult [67,74,95, 140, 160, 182], and the pertinent references therein.

This investigation delves into the intricacies of nonparametric conditional U-statistics. To facilitate
our exploration, we commence by introducing the estimators proposed by [166]. Consider a regular
sequence of random elements {(X;,Y;) : i € N*}, where X; € R? and Y; € Y, a Polish space, with
N* = N\{0}. Let ¢ : Y" — R be a measurable function. In this paper, our central focus revolves
around the estimation of the conditional expectation or regression function:

}"(m)(QD,t) :E(QD(YlaaYm) | (Xla--~aXm) :t)’

for t € R, provided it exists, namely, when E (|p(Y1, ..., Y,,)|) < co. We introduce a kernel function
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K : R? — R with support contained in [-B, B]¢, where B > 0, adhering to the following conditions:

sup |K(x)| =: k < o0 and fK(x)dx =1.

x€Rd

Reference [166] introduced a class of estimators for r(’")(go, t), known as conditional U-statistics,
defined for each t € R" as:

n n

(g, tih,) = ’ (I.D

" tl - Xi1 tm - Xi,,,
hn hn

(S im)EIr’ln

Z (Y, Y, )K X)X
SO o4y, h h

where I is the set of all m-tuples of different integers between 1 and n:
Ir=li=G.....iw:1<i;<n and i;#i, if j#r},

and {h,},>1 is a sequence of positive constants converging to zero at the rate nh%" — co. In the specific
scenario of m = 1, where r" (g, t) simplifies to rV(¢,7) = E(¢(Y) | X = 1), the estimator by Stute
transforms into the Nadaraya-Watson estimator of #!(¢, f). The study conducted by [154] focused on
estimating the rate of uniform convergence in t of ’rflm)(go, t;h,) to r'(p,t). In [148], the paper
discusses and compares the limit distributions of 75,’")(90,t;h,1) with those obtained by Stute. [97]
extended the results of [166] to weakly dependent data under appropriate mixing conditions (also
see [17]). They applied these findings to verify the Bayes risk consistency of corresponding
discrimination rules similar to [167] and Section 5.1. In [169], symmetrized nearest neighbor
conditional U-statistics are proposed as alternatives to the usual kernel-type estimators, and reference
can also be made to [48]. [86] explored the functional conditional U-statistic and established its
finite-dimensional asymptotic normality. Despite the subject’s importance, nonparametric estimation
of conditional U-statistics in a functional data framework has received relatively limited attention.
Recent advancements are presented in [40, 48], addressing problems related to uniform bandwidth
consistency in a general setting. In [104], the test of independence in the functional framework based
on the Kendall statistics was investigated, which can be considered as particular cases of U-statistics.
Extending this exploration to conditional empirical U-processes in the functional setting is practically
useful and technically more challenging. Two perspectives on conditional U-processes are
presented 1) they are infinite-dimensional versions of conditional U-statistics (with one kernel) and 2)
they are stochastic processes that are nonlinear generalizations of conditional empirical processes.
Both views are valuable because: 1) from a statistical standpoint, considering a rich class of statistics
is more interesting than a single statistic; 2) mathematically, insights from empirical process theory
can be applied to derive limit or approximation theorems for U-processes. Importantly, extending
U-statistics to U-processes demands substantial effort and different techniques, and generalization
from conditional empirical processes to conditional U-processes is highly nontrivial.

The prevalent practice of assuming stationarity in time series modeling has prompted the
development of various models, techniques, research, and methodologies. However, this assumption
may not always be suitable for spatio-temporal data, even with detrending and deseasonalization.
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Many pivotal time series models exhibit nonstationarity, observed in diverse physical phenomena and
economic data, rendering classical methods ineffective. To address this challenge, the concept of the
locally stationary random process was introduced by [161]. This type of process approximates a
non-stationary process by a stationary one locally over short periods. The intuitive concept of local
stationarity is also explored in the works of [57,58,142, 149, 153], among others. The groundbreaking
work of [57] notably serves as a robust foundation for the inference of locally stationary processes. In
addition to generalizing stationary processes, this innovative approach eliminates time-varying
parameters. Over the past decade, the theory of empirical processes for locally stationary time series
has garnered significant attention. Empirical processes theory plays a crucial role in addressing
statistical problems and has expanded into time series analysis and regression estimation. Relevant
references in this context include [59, 179] and more recent contributions such as [134, 147]. The
extension of the previously discussed exploration to conditional empirical U-processes bears
significant interest from both practical and theoretical standpoints. We specifically delve into the
domain of conditional U-processes indexed by a class of functions within the framework of functional
data. Building upon insights from [8], functional data analysis (FDA) emerges as a statistical field
dedicated to analyzing infinite-dimensional variables such as curves, sets, and images. Experiencing
remarkable growth over the past two decades, FDA has become a crucial area of investigation in data
science, fueled by advancements in data collection technology during the “Big Data” revolution. For
an introduction to FDA, readers can refer to the books by [78, 151], providing fundamental analysis
methods and case studies across various domains like criminology, economics, archaeology, and
neurophysiology. Notably, the extension of probability theory to random variables taking values in
normed spaces predates recent literature on functional data, with foundational knowledge available
in [9, 87]. In the context of regression estimation and nonparametric models for data in normed vector
spaces, valuable references include [78, 136], along with additional contributions from [32, 102, 126].
Modern empirical process theory has been applied to functional data, as demonstrated by [82], who
established uniform consistency rates for functionals of the conditional distribution, including the
regression function, conditional cumulative distribution, and conditional density. [109] extended this
by providing consistency rates for various functional nonparametric models, uniformly in bandwidth
(UIB consistency). Recent advancements in this field can be explored through references such
as [3,40,42,49,68,69, 137]. This strongly motivates the consideration of regression models that offer
dimension reduction. Single index models are widely used to achieve this by assuming that the
predictors’ influence on the response can be simplified to a single index. This index represents a
projection in a specified direction and is combined with a nonparametric link function, simplifying the
predictors to a one-dimensional index while still incorporating important characteristics. Additionally,
because the nonparametric link function only operates on a one-dimensional index, these models are
not affected by the problem of having a high number of dimensions, known as the curse of
dimensionality. The single index model extends the concept of linear regression by incorporating a
link function equivalent to the identity function; for further details, interested readers can refer
to [23,91,123,138,171, 183].

Recent progress in functional data analysis underscores the need for developing models to address
the challenges of dimensionality reduction (refer to [90, 126] for recent surveys, and
also [4,5,40,41,165]). In response to this, semiparametric approaches emerge as promising solutions.
The functional single-index model (FSIM) has gained attention in this context, with exploration
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by [2,16,79]. Furthermore, [106] proposed functional single-index composite quantile regression,
estimating the unknown slope function and link function through B-spline basis functions. A
functional single index model with coefficient functions restricted to a subregion was introduced
by [143]. The estimation of a general functional single index model, where the conditional
distribution depends on the functional predictor via a single index structure, was investigated
by [188]. Innovatively, [173] developed a new estimation method that combines functional principal
component analysis, B-spline modeling, and profile estimation for parameters and functions.
Addressing the estimation of the functional single index regression model with missing responses for
strong mixing time series data, [127, 128] made valuable contributions. [76] introduced a functional
single-index varying coefficient model with the functional predictor as the single-index part. Utilizing
functional principal component analysis and basis function approximation, they obtained estimators
for slope and coeflicient functions, proposing an iterative estimating procedure. An automatic and
location-adaptive procedure for estimating regression in an FSIM based on k-Nearest Neighbors
(kNN) principles was presented by [145]. Motivated by imaging data analysis, [121] proposed a novel
functional varying-coefficient single-index model for regression analysis of functional response data
on a set of covariates. Investigating a functional Hilbertian regressor for nonparametric estimation of
the conditional cumulative distribution with a scalar response variable in a single index structure, [15]
made notable contributions. An alternative approach was introduced by [52], extending to the
multi-index case without anchoring the true parameter on a prespecified sieve. Their detailed
theoretical analysis of a direct kernel-based estimation scheme establishes a polynomial
convergence rate.

The primary objective of this paper is to scrutinize a comprehensive framework for the
single-index conditional U-process of any fixed order, indexed by a class of functions within a
nonparametric context. Specifically, we explore the conditional U-process in the realm of functional
covariates, considering the potential non-stationary nature of functional time series. The main aim of
this study is to offer an initial and comprehensive theoretical examination within this specific context.
To achieve this, we skillfully apply large sample theory techniques developed for empirical processes
and U-empirical processes. This paper meticulously tackles various technical hurdles. Initially, it
delves into the nonlinear expansion of the single index concept and conditional U-statistics.
Subsequently, it addresses the extension of the Hoeffding decomposition to non-stationary time series.
Finally, it confronts the complexity stemming from the unbounded function class, leading to extensive
and intricate proofs.

The manuscript’s organization is structured as follows. Section 2 provides a detailed exposition of
our theoretical framework, elucidating essential definitions and contextual explanations while
introducing technical assumptions. Our principal findings are presented in Sections 3 and 4.
Specifically, Section 3 unveils convergence rate results, reintroducing the pivotal Hoeftding
decomposition technique. Accommodating our outcomes on weak convergence, Section 4 delves into
the details of these results. Section 5 accentuates selected applications. In Section 6, we explore
bandwidth selection methodologies utilizing cross-validation procedures. Concluding reflections are
encapsulated in Section 7. The comprehensive proofs are furnished in Section 8. Lastly, Appendix 8
provides technical properties and lemmas for easy reference.
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2. Background and preliminaries

2.1. Notation

In this document, the notation a, < b, is employed to signify the existence of a constant C, which
is independent of n and may vary between lines, unless explicitly specified otherwise. This constant is
such that a, < Cb, holds for all n. Additionally, the notation a, < b, indicates that a,/b, — 0 asn —
co. When both a, < b, and b, < a, hold, their equivalence is denoted as a,, ~ b,. Moreover, (iy, ..., i,)
is denoted as i, and (i;/n,...,i,/n) as i/n. For any c,d € R, the expressions ¢ V d = max{c, d} and
¢ A d = min{c, d} are employed. The notation |a] signifies the integer part of a number. Additionally,

for m < n, where m and n are positive integers, Cl; = T is defined. The set I’ is introduced as

Ie={i= (... 1<i;<n and i;#i, if j#r},
comprising all m-tuples of distinct integers between 1 and n.

2.2. Model

Consider the stochastic processes {Y;,, X;,}",, where Y;, takes values in a space Y, and X;, is in
an abstract space H. We assume H is a semi-metric vector space with a semi-metric d(-, -)* which, in
most applications, would be a Hilbert or Banach space. We consider the semi-metric dy(-, -) associated
with the single-index 6 € H, defined as

dy(u,v) := {0, u —v)|, foru,v e H.

Consider any function ¢(-) of k variables (the U-kernel) such that ¢(Y1,...,Y,,) is integrable. For
X=(Xp,...,X%,) € H"and @ = (0,,...,6,) € @" C H™, define the regression functional parameter as

rm (so, %x 0) = E(p(Y1, ..., Vi) | (X1, 61) = (x1,01), o, KXoy Om) = (Xoms On))
= E(e(1) | (X;,0) =(x,0)), i=(1,...,m). 2.1)

In this study, we consider the following model:

o(Yin) = r™ (50,%,& a) +a(%,xi,,,)si, = (i1, i), 1<i <0, 2.2)

where {&i}ic;» is a sequence of univariate independent and identically distributed random variables,
independent of {Xi,n};l:]- We denote o (%,Xi,n) & as &;,. Furthermore, we assume that the process is
a locally stationary functional time series. In a heuristic sense, a process {X;,} is considered locally
stationary if it displays approximately stationary behavior locally in time. The regression function
(e, -, X, 0) is allowed to change smoothly over time, depending on a rescaled quantity i/n rather than
on the specific point i (where i typically represents time in a time series framework).

*A semi-metric (or pseudo-metric) d(-, -) is a metric allowing dy, (x;, x,) = O for some x; # x,.
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2.3. Local stationarity

We delve into the exploration of non-stationary processes characterized by dynamics evolving
gradually over time, manifesting behaviors akin to stationarity at a local level. This conceptual realm
has undergone comprehensive scrutiny, exemplified by references such as [57,105,115,131,141,185].
For illustration, consider a continuous function a : [0,1] — R and a sequence of i.i.d. random
variables (g;);an. The stochastic process X;,, = a(i/n) + €;, where i € {1,...,n} and n € N, can exhibit
“almost” stationary behavior for i close to a specific point i* (e.g., i* in {l,...,n}), given that
a(i*/n) = a(i/n). However, this process is not strictly weakly stationary. To capture this type of
gradual change, the concept of local stationarity was introduced by [57], wherein the spectral
representation of the underlying stochastic process is locally approximated. In our framework, the
process {X;,} can be stochastically approximated by a stationary process {XE”,?} around each rescaled
time point u, specifically for those values of i where i/n — u is small. Since our focus is on functional
data, we define a functional time series as locally stationary if it can be locally approximated by a
stationary functional time series. We will provide a standard definition of local stationarity.

Definition 2.1 (local stationarity). For a sequence of stochastic processes, indexed by n € N and
taking values in H, denoted as {X;,}, it is deemed locally stationary if, for all rescaled times u €
[0, 1], there exists an associated H-valued process {Xl@} that is strictly stationary. This association is
characterized by the inequality:

i
- —u

do (X,-,,,,Xf”)) = ( n

1
+ Z) Uf;’l) a.s., (2.3)

This holds for all 1 < i < n, where {Uf";)} is a positive valued process satisfying E[(Ufj:l))p] < C for
some p > 0, C < oco. These conditions are independent of u, i, and n.

Definition 2.1 represents a natural extension of the concept of local stationarity for real-valued time
series introduced in [57]. In a more specific context, [176] and [175] elaborate on this definition,
considering H as a Hilbert space Lﬂé[O, 1]. Here, all real-valued functions are square-integrable with
respect to the Lebesgue measure on the interval [0, 1], equipped with the inner product L,-norm:

1
1Al = NPy, (fug) = fo FOgdr,

where f,g € Lﬂé([o, 1]). These authors also provide sufficient conditions for an Lﬂé([O, 1])-valued
stochastic process {X;,} to satisfy (2.3) with d(f,g) = ||f — gll. and p = 2. Additionally, they define
L7.(T, ) as the Banach space of all strongly measurable functions f : T — E with finite norm:

1
P
)

IAlp = W lp gy = ( f ILf (T)IIZd,u(T))

for 1 < p < oo and with finite norm

o = o0 = inf su e,
Il = Wl = inf | sup 1f@lle

=Y 1eT\N

for p = co. In this context, Hc = L([0, 1]).
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Remark 2.2. [176] generalizes the definition of local stationary processes, initially proposed
by [56], to the functional setting in the frequency domain. This extension is made under the following
assumptions:

(Al) (i) {€i}icz is a weakly stationary white noise process taking values in H with a spectral

representation given by
T
gj= f e“dz,,
/4

where Z,, is a 2n-periodic orthogonal increment process taking values in He;
(ii) the functional process X;, withi =1,...,n and n € N is given by

X = f ei“’jﬂ%‘ldzw ae. inH
with the transfer operator ﬂi"a)) € B, and an orthogonal increment process Z,,.
(A2) There exists A : [0,1] X [-m, 7] — S, (Hc) with A,. € B, and A, , being continuous in u such
that for alln e N
sup||A® - A, || =o0(%).
w,t he nup n
They have proved in [176, Proposition 2.2] that:

Proposition 2.3. Suppose that assumptions (Al) and (A2) hold. Then, {X;,} is a locally stationary
process in H.

In our investigation of non-stationary processes characterized by gradually evolving dynamics over
time, exhibiting behaviors reminiscent of stationarity at a localized scale, we draw upon an extensive
body of research documented in notable references such as [57, 105, 115, 131, 141, 185]. As an
illustrative example, let a : [0,1] — R be a continuous function, and consider a sequence of

independent and identically distributed random variables (&;);cy- The stochastic process
Xin = a(i/n) + &, where i € {1,...,n} and n € N, may demonstrate “almost” stationary behavior for i
in proximity to a specific point i* (e.g., i* in {1,...,n}), under the condition that a (i*/n) =~ a(i/n).

However, it is important to note that this process does not strictly adhere to weak stationarity. To
capture this gradual transition, the concept of local stationarity was introduced by [57], wherein the
spectral representation of the underlying stochastic process is locally approximated. Within our
framework, the process {X;,} can be stochastically approximated by a stationary process {X;;’l)} around
each rescaled time point u, particularly for those values of i where i/n — u is small. Given our
emphasis on functional data, we define a functional time series as locally stationary if it can be
approximated locally by a stationary functional time series. The subsequent section will present a
standard definition of local stationarity, building upon the foundation laid out in [176].

Theorem 2.4. Consider a white noise process {€;};cy in LIZL,(Q, P) where H = L*([0, 1]), and let {Xin}
be a sequence of functional autoregressive processes defined as

Z Bﬁ,j (X,'_j,n) = Cﬁ (&),
=0
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with B, j = By ;,C, = Cy foru <0, and B, ; = B, j,C, = C, for u > 1. If the process satisfies, for all
u€0,1]and p =2 or p = oo, the conditions

(i) C, is an invertible element of S (H);
(i) Bij € S py(H) for j=1,....mwith ¥, ||B.|, < 1 and B.o = In;
(iii) the mappingsu v B, ;for j=1,...,mandu w C, are continuous in u € [0, 1] and differentiable
on u € (0, 1) with bounded derivatives,

then the process {X;,} satisfies (A2) with

and, consequently, is locally stationary.

2.4. Small-ball probability

Handling infinite-dimensional spaces presents a notable technical hurdle due to the absence of a
universal reference measure, such as the Lebesgue measure. Consequently, defining a density function
for the functional variable becomes elusive. To surmount this challenge, we leverage the concept of
“small-ball probability”. In particular, we address the concentration of the probability measure for the
functional variable within a small-ball using the function ¢.(-). For a fixed x € H and every r > 0, the
function ¢, 4(r) is defined as:

P (X € By(x,1)) =t ¢ 9(r) > 0. 2.4)

Here, H is equipped with the semi-metric d(-, ), and By(x, r) represents a ball in H with center x € H
and radius r. Forx = (x1,...,x,) € H"and 6 = (6,,...,0,,) € O™, we define

bua(r) = [ | 0 (-
i=1

Further elucidation and examples concerning small-ball probability can be explored in Remark 3.6.

2.5. Mixing conditions

Statistical observations commonly exhibit a certain degree of dependence rather than complete
independence. The concept of mixing serves as a quantitative measure of the proximity of a sequence
of random variables to independence, facilitating the extension of traditional results applicable to
independent sequences to sequences that are weakly dependent or mixing. The development of the
theory of mixing conditions has emerged from the recognition that time series manifest “asymptotic
independence” properties, thereby facilitating their analysis and statistical inference. Consider a
probability space (Q, ¥, P). Let Z;,,, Z,,, . . . be a sequence of random variables on a probability space
(Q, D, P). For an array {Z;,, : 1 <i < n}, the coeflicients are defined as

Bk) = sup ,B(O'(Zs,,,,l <s<i),0(Zpi+k<s<n) ),

i,n:1<i<n—k
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where o-(Z) represents the o-field generated by Z. The array {Z;,} is considered S-mixing if (k) — O.
It is crucial to note that S-mixing implies a-mixing. Throughout the ensuing discussion, we assume
that the sequence of random elements {(X;,, Y;,),i = 1,...,n;n > 1} is absolutely regular. Remarkably,
Markov chains exhibit S-mixing under the milder Harris recurrence condition, provided the underlying
space is finite [62]. Additional rationale for favoring regular processes over strongly mixing processes
is provided in the concluding remarks (Section 7).

2.6. Kernel estimation

We endeavor to estimate the regression function as denoted in (2.1). The kernel estimator is formally

defined as
Z l—[ {Kl (l/tk - lk/n) (dek(X/;l, Xik,n))} QD(Yi,n)
o, 0: 1) = i ! , (2.5)
$u Uy — lk/l’l de,((xk, Xik,n)
ST« K,
ierm k=1 h

where K;(-) and K,(-) denote one-dimensional kernel functions. Here, let 4 = h, be a bandwidth with
the property that 4 — 0 as n — oo. The function ¢ : Y”" — R is symmetric and measurable,
belonging to a class of functions denoted as .#,,. Importantly, this estimator is a conditional U-statistic
utilizing the sequence of random variables {Y;,, X;,}*_, and the kernel ¢ X K; X K;. The introduction
of such statistics was pioneered by [166]. To investigate the weak convergence of the conditional
empirical process and the conditional U-process within the functional data framework, we introduce
some necessary notations. Consider the class

ﬁm:{go:ym—)R},

which consists of real-valued symmetric measurable functions on Y” with a measurable envelope
function :
F(y) > suple(y)|, for y € Y. (2.6)

(,06?,,,
For kernel functions K (-) and K,(-), as well as a subset S¢; C H, we define the pointwise measurable
class of functions for 1 <m <nand @ = (6,,...,6,):

A" {(xl,.. xm)HnKl(uk_ )Kz(da'( )) (x,u)e?{mx[o,l]m}

hn hi

and

U{< e [ 5 o (24, (x,wewx[o,um}.

6c@™
The conditional U-process indexed by .7, K is defined by

{Gutg,ux.0) = gy ) (770 0.%,0: ) = 10, 0,0 0)| 2.7)

'Qm ! ®

Observing the importance of point-wise measurability in our context, it enables us to state our results
conventionally, adhering to the classical definition of probability, without invoking the abstract notions
of outer probability or outer expectation [178].
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Remark 2.5. The bandwidth h remains consistent across all directions, simplifying the analysis in
cases involving product kernels. Nevertheless, the results can be readily adapted to scenarios with
non-product kernels and varying bandwidths.

Remark 2.6. Our estimator differs from the conventional conditional U-statistics not only in the nature
of the sequence {X;}; but also in the inclusion of a kernel in the time direction. As a result, we attain
smoothness from both the covariate direction (X;,) and the temporal dimension, allowing us to capture
the characteristics of a regression model evolving over time.

2.7. VC-type classes of functions

Examining functional data through asymptotic methods involves delving into concentration
properties elucidated by the concept of small-ball probability. ~When scrutinizing a process
characterized by a set of functions, it becomes imperative to consider additional topological concepts,
including metric entropy and VC-subgraph classes (referred to as “VC”, inspired by Vapnik and
Cervonenkis).

Definition 2.7. Let Sg be a subset of a semi-metric space &. A finite set of points {ey,...,ex} C & is
considered a e-net of Sg for a given € > 0 if:

N
Sg C U B(ej, €).
=1

If N(S¢) is the cardinality of the smallest e-net (i.e., the minimal number of open balls of radius €) in
& needed to cover S, then the Kolmogorov’s entropy (metric entropy) of the set Sg is defined as the
quantity:

lpSs(S) := log Ng(Se).

Kolmogorov introduced the concept of metric entropy, extensively explored in various metric
spaces, as indicated by its name (cf. [112]). Dudley ( [70]) utilized this concept to establish sufficient
conditions for the continuity of Gaussian processes, forming the foundation for significant
generalizations of Donsker’s theorem regarding the weak convergence of the empirical process.
Consider two subsets, By, and Sy, in the semi-metric space H with Kolmogorov’s entropy (for radius
€) denoted as g, (¢) and g, (&), respectively. The Kolmogorov entropy for the subset B4 X Sy of
the semi-metric space H? is given by:

UB,x5,; (&) = Ug, (&) + Ys, ().

Thus, mis,, (€) represents the Kolmogorov entropy of the subset S, in the semi-metric space H™. If
d denotes the semi-metric on H, a semi-metric on 9™ can be defined as:
1 1
dgen (X,2) 1= —dp, (x1,21) + -+ + —dg,, (X, Zm) , (2.8)
m m

forx = (x1,..., %), Z = (21,...,2n) € H™. The choice of the semi-metric is crucial in this type of
analysis, and readers can find insightful discussions on this topic in [78, Chapters 3 and 11].
Furthermore, in this context, we must also address another topological concept: VC-subgraph classes.
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Definition 2.8. A class of subsets C on a set C is called a VC-class if there exists a polynomial P(-)
such that, for every set of N points in C, the class C picks out at most P(N) distinct subsets.

Definition 2.9. A class of functions ¥ is called a VC-subgraph class if the graphs of the functions in
F form a VC-class of sets. In other words, if we define the subgraph of a real-valued function f on S
as the following subset Gy on S X R:

Gr={(s5,1): 0t < f(s) or f(s)<t<0}

the class {Gy : f € F} is a VC-class of sets on S X R. Informally, a VC-class of functions is
characterized by having a polynomial covering number (the minimal number of required functions to
make a covering on the entire class of functions).

A VC-class of functions .# with an envelope function F has the following entropy property. For a
given 1 < g < oo, there exist constants a and b such that:

Fa)l/a b
N(e, 7, lIL,0) < a(%) , (2.9

for any € > 0 and each probability measure such that QF? < oco. Several references provide sufficient
conditions under which (2.9) holds, such as [144, Lemma 22], [72, §4.7.], [178, Theorem 2.6.7], [114,
§9.1], [65, §3.2], [33,34,45], offering further discussions.

2.8. Assumptions
For the reader’s convenience, we have compiled the essential assumptions as follows:
Assumption 1. [Model and distribution assumptions]

i) The process {X;,} is locally stationary and satisfies that for each time point u € [0, 1], there exists
a stationary process {Xf”)} such that

)5

i
- —u
n

1
+ —) U as.,

n in

with E[(U{Y] < C for some p > 0, C < 0.
ii) Let B(x, h) be a ball centered at x € ¢ with radius h, defined in Section 2.4, and let c¢; < C, be
positive constants. For allu € [0, 11",

0 < cad"(h) fi(x) S P((XI,.... X)) € By(x, 1)) =t Fyg(h:X) < Cad"(h) fi(x),  (2.10)

where ¢(0) = 0 and ¢(u) is absolutely continuous in a neighborhood of the origin, fi(x) is a
non-negative functional in x € 7€, and

By(x, 1) = | | Bo(xi, ).
i=1
iii) There exist constants Cy > 0 and &y > 0 such that for any 0 < & < &,

f Pp(u)du > Cyed(e). (2.11)
0
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iv) Let y(h,) = 0as h — 0, and f>(X) is a non-negative functional in X := (xq, ..., X,) € H"

SUp P (((Xiys - - Xipo)s Ko > Xiy ) € Bo(X, 1) X Bo(x, 1)) < 4" () fo(X).

iel
We will also assume that the ratio y(h,)/¢*(h,) is bounded.

Assumption 2. [Kernel assumptions]|

i) K\(-) is a symmetric kernel around zero, bounded, and possesses compact support, i.e., K;(v) = 0
forall | v |> Cy for some C| < oo. Additionally,

le(z)dz =1

IKi(vi) = Ki(»)] £ Calvy — v,

and K,(-) is Lipschitz continuous, i.e.,

for some C, < oo and all vi,v, € R.

ii) The kernel K,(-) is non-negative, bounded, and has a compact support in [0, 1], such that 0 <
K>(0) and K,(1) = 0. Alternatively, K,(-) can be viewed as an asymmetrical triangular kernel,
i.e., Ko(x) = (1 = x)Lyepo.1y), and K (-) is Lipschitz continuous, i.e.,

IK>(vi) — Ka(v2)] < Calvy — vl

Moreover, K (v) = dK,(v)/dv exists on [0, 11, and for two real constants —co < C} < C, <0, we
have:
C, < Ki(v) < (.

Assumption 3. [Smoothness]

i) r'™(u, x) is twice continuously partially differentiable with respect to w. We also assume that

sup  |r (i, x,60) = F(ua, 2, 0)| < (dyen (%, 2)" + 1y — o) (2.12)

u,u€[0,1]”

forsome c,, >0, >0and X = (x1,...,%X,),Z=(21,...,2m) € H™.
ii) o : [0,1] X H™ — R is bounded by some constant C, < oo from above and by some constant
cs > 0 from below, that is, for all u and X,

0<cy <0(0,u,x) <C, < 0.

iii) o(-,-,-) is Lipschitz continuous with respect to .
V) SUPyeio,1pm SUP .y m(x2)<:107(6, W, X) — 07(6, 0, 2)| = o(1) as € — 0.

Let W; ,, be an array of one-dimensional random variables. In this study, this array will be equal to
Wi, =10r W ,,, = &ip.

Assumption 4. [Mixing]
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i) For { > 2 and C < oo, we have
sup E|W; ,[° < C,

xXeH™
and

sup B ||, | X;, = x| < C.
xeH™

ii) The B-mixing coefficients of the array {X;,, 3, ,} satisfy p(k) < Ak™ for some A > 0 and y > 2.
Additionally, we assume that 6 + 1 < y(1 — %)for somev >2and 6 > 1 — % along with the
condition

hZ(l/\a)—l [¢(hn)an + Z kﬁ(ﬁ(k))]—% N 0’ (213)

k=a,

as n — oo, where a, = [(qﬁ(h,,))‘(l‘%)/‘s] and for all a > 0.

iii) For some {, > 0, as n — oo, we have

(log n) 7+ +o(y+1)

—m+y+1 _1- 7+1 m+7+1 7m+y+l

n o’ ¢(hy) "2
iv) Both nh>"*" and nh™¢(h,)" tend to infinity as n goes to infinity.

— 0.

Assumption 5. [Blocking assumptions] There exists a sequence of positive integers {v,} satisfying

v, — 00, v, = o(\/nh¢(h,)) and h¢(h ﬁ(v,,) — ooasn — oo,

Assumption 6. [Class of functions assumptions]
The classes of functions 8 and .%,, are such that :

i) The class of functions %, is bounded and its envelope function satisfies for some 0 < M < oo :
F(y) < M, yey".

ii) The class of functions F#,8y is supposed to be of VC-type with envelope function previously
defined. Hence, there are two finite constants b and v such that:

m bIFK"ILy0)\
N (€, 8, |l - lly0) < (fﬂg)

for any €,v > 0 and each probability measure such that Q(F)* < co.
iii) The class of functions %, is unbounded and its envelope function satisfies for some { > 2 :

0, 1= sup E(Fg(Y) | X = x) < oo, 8" cCH"™.

m
xeS7,

iv) The metric entropy of the class F & satisfies, for some 1 < < oo :
‘fu%Mmﬁ%mmwm<m
0
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2.9. Comments on the assumptions

To establish the groundwork for our analysis, we draw inspiration from seminal works such
as [78,87,116,133,179]. Our assumptions play a pivotal role in shaping the properties of the random
processes under consideration. Starting with Assumption 1, we formalize the local stationarity
property of X; and introduce conditions related to the distribution behavior of the variables.
Equation (2.10) governs the small-ball probability around zero, representing the standard condition
for small-ball probability. This equation implies that the small-ball probability can be approximated
as the product of two independent functions ¢™(-) and f;(-). For instance, when m = 1, references
such as [135] (diffusion process), [25] (Gaussian measure), [122] (general Gaussian process),
and [133] (strongly mixing processes) provide context. The function ¢(-) can take various forms, such
as ¢(e) = €’ exp(—C/€") for Ornstein-Uhlenbeck and general diffusion processes. Further examples
and discussions can be found in [81] and Remark 3.6. Assumption 1 iv) details the behavior of the
joint distribution near the origin, aligning with assumptions made by [87] in the context of density
estimation for functional data. Assumption 2 encompasses the kernel assumptions commonly used in
nonparametric functional estimation. Notably, the Parzen symmetric kernel is inadequate due to the
positivity of the random process D; = d(x, X;); thus, K,(-) with support [0, 1] is considered. The
kernel K,(-) is a symmetric type II kernel belonging to the family of continuous kernels (triangle,
quadratic, etc.). Compact support on [0, 1] is assumed for the kernels to derive an expression for the
asymptotic variance. The Lipschitz-type assumptions on K,(-) and o(-,-) (Assumption 2ii) and
Assumption 3iii)) are crucial for obtaining the convergence rate. Assumption 3 restricts the growth of
r™(-) and o(-) and places bounds on these functions to prevent rapid growth outside a large bound. It
is tailored to ensure the convergence rate and forms an integral part of the overall analysis.
Assumption 4 ii) is a standard mixing condition necessary for establishing asymptotic normality and
the asymptotic negligibility of the bias, consistent with [133]. The variables 2;,, are not necessarily
bounded, and there is a tradeoff between the decay of the mixing condition and the order { of the
moment SUpyqm E|W; .| < C. Assumption 4 iii) and iv) are technical conditions crucial for obtaining
the desired results, addressing the uniform convergence rate and the bias and convergence rate of the
general estimator. Assumption 6 asserts that the class of functions satisfies certain entropy conditions.
Part ii) and 1ii) are interconnected, with the former stating that the class is bounded. However, in the
context of proving the functional central limit theorem for conditional U-processes indexed by an
unbounded class of functions, part iii) supersedes the first one. Assumption 6 ii) ensures that ¥ is VC
type with characteristics b and n for the envelope F«x™. Since F € L*(P) by Assumption 6, Dudley’s
criterion on the sample continuity of Gaussian processes implies that the function class ¥ is
P-pre-Gaussian. These general assumptions, inclusive of the mentioned conditions, provide adequate
flexibility given the diverse components in our main results. They encapsulate and leverage the
topological structure of functional variables, the probability measure within the functional space, the
concept of measurability applied to the function class, and the uniformity regulated by entropy
properties.

Remark 2.10. It is worth noting that Assumption 6 iii) can be replaced by more general hypotheses
regarding the moments of Y, as discussed in [65]. The alternative assumption takes the following form:

iii)” We introduce {M(x) : x > 0} as a non-negative continuous function, increasing on [0, o), and
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such that, for some s > 2, eventually as x — oo:
M) L M) T (2.14)

For each t > M(0), we define M™(t) > 0 such that M(M™(t)) = t. Additionally, we assume
that:
EM(FY)D) < oo.

The following choices for M(-) are particularly interesting:

(i) M(x) = x* for some & > 2;
(it) M(x) = exp(sx) for some s > 0.

These alternative formulations provide broader flexibility in defining the moments of Y, accommodating
various scenarios and enhancing the applicability of the analysis.

3. Uniform convergence rates for kernel estimators

Before expressing the asymptotic behavior of our estimator represented in (2.5), we will generalize
the study to a U-statistic estimator defined by:

— _ (n—m)! - u, — ix/n do,(Xs Xip.n)
lﬁ(u, X, 0’ QD) - m ; 1;[ {Kl ( hn )KZ ( hn )} %i,go,na (31)

where W, , is an array of one-dimensional random variables. In this study, we use the results with
Wi,,=1and Wi, = &;,.

3.1. Hoeffding’s decomposition
Note that ’;E(u, X, 0, @) 1s a classical U-statistic with a kernel depending on n. We define

1 u, —k/n
&= ]TlKl( £ I ),

S do, (X, Xicn)
H(Zl’-- 7Zm) = KZ( - : )QBi,cp,n’
L=,

thus, the U-statistic in (3.1) can be viewed as a weighted U-statistic of degree m:

_ —m)!
G0 =""T0"N g £ HE,, .2, (62)
n: el

We can write Hoeffding’s decomposition in this case as in [94]. If we do not assume symmetry for
W; ., or H, we must define:

e The expectation of H(Z;,,...,Z; ):

Xks Vk,n)

. =1 dg, (
9G) :=EH(Z,,...,Z,) = f Wi | | K( k )dPi(zi). (3.3)
o Loy ™2\ h,

AIMS Mathematics Volume 9, Issue 6, 14807-14898.



14823

e Forall £ € {1,...,m} the position of the argument, construct the function r, such that:

ﬂg(z; Zl’ AR ’Zm_l) :: (Zl’ AR 9Z€—la Z’ Z€9 AR ’Zm_l)'

e Define:

4 . .
H( )(Z; arRER aZm—l) = H{ﬂ'g(z, FSERER »Zm—l)}
IO iy, sipy) = Ha(isiy, o yi1))

Hence, the first-order expansion of H(-) will be seen as:

HOG) = EHO%Z,...,Z 1))

m—1
1 dy, (Xx, Vi) 1 dg,(xi, V)
= W il m— K X K .
f (Lrb=1i ..., DD‘P(hn) 2( h )X¢(hn) 2( I )

k#i

P(dvl, ey dVg_l, dVg, e ,de_l)

1 dg (X, X) f 1 dg,(Xes Vi)
= K : Xwx | W e K
o(hy) 2( hy ) Y (bl e ”D¢(hn> 7 h,

ki

P(dvy,...,dve_1,dve,...,dv,_1),

with P as the underlying probability measure, and define
FO = Y G G 6 (HOQ) =90
=1

Then, the first-order projection can be defined as:

— L (I’l - m)' ()
H],i(“’ X’ 0’ ‘10) T (n _ 1)! Z f;"il’--wimfl’

1" 1(=i)

where
I (=) =={1 <i; <...<iy <n and i;#iforall je{I,....m-1}}.

For the remainder terms, we denote by i\i; := (i1,..., {1, 1+1,...,0n) and for £ € {1, ..., m}, let

m

Ha(z) := H(z) - ) H{)

i\
=1

(ze) + (m — D)),

where
HO (z)) =B{H(Zy, ..., Zt-1, 2 Zes1Zom-1)),

i\i

defined in (3.7), this projection derives us to the following remainder term:

(n

—m)!
n)’zl) Zfil - &, Hoi(2).

Uoi(0,x, 0, @) = (
ierm

|

(3.4)

(3.5)
(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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Finally, using Eqs (3.9) and (3.11), and under conditions that :

E{H,.(u,X,6,¢)} =0, (3.12)
E{H»i(Z | Zy)} = 0 as., (3.13)

we get the [99] decomposition:

— —

‘//(u, X, 0a (10) - E{‘ﬁ(“, X, 0’ ‘10)}

I & —~ —
- ZHl,i(u’ X,0,0) + Y0, X, 6,0
n i=1

YW, X, 0, ) + Yoi(u, X, 0, ). (3.14)

For more details, the interested reader can refer to [94, Lemma 2.2].

3.2. Uniform convergence rate
We commence by presenting the following general proposition.

Proposition 3.1. Let .7,R¢ denote a measurable VC-subgraph class of functions, adhering to
Assumption 6. Suppose that Assumptions 1-4 are satisfied. In such case, the ensuing result holds:

—~ —~ logn
sup sup sup sup |¢(u, X, ¢) — E[y(u,x,80, cp)]| =0\ T gm .
FnRpy 0€0™ xeH™ uel0,1]" nhy @™ ()

The proof of Proposition 3.1 is deferred to Section 4.1.

Remark 3.2. Elaborating on Proposition 3.1, we can delve into the uniform convergence rate of the
kernel estimator 7,(1'")((,0, W, X, 0;h,). It is crucial to emphasize that when m = 1 and the function ¢
remains constant, the outcomes align with the pointwise convergence rate of the regression function
for a strictly stationary functional time series, as discussed in [78].

The subsequent theorem presents the uniform convergence rate of the kernel estimator (2.5).

Theorem 3.3. Let 7,8y be a measurable VC-subgraph class of functions complying with
Assumption 6. Suppose Assumptions 1-4 are fulfilled. Then, we have:

sup sup sup sup rf;’”)(ga, wx,0;h,) — r™ (¢,0,u, x)|
Fus 0cO™ xeH™ ue[C1h,1-Ch]"

logn 5
-0 h mAQ ) 3.15
P( \ kg ] 1)

The proof of Theorem 3.15 is postponed until Section 4.1.

Remark 3.4. It is possible to consider the setting of ® = ©,, and assume that
card(®,) =n* with a>0

and
YOe®, (0-00,0—00)"?<Cqb,,

where b, tends to zero, as in [145].
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Remark 3.5. In contrast to Theorem 4.2 in [179] and akin to Theorem 3.1 in [116], our formulation
excludes the bias term arising from the approximation error of X;, by Xl.(”). Under our assumptions,
the approximation error is negligibly small compared to R,

Remark 3.6. In nonparametric problems, the infinite dimensionality of the target function is typically
determined by the smoothness condition, specifically in Assumptions 2 i) and 3 i). This primarily affects
the bias component of the convergence rates, represented by terms like O (hﬁm/\") in Theorem 3.3. Other
terms in the convergence rates stem directly from dispersion effects and are inherently linked to the
concentration properties of the probability measure of the variable X. These terms can be expressed as

logn
or [ \ nhwm(hn)] ’

where small-ball probabilities are quantified and controlled by the mean of the function ¢(-) defined
in (2.4). The rate of convergence is influenced by the concentration of the measure of the process X;
less concentration leads to a slower rate of convergence. Unfortunately, solutions to P (X € B(x, r)) are
known for very few random variables (or processes) X, even when x = 0. In certain functional spaces,
considering x # 0 introduces considerable difficulties that might not be surmountable. Authors often
focus on Gaussian random elements, and for a comprehensive overview of main results on small-ball
probability, refer to [122]. In many scenarios, it is convenient to assume that

P(X € B(x,r) ~y(x)¢p(r) asr— 0, (3.16)

where, to ensure the identifiability of the decomposition, a normalizing restriction is necessary, such
as

E[y(X)] = L.

The factorization (3.16) is not a stringent assumption, it holds under appropriate hypotheses (see,
for instance, [27, 122]). The advantage of assuming (3.16) is two-fold. Firstly, the function y(x)
can be viewed as a surrogate density of the functional random element X and can be leveraged in
various contexts. The interested reader can explore its potential in works like [26, 83, 87], where
the surrogate density is estimated and used to define a notion of mode or for classification purposes.
Second, the function ¢(h,) acts as the volumetric term and can be employed to assess the complexity of
the probability law of the process X (see [28]). In the special multi-(but finite)-dimensional scenario
where X € RY, the relation (2.4) is satisfied under standard assumptions with ¢(h,) ~ C,h¢, commonly
known as the curse of dimensionality (see [77,80]). Here, we would instead refer to it as the curse of
infinite dimension, specifically highlighting the effects of small-ball probabilities. The inherent nature
of these probability effects involving small-balls becomes apparent within our infinite-dimensional
Jramework. The remainder of this remark will focus on applying our approach to various continuous-
time processes, where the probabilities associated with small-balls have already been identified. For
more details on the following examples, refer to [80].

(i) Consider the space C([0, 1],R) equipped with the supremum norm, and its associated Cameron-
Martin space

F = C([0, 1], )M,
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Let’s examine the fractional Brownian motion (™™ with parameter 5,0 < § < 2. small-ball

probabilities in this context have been extensively studied. According to [122, Theorems 3.1
and 4.6], we have

h2/8

Vxo €F, Cjcoeh_z/8 < P(”{FBM - xo”m < h) <Cye

Notably, our crucial relation (2.4) is trivially satisfied for the fractional Brownian motion by
choosing the function ¢(-) in the form

SPM(h,) ~ Ce

X

(ii) Consider a centered Gaussian process {°F = { PO<t< 1}. This process can be expressed
using the Karhunen-Loéve decomposition as follows:

= AR,
i=1

where A; are the eigenvalues of the covariance operator of S, f; are the associated orthonormal
eigenfunctions, and W; are independent standard normal real random variables. For any fixed
k € N*, let T1; be the orthogonal projection onto the subspace spanned by the eigenfunctions
{fi,..., fx}. Define a semi-metric by

1
d*(x,y) = fo [MT(x - Y] dt.

Using the Karhunen-Loéve expansion, we obtain
k k

P = Y (VT - o) = 22

i=1 =1

1 1

where x; = fol x(0) fi(t)dt, and Z; are the components of the vector Z = (Z,, ..., Z;), exhibiting the
Euclidean norm structure on R*. Due to the independence of Z; with densities with respect to the
Lebesgue measure, we have
P(d* (£, x) < h) ~ C.h".
(iii) Consider the space C([0, 1],R) of continuous real-valued functions on [0, 1], equipped with the

supremum norm denoted by || - ||l.. Let PV be the Wiener measure on C([0, 1], R), and define the
Cameron-Martin space of C([0, 1],R) as

F = C([0, 11, )™M,

Consider the Ornstein-Uhlenbeck process {°V with ¥ = 0 and

1
dzOY = dw, — Eg,oU, Ve,0<t< 1.
Wiener measures for small centered balls are known to be of the form [ [25], p. 187]:

4
P (el < ) ~ ~e .

AIMS Mathematics Volume 9, Issue 6, 14807-14898.



14827

By extending this result to any small-ball probability measure through the Cameron-Martin space
characterization, we have

2012
VxoeF, PV (llx = Xollsup < h) ~ C,e ™3,

Since the Ornstein-Uhlenbeck process has a probability measure absolutely continuous with
respect to PV, we can directly state

Vxoe F. P({OY € B(xo. ) ~ Cope™ /57,

Our crucial relation (2.4) is trivially satisfied for this Ornstein-Uhlenbeck process by choosing
the function ¢,(-) in the form
¢OU(hn) N Cxe—rrz/Shz.

4. Weak convergence for kernel estimators

In this section, we are interested in studying the weak convergence of the conditional U-processes
under absolute regular observations. Observe that

7)(1m)(‘)0’ u, X, 0’ hn) - r(m)(‘p’ 07 u, X)

1 - - —
= ————— (g1(0, u,x) +22(0,u,x) — " (p, X, w71 (9, 6, u, x))
ri(e, 0,u,x)
1 ~ —B
= - 4.1
PR (210, 0,%) + 20, u,%), @.1)
where
~ _ (n—m)! - up — ix/n dg, (xi, Xi.n)
— (n-m! U — ix/n dy, (xie, Xipn)
0’ ’ = K : SlBi no
gl( u X) !hm¢m(h ) ; lk_ll{ ( ) 2( hn 05
— (n—m)! up — ix/n do, (X, Xiy n)
6 = K. A X 6.
0NN = g, )Z, lk—l[{ ( ) 2( I

Under the same assumption in Theorem 3.3, we will show in the next theorem that

1
Var(g®(0,u,x) = O(Wﬂ(hn))

and
1/r1(p, 0,u,x) = Ox(1).

Then, we have

N i 21(6,u,x) !
’l;}(1 )(90, w,x;h,) — 7 )(90, 0,u,x) = % + B,(0,u,X) + op W ’
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where
B,(6,u,x) = E[g%(0,u,x)]/E[Fi(¢, 6,u,x)],

. . . o 0, s . . ’
is the “bias” term and % is the “variance” term. Let us define, for ¢, ¢, € F,,

(g1, ¢2) = lim ”hm¢ifgn(hn)E((ffl'7l)(901 0, X; hy,) — (1,0, X)
T (g2, 0, X; hy) — 1™ (02, 0, X)). 4.2)

In the following, we would set K,(+) as the asymmetrical triangle kernel, that is, K>(x) = (1 — x)Lef0.17)
to simplify the proof. The main results of this section are given in the following theorems.

Theorem 4.1. Let .7,8¢ be a measurable VC-subgraph class of functions, and assume that all the
assumptions of Section 2.8 are satisfied for both cases W;,, = 1 and W, ,,, = &;,. Then, as n — oo,
the U-process

nhg o' (hy) (7" (9,0, %, 0 1) = 1 (0,6, u, %) = B, (6, u, %))

converges to a Gaussian process ®, over F,8¢, whose sample paths are bounded and informally
continuous with respect to the || - ||l,-norm, with the covariance function given in (4.2).

The proof of Theorem 4.2 is postponed until Section 4.1.

To examine the weak convergence of our estimator using the standard procedure, involving
Hoeftfding decomposition, finite-dimensional convergence, and equicontinuity, we can turn to the
following theorem. In the proof of this theorem, we express the conditional U-process in terms of a
U-process based on a stationary sequence, illustrating its convergence to a Gaussian process. This
convergence is established in the distribution sense within [*°(%,8%), the space of bounded real
functions on (%,,Rg, as defined in [100]. For further details, refer to [6,71], or [178].

Theorem 4.2. Assume 7,8y is a measurable VC-subgraph class of functions, and all assumptions in

Section 2.8 are satisfied. If in addition n¢i/ 0 ()R T2CmAD 5 () gs n — oo, then we have

Y () (7, u, %, 6: 1) = (0, 6, 0,%))

converges in law to a Gaussian process {G(gb) VS ﬂmﬁg} in I°(F,88) that admits a version with
uniformly bounded and uniformly continuous paths with respect to the || - ||,—norm, and its covariance
function is given in (4.2).

The proof of Theorem 4.2 is deferred to Section 8.

Remark 4.3. 7o eliminate the bias term, it is necessary to have nqSi/;" (hy)h™+2@mA) 5 () gs n — oo,
As a consequence, the last condition, along with nhmqbi/;" (hy) — oo, holds as long as h, = n~¢ and

— Jync _ 1 1 1
dxo(hy) = B, where 0 < ¢ < 1 pom and T < &< o

Remark 4.4. The validity of the results remains intact even when replacing the entropy condition with
the bracketing condition. In particular, the existence of constants Cy > 0 and vy > 0 ensures the
specified inequality, as described in the remark. In our framework, the choice of the kernel function is
flexible, with minimal restrictions, as long as some mild conditions are satisfied. However, the selection
of the bandwidth introduces challenges, and it is crucial for achieving a favorable rate of consistency.
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The bandwidth choice significantly impacts the bias and variance trade-off in the estimator. Therefore,
adopting a bandwidth that adjusts based on specific criteria, available data, and location is more
suitable. The discussion on this topic can be found in [44,46, 132]. Establishing uniform-in-bandwidth
central limit theorems in our context would be particularly interesting.

Remark 4.5. We can consider the scenario where ® = ©,, where ©, satisfies the conditions
card (®,) = n* with @ > 0, and for every 6 € ®,, we have

(6 — 60,0 — 6p)'"* < C1b,,

where b, converges to zero, as discussed in [145].

The functional directions set, ®,, is constructed following a similar approach to [2,145], as outlined
below:

(i) Each direction 6 € ©,, is derived from a d,-dimensional space formed by B-spline basis functions,

denoted by {e|(-), ..., e, ()}. Thus, we express directions as:
dy
0() = Z aje,(-) where (ay,... ag) €V, (4.3)

=1
(ii) The set of coefficient vectors in (4.3), denoted by YV, is generated through the following steps:

Step 1. For each (By,...,B4) € C%, where C = {ci,...,c;} C R’ represents a set of J
'seed-coefficients’, construct the initial functional direction as

dy
Onie () = ) Bie().
Jj=1

Step 2. For each 6,,; from Step 1 satisfying 0;,; (ty) > 0, where t, denotes a fixed value in the domain
Of Ginit (+), compute by , Oinir ) and form (a/l, cees CVdn) =B, ... ,,Bd,l) [ {Binit » Oinit >1/2-

Step 3. Define V as the collection of vectors (a, . .., a4,) obtained in Step 2. Consequently, the final
set of permissible functional directions is represented as

dy
0, = {9(-) = Y ae()i(an,...,aq) € fv}.
j=1

5. Applications

While only the subsequent examples will be provided in this section, they serve as prototypes for a
range of problems that can be explored in a comparable manner.
5.1. Discrimination

Now, we apply the results to the discrimination problem described in Section 3 of [168], also
referring to [167]. We will employ similar notation and settings. Let ¢(-) be any function taking at
most finitely many values, say 1,..., M. The sets

Aj =0 m) o0 ym) = Y 1S <M,
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then yield a partition of the feature space. Predicting the value of ¢(Yi,...,Y,,) is tantamount to
predicting the set in the partition to which (Y1, ..., ¥,,) belongs. For any discrimination rule g, we have
M .
1
P(g(X,0) = ¢(Y)) < Z f max M/ (-, x, 0)dP(x),
Y ixg(=) n

where

fmj(%,x, 0) = P(e(Yi) = j | (X, 0) = (x,0)), xeH".

The above inequality becomes equality if
®o(x, 0) = arg max imj(l,x, 0).
I<jsM~— 'n
®¢(-) is called the Bayes rule, and the pertaining probability of error
L"=1-P(6GX,0) =¢p(Y)=1- E{max Emj(l,x, 0)}
I<jsM  'n

is called the Bayes risk. Each of the above unknown functions 9t/’s can be consistently estimated by
one of the methods discussed in the preceding sections. Let, for 1 < j < M,

D tie.. v =i ] {Kl (uk —hik/n) %, (dgk(xl,;,x,-k,,,))}

iel” k=1

Z ﬁ {K1 (Mk - ik/n) K (dé)k(xkaXik,n))}
iel)! k=1 hn o

M) (u, x, ) =

Set

®,(x,0) = arg 1%3)1%4 ﬂﬁﬁ(%, X, 0).

Let us introduce
L, = P(6,(X, ) # ¢(Y)).

Then, one can show that the discrimination rule ®,(-) is asymptotically Bayes’ risk consistent
L,—L"

This follows from the apparent relation:

|L' - L |< 2B | max | M(2,X,0) - (=, X, 8) ||.
n n

1<jsM
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5.2. Metric learning

Metric learning, a field that has garnered significant attention in recent years, revolves around
adapting the metric to the underlying data. [Extensive discussions on metric learning and its
applications are available in [19,54]. This concept has proven valuable in diverse domains, including
computer vision, information retrieval, and bioinformatics. To demonstrate the practicality of metric
learning, we delve into the metric learning problem for supervised classification outlined in [54].
Consider independent copies (X1, Y1),...,(X,, Y,) of a 7 x Y-valued random couple (X, Y), where
J is a feature space, and Y = {1,...,C} (with C > 2), representing a finite set of labels. Let D be a
set of distance measures D : 77 X ¢ — R,. In this context, the objective of metric learning is to find
a metric under which pairs of points with the same label are close to each other, while those with
different labels are far apart. The natural way to define the risk of a metric D is given by:

RD)=E[¢((1 -D(X.X) (2 Ly-yy - D], 5.1)

where ¢(u) is a convex loss function upper-bounding the indicator function 1{u > 0}, for instance, the
hinge loss ¢(u) = max(0, 1 — u). To estimate R(D), we consider the natural empirical estimator:

2
RD)= oy D, (DX X)) =1)- (2 Loy - 1)), (52)

1<i<j<n

which is a one-sample U-statistic of degree two with a kernel given by:

ep (%), (¢, ) = ¢ ((D(x,x) = 1) (2 Lyyeyy — 1)).

The convergence to (5.1) of a minimizer of (5.2) has been investigated within the frameworks of
algorithmic stability [107], algorithmic robustness [18], and the theory of U-processes under suitable
regularization [50].
5.3. Kendall rank correlation coefficient

To test the independence of one-dimensional random variables Y} and Y», [110] proposed a method

based on the U-statistic K,, with the kernel function :

@ ((s1,11), (52, 12)) = Li(s,=s)t2-1)>0) = Lis2=s1)(t2=11)<0} - (5.3)

Its rejection on the region is of the form { Vnk, > y}. In this example, we consider a multivariate case.
To test the conditional independence of &,17 : Y = (&€, 1) given X, we propose a method based on the
conditional U-statistic :

2 —1i d, aXi n
Z‘:D(Yipyiz)l—[ {Kl (—uk h:k/n)KZ( ek(xzn - ))}
iel? k=1

2 . ’
u; — lk/l’l dé)k(xk’ Xik,n)
e () ()

e k=1

2
T2(p,u,x) =
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where x = (x1,x;) € I ¢ R? and ¢(-) is Kendall’s kernel (5.3). Suppose that & and 5 are d; and d,-
dimensional random vectors respectively and d; + d, = d. Furthermore, suppose that Yy,...,Y, are
observations of (£, i7), we are interested in testing :

Hy : ¢ and n are conditionally independent given X. vs H, : Hy is not true. 5.4)

Let a = (aj,a,) € R¢such as |ja]] = 1 and a, € R%,a, € R®, and F(-),G(:) be the distribution
functions of & and n, respectively. Suppose F*(-) and G*(-) to be continuous for any unit vector
a = (a;,a,) where F1(y) = P (alT.f;‘ < t) and G*(r) = P(agq < t) and a] means the transpose of the
vector a;,1 < i < 2. Forn = 2, let YV = ({;‘“),q“)) and Y® = (§<2>,q<2>) such as ¢? € R% and
n® e R® fori=1,2,and:

o (Y“), Y(z)) ) ((af.f,—‘“), a;n(l)) , (alT.f(Z), a;na))) _
An application of Theorem 3.3 gives

[P w,x) — rP u,x)| — 0, as. (5.5)

5.4. Conditional U-statistics for censored data

Consider a triple (Y, C, X) of random variables defined in R X R X . Here, Y is the variable
of interest, C is a censoring variable, and X is a concomitant variable. Throughout, we work with
a sample {(Y;, C;, Xi)1<i<n} of independent and identically distributed replication of (¥,C,X), n > 1.
Actually, in the right censorship model, the pairs (Y;, C;), 1 < i < n, are not directly observed, and the
corresponding information is given by Z; := min{Y;, C;} and A; := 1{Y; < C;}, 1 < i < n. Accordingly,
the observed sample is

D, ={Z,AN,X),i=1,...,nhL

For example, survival data in clinical trials or failure time data in reliability studies are often subject to
such censoring. To be more specific, many statistical experiments result in incomplete samples, even
under well-controlled conditions. For example, clinical data for surviving most types of diseases are
usually censored by other competing risks to life, which result in death. In the sequel, we impose the
following assumptions upon the distribution of (X, Y). For —co < 1 < o0, set

Fy)=P(Y <t), G(t)=P(C <t), and H(t) =P(Z < 1),

the right-continuous distribution functions of Y, C, and Z, respectively. For any right-continuous
distribution function £ defined on R, denote by

Te=sup{teR: 2@ <1}

the upper point of the corresponding distribution. Now consider a pointwise measurable class .% of
real measurable functions defined on R, and assume that .%# is of VC-type. We recall the regression
function of ¥(Y) evaluated at (X, 0) = (¢, 0), for € .% and t € H, given by

ry, it 0) = EW(Y) | (X, 0) = (1,0)),
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when Y is right-censored. To estimate (¢, -), we make use of the inverse probability of censoring
weighted (I.LP.C.W.) estimators that have recently gained popularity in the censored data literature
(see [51,111]). The key ideas of I.LP.C.W. estimators are as follows. Introduce the real-valued function
®,(-, -) defined on R* by

Dyiy.c) = 0= OO, (56)
Assuming the function G(-) to be known, first note that ®,(Y;, C;) = Ay(Z;)/(1 — G(Z;)) is observed
for every 1 < i < n. Moreover, under the Assumption (I) below:

(I) C and (Y, X) are independent.
We have

K@y 5 16) = B@y(Y, C) | (X, 0) = (1,6)

B 1{Y; < Ci(Zy)
1 -G(Z)

| <Xi’ 0> = (t’ 6)}

YY) B
E{l——G(Y,)E(]l{Yl < C,} | X,-, Yi) | <Xi,9> — (l, Q)}

= Oy, L 10 (5.7)
n

Therefore, any estimate of r"(®,,-), which can be built on fully observed data, turns out to be an
estimate for r(y, -) too. Thanks to this property, most statistical procedures that provide estimates
of the regression function in the uncensored case can be naturally extended to the censored case. For
instance, kernel-type estimates are straightforward to construct. Set, forx € 7,h > 0,1 <i <n,

—(D) . u- ]/l’l dgk(.x, Xj,n) - u-— ]/I’L dgk(x, X]n)
W) (u.x) = K ( A ) K> ( i /; 0 e L e (5.8)
In view of (5.6)—(5.8), whenever G(-) is known, a kernel estimator of (i, -) is given by
y o — AY(Z)
. _ (1)
P, xs hy) = Z w, ;. x)l——G(Z,-)' (5.9)

i=1

The function G(-) is generally unknown and has to be estimated. We will denote by G;(-) the Kaplan-
Meier estimator of the function G(+) [108]. Namely, adopting the conventions

m:1

and 0° = 1 and setting
No(w) = Y 11Z; > u),
P

we have

N
GZ(M)=1—H{%} , for ueR.

i:Zi<u
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Given this notation, we will investigate the following estimator of (i, -)

PO, u, x hy) = waj;” u, A_‘gz(%) (5.10)

refer to [111, 130]. Adopting the convention 0/0 = 0, this quantity is well defined, since G;(Z;) = 1
if and only if Z; = Z,) and A,y = 0, where Z, is the kth ordered statistic associated with the sample
(Zi,...,Z,) fork = 1,...,n and Ay, is the A; corresponding to Z; = Z;. A right-censored version of
an unconditional U-statistic with a kernel of degree m > 1 is introduced by the principle of a mean
preserving reweighting scheme in [60]. Reference [170] has proved almost sure convergence of multi-
sample U-statistics under random censorship and provided application by considering the consistency
of a new class of tests designed for testing equality in distribution. To overcome potential biases
arising from right-censoring of the outcomes and the presence of confounding covariates, [53] proposed
adjustments to the classical U-statistics. [186] proposed a different way in the estimation procedure of
the U-statistic by using a substitution estimator of the conditional kernel given the observed data. We
also refer to [45]. To our best knowledge, the problem of the estimation of the conditional U-statistics
in the censored setting with variable bandwidth was opened up to the present, and it gives the primary
motivation for the study of this section. A natural extension of the function defined in (5.6) is given by

k
n i < Aty Yk A C)

i=1

Dy(Vis ooy Vs Cloe v s Cp) = - (5.11)
| [1-6Ginen
i=1
From this, we have an analogous relation to (5.7) given by
E((DW(Yl,"'7Yk9C1’---’Ck) | (XI’---’X]C) = t)
k
[ [1tvi<cwrinc,...venco
- g|Z& - | (Xy,....X) =t
[ [l1-6aiacy
i=1
Yi,...,
- p| LW g []—[n (¥, < CH (N, X0, (Ve X | | (X, X =
ﬂ{l -Gy 7
i=1
= E@X,....Y) [ Xp,....X) =1). (5.12)
An analogue estimator to (1.1) in the censored case is given by
l o i (Zl 5. ) —
Oy, 0,u,x) = A, @6, u,x), (5.13)
v 2 6@ (-cay
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where, fori = (i,...,i) € I(k,n),
- {K1 (uk —hik/n) K, (dek(xi;l, Xik,n))}
a0 u,x) = —=L - - . (5.14)
Z l_[ {K (Mk - lk/fl) (dek(xk’Xik,n))}
. ZO QTR Tten]
iel” k=1 h
The estimator that we will investigate is given by
Ail"'Ai Zia"'a —
W ux = ) W, Z) g y ) (5.15)

(1-G,Zy) - (1-GyZy) ™

(i1semip)ElX
The main result of this section is given in the following corollary.

Corollary 5.1. Let 7,8y be a measurable VC-subgraph class of functions complying with
Assumption 6. Suppose Assumptions 1-4 are fulfilled. Then we have:

sup sup sup sup |7flk)*(¢, 6,u,x) — (¢, 0,u, x)|
F g 00" xeH™ ue[Ch,1-C1h]™

logn mA
= — + K. A
OP{Vnhzwm(hnf " J 10

This last result is a direct consequence of Theorem 3.3 and the law of iterated logarithm for G;(-)
established in [84] ensures that

[log1
sup |G, — G(1)| = 0[ M] almost surely as n — oo.
I<T n

For more details refer to [34].

5.5. Conditional U-statistics for left truncated and right censored data

Keeping in mind the notation of the preceding section, we now introduce a truncation variable
denoted as L and assume that (L, C) is independent of Y. Let us consider a situation where we have
random vectors (Z;g, A;), with ¢ = 1(L; < Z;). In this section, we aim to define U-statistics
conditional for data that are left truncated and right censored (LTRC), by following ideas from [172]
in the unconditional setting. To achieve this, we propose an extension of the function (5.6) for LTRC

data as follows:

k
YOI ALY A c@ﬂ Liy; < e}l < 73}

ﬁP(l <z <cp)

i=1

CBW(yl’"'9ykall’---’lk’cl7"',ck) =

According to (5.12), we get that

E(@y(Y1,...., Y, Li,...,Li, Cry ..., C) | Xy, .., Xp) = 0)
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:E(l//(Y],...,Yk)l(X],...,Xk):t).

An analog estimator to (1.1) for LTRC data can be expressed as follows:

S(k) 0 E El| elk l!/( 119 ix _(k) 0 5 17
rn (w’ b u’ X) P(Lll < le < Cll) P (le Clk) nl( u X) ( M )

i] ,,,,, lA)EII‘
where Eg? (0,u,x) is defined as in (5.14). As P(L; < Z; < C;) is not known, we need to estimate it. We

introduce Ny(t) = 1(L; < Z; < t,A; = 1) and Ni(r) = 1(L; < Z; <t,A; = 0) as the counting process
corresponding to the variable of interest and the censoring variable. Furthermore, let

N = ) Nio)
i=1
and i
Nt = > NEG@).
i=1

We introduce the risk indicators as R;(f) = 1 (Z; > t > L;) and
R(t) = > Ri(0).
i=1

It is important to note that the risk set R(¢) at t contains the subjects who entered the study before ¢ and
are still under study at 7. Indeed, N{(¢) is a local sub-martingale with the appropriate filtration F,. The
martingale associated with the censoring counting process with filtration F, is given by

ME(t) = N¥Gr) f RGOALG)du, i=1.2....n
0

Here, A.(-) represents the hazard function associated with the censoring variable C under left truncation.
The cumulative hazard function for the censoring variable C is defined as

A1) = f A(uw)du.
0

Denote
Me(0) = )" M),
i=1
Now, we define the sub-distribution function of 7T correspondingto A; = 1 and ¢, = 1 as
S(X) = P(Tl < X,A1€1 = 1)

Let

[ hy(x)
w(t) = f(; Pl <x< Cl)]l(x > 1)dS (x),
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where h1(x) = EQ (T, A1), ..., (T, A) [ (T1,A) = (x,A1). Also, denote 2(r) = P(T 21> Ly).
Then, an estimate for the survival function of the censoring variable C under left truncation, denoted
as K.(+), see [174], can be formulated as follows:

_ AN¢
K1) = ]:[ (1 - Z(t()t))' (5.18)

Similar to the Nelson-Aalen estimator (for instance, see [7]), the estimator for the cumulative hazard
function of the censoring variable C under left truncation is represented as:

—~ T dN(1)
A7) = —. 5.19
(1) j; 70 (5.19)

In both the definitions presented in (5.18) and Q.19), we lnake the assumption that Z(¢) is non-zero
with probability one. The interrelation between K (1) and A.(7) can be expressed as:

Ec(r) = exp [—KC(T)] .

Let ax = inf{t : K(¢) > 0} and bx = sup{r : K(¢) < 1} denote the left and right endpoints of the support.
For LTRC data, as in [187], F(:) is identifiable if ag < aw and bg < by. By Corollary 2.2. [187], for
b < by we readily infer that

sup |K.(7) — K.(7)| = O(\/n~"log log n). (5.20)

awy<t<b

From the above, the estimator (5.17) can be rewritten directly as follows:

Ay ux= )

(i1t ELE

Alll o Aikelhl e Eikw(ziw o 7Zik)
KC (Zil) ot Kc (Zik)

@0, u,x). (5.21)

The last estimator is the conditional version of that studied in [172]. Following the same reasoning of
the Corollary 5.1, one can infer that as n — oo,

Sk
sup sup sup sup |r,(1 "y, 0,u,x) — r'"™(¢, 6, u, X)|
TSl 90" xeH™ ue[Cyh,1-Cih]™

_ log n 2mAa
= op{, / T h ) (5.22)

Various methodologies have been devised to formulate asymptotically optimal bandwidth selection
rules for nonparametric kernel estimators, particularly for the Nadaraya-Watson regression estimator.
Key contributions have been made by [42,92,96, 150]. The proper selection of bandwidth is pivotal,
whether in the standard finite-dimensional case or in the infinite-dimensional framework, to ensure
robust practical performance. Currently, to the best of our knowledge, such investigations do not exist
for addressing a general functional conditional U-statistic. However, an extension of the leave-one-out
cross-validation procedure allows us to define, for any fixed j = (ji,..., jm) € I}

6. The bandwidth selection criterion
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Z l_[ {Kl (uk — lk/n) KZ (dek(x;: Xik’n))} QD(Yi,n)

i) k=1
T (p,u,x, 0 h,) = : 6.1)

ﬁ { (uk - lk/n) K, (dek(x/; Xik,n))}

i€l (j) k=1

where:
I'(G):={ielandi # j} = I\{j}.

Equation (6.1) denotes the leave—out—(Xj, Yj) estimator of the functional regression and can also serve
as a predictor of ¢(Y;,,...,Y;,) := ¢(Y;). To minimize the quadratic loss function, we introduce the
following criterion. Let ‘W(-) be a known non-negative weight function:

(n—m)! —om) 2~

CV (p.hy) = —— Z‘ (¢ (V) =770, 0. X;,0: 1)) W (X;). (6.2)
jely

Building upon the concepts advanced by [150], a judicious approach for selecting the bandwidth is

to minimize the aforementioned criterion. Therefore, we choose h, € [a,,b,], minimizing among

h € [ay, b,]:

CV(p,h,).

Following the approach proposed by [20], where bandwidths are locally determined through a data-
driven method involving the minimization of a functional version of a cross-validated criterion, we can
substitute (6.2) with:

CV (g.hy) = =) > (e (Y5) - 7w X b)) W (X %), (6.3)

n!

Jely

where

W s, t) = ﬂ W(s;, t,).

In practice, one takes, for i € I'', the uniform global weights W (Xj) = 1, and the local weights

1 if dp(X;, t) < h,,
0 otherwise.

WX, t) = {
For conciseness, we have exclusively discussed the widely used cross-validated selected bandwidth
method. However, this approach can be generalized to other bandwidth selectors, including those
based on Bayesian principles [156].

7. Concluding remarks

This manuscript introduces the theory of single-index U-processes tailored specifically for locally
stationary variables within the functional data paradigm. The primary objective is to leverage
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functional local stationary approximations to facilitate asymptotic analyses in the statistical inference
of non-stationary time series. We underscore the significance of adopting absolutely regular
conditions or B-mixing conditions, which are independent of the entropy dimension of the class, a
departure from other mixing conditions. In contrast to strong mixing, S-mixing offers greater
flexibility, allowing decoupling and accommodation of diverse examples. Reference [103] provided a
comprehensive characterization of stationary Gaussian processes satisfying the S-mixing condition.
Additionally, S-mixing aligns with the L,(P)-norm, playing a crucial role. Unlike strong mixing,
which demands a polynomial rate of decay for strong mixing coeflicients contingent on the entropy
dimension of the function class, S-mixing involves the L;-norm and the metric entropy function
H(-,T,d). This function is defined concerning the pseudo-metric d(s,t) = +/Var(G(s) — G(z)) for a
Gaussian process G(-). The definition satisfies the integrability condition:

1
f Hu, T,d)du < +oo.
0

Consequently, we establish the rate of convergence, demonstrating that, under suitable conditions, the
kernel estimator 7" (¢, w, X, 6; h,,) constructed with bandwidth & converges to the regression operator

(¢, §,u,x) with a rate:
0 log n + h2m/\a
\ Vi) '

The presented rate underscores the importance of the small-ball probability function, impacting the
concentration of functional variables X;. The second term is linked to the bias of the estimate,
dependent on the smoothness of the operator r™(¢p, 6, u,x) and its parameter «, as indicated by the
Lipschitz condition. The interconnected nature of the concentration of functional variables X, the
small-ball probability, and the convergence rate are crucial for achieving a more efficient estimator
with less dispersed variables and a higher small-ball probability. In the context of empirical process
settings, the rate of convergence is established over a subset [Ch, Ch — 1]™ X {x}", and for forecasting
purposes, it can be extended to a subset [Ch — 1,1]" x {x}” using one-sided kernels or
boundary-corrected kernels. This extension necessitates ensuring that the kernels have compact
support and are Lipschitz. The weak convergence is established through classical procedures,
involving finite-dimensional convergence and the equicontinuity of conditional U-processes.
Finite-dimensional convergence is achieved through Hoeffding decomposition, followed by
approaching independence through a block decomposition strategy, ultimately leading to proving a
central limit theorem for independent variables. The equicontinuity aspect requires meticulous
attention due to the comprehensive framework considered. These results provide a solid theoretical
foundation for our methodologies, extending non-parametric functional principles to a generic
dependent structure—a relatively new and significant research area. It is crucial to note that, when
dealing with highly dependent data, mixing, often adopted for simplicity, may not be suitable. The
ergodic framework eliminates the need for frequently used strong mixing conditions, along with their
variations for measuring dependence, and the more intricate probabilistic computations they entail
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(see [36,37,47]). An intriguing avenue for exploration is the kNN estimator:

- up — ig/n dg, (X1, Xiy )
Z l_[ {Kl ( h )Kz( Hyx(x0) )} o(Yin)

iel” k=1 n

= U — ix/n do, (X1, Xipn)
K K
%’; 11:1[ { 1 ( hn ) 2( Hn,k(xk) )}

7" (g, u, X, 0; hy,) =

where

n
H,x(x;) = min {h ER': Y Mg, (X)) = k},

i=1
with B(t,h) = {z € H : d(z,t) < h} representing a ball in H with center ¢t € H and radius 4, and 1,4
being the indicator function of the set A, as detailed in [3]. These findings open avenues for various
applications, such as data-driven automatic bandwidth selection and confidence band construction.
We propose the intriguing notion that bootstrap methods, as outlined in [35, 38], provide valuable
insights when applied in the functional context, especially the functional variant of the wild bootstrap,
employed for smoothing parameter selection. It is crucial to acknowledge that the theoretical
underpinnings of this bandwidth selection method using the functional wild bootstrap are still an area
with unresolved challenges. Finally, change-point detection has emerged as a widely utilized
technique for recognizing specific points within a data series when a stochastic system experiences
abrupt external perturbations. The occurrence of these alterations can be attributed to several
circumstances, hence their identification can greatly enhance their comprehension. The application of
change-point analysis has been observed in numerous stochastic processes across a wide range of
scientific domains. However, the investigation of change-point analysis for conditional U-statistics
remains an unexplored and demanding research issue.

8. Mathematical developments

In this section, we focus on proving our results, using the notation introduced earlier. We start by
presenting the following lemma before delving into the proof of the main results. The proof techniques
follow and extend those of [165] to the single index setting. Additionally, we incorporate certain
intricate steps from [13], as observed in [39,40].

Proof of Proposition 3.1. As mentioned earlier, our statistic is a weighted U-statistic, expressed as
a sum of U-statistics through the Hoeffding decomposition. We will delve into the details of this
decomposition in Sub-section 3.1 to achieve our desired outcomes. In that specific section, we observed
that:

Y(u,x,6,¢) - B (4, x,0,0)) = U151, %, 0,0) + (0, %, 6,¢),

where the linear term @Li(u, X, 0, ¢) and the residual term @,i(u, X, 0, ) are precisely defined in (3.9)
and (3.11), respectively. Our goal is to establish that the linear term governs the convergence rate of
this statistic, while the remaining term converges to zero almost surely as n — oco. We will initiate the
analysis by addressing the first term in the decomposition. Consider B = [0,1], with
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a, = \/log n/nhm¢™(h,) and 7, = p,n'/¢, where ¢ is a positive constant specified in Assumption 4,

part i), and p, = (log n)% for some ¢, > 0. Define

A () = HO@)1 (u, |er)-
Ha(2) 1= HO@) Ly, fory)-

and

L& (m—m)! C ()
Weoun-00=— > o Y Gybi G, V@),

=1 (n - 1)' Im—ll(_[') =1
. n-m)! « .
PP, 0,u,%) - (i) = - Z oo 2 Db 6, B ).
Imfll(_[) =1

It is evident that we have

U0, %, 0, 0) — B (0, %, 0, 0)
= [0, 0,u,%) - B (¢, 0,0, %)| + |47 (4, 6,u,%) — B P (g, 6,u,%)|.

First, we can see that

IP( sup sup sup sup |’¢7(12)(go, 0,u,x) — ﬂ(i)| > a,,)

gmﬁg 6@ xcH™ ueB™

IP’[ sup sup sup sup |w1 )(90, 0,u,x) — ﬂ(i)| > an]

Rm 06@’" Xeq_{m UGB’”
ﬂ sup sup U|QB,,, > T, U sup sup U|QB,,,
R XEH™M

TS xeH™ 1

< P4 sup sup sup sup |/1//\(]2) (¢,0,u,x) — ﬂ(i)| > a,
T 60" xeH™ ueB™
ﬂ sup sup sup sup U |ﬂBln > T,
%nﬁm O™ XG?’{m uepm
P{sup/ &z SUp sup sup |¢1 )(go,O u, x)| > a,
© gearm xeH™ ueB™”
c
ﬂ sup sup sup sup U |‘D3,n > T,
TSy 0O xeH™ ueB™
< P sup sup sup sup |ﬂB,n >71,forsomei=1,...,n|+P(2)
Rm 06@"1 Xe(}_{m UGBm
<Y'E W, | <nf =pf >0
< T sup sup sup sup [Us;,|" | < nt,”> =p,” — 0.
i=1

Fn KM 0@ xcH™ ueB™

We deduce that

8.1)
(8.2)

(8.3)
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= (n—m)! < ~
E[Iw2><<,o,0ux>|]<— 1) D DG g g6 B Q). 84
Le i) =1
where
T 1 d (-xta ln)
() _ 0;
E(|H2 (Z)|)— [ 0 )K( I ) i f%(l ..... =16,...m)
L | dg, (Xx, Vi)
1—[¢(hn)K2( et )P(dvl,...,dvg_l,dw,...,dvm_l)]l“mﬁhrn}
ki
- 1 d,(xi, Xi) ¢
s ,“VE K [ 2 |, |
v [as(hn) 2( )
~@-1 v
S Th E[Kz(df)i(xz’xz,n))]
é(hy) h,
T—({—l)
< . - hn
S ) x[nh“”( )]
‘(f ; —(¢-1
— e 8.5
nhéhy) (8.5)
where
d' iinn
o)
i/n i/n
dg. (xiaXin) d@,' ()C,‘,Xi ) dﬁi (xi,Xl' )
= || ——— |+ K| —— |- K| —
2( I )+ 2 I 2 I
i/n i/n
dg, (xi, X ) dy, (xi,Xi ) dy, (Xi,X,- )
< KEl———|-K|——= K| ———=
E 2( hn ) 2( hn +E 2 hn
< Ch'E ‘de,» (i, Xi) — dy, (xi, le/") +E []l(d(x,x_(i/n))sh)] (K, is Lipschitz)

1 .
< —hE|Ul.(’/") + F/u(h; x;)(using Assumption 1 1))
n
1
S — +o(h,).
S ¢(hy)

Thus, we acquire

& [y 2’(<p,0uX)|]<— (” SN 66 E(HOG)

|
1) 1m1( i) =1

1~ (n—m)! m £ e
Z IZZI (n — ])1 Z Zgil oo "fif—lélié‘ig e 'lfim71 X [nh¢(hn) +1,¢ }

Yom-l_p €=
L= =1

<c uniformly in u
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e
l n + 76D < 7D (o gy ED < g

nhe(hy)

Consequently, we deduce that

sup sup sup sup [i/{” (¢, 6,u,%) — EY\” (¢, 6, u,%)| = Ox(a,). (8.6)

/mﬁm @M xcFHm ueB"

Next, let’s consider

sup sup sup sup |A(1])(<,0, 0,u,x) — E’\(ll)(go, 0,u, X)| .
TR 00" xeH™ ueB™

To achieve the aimed result, we will cover the region B” = [0, 1]" by

N (u) m

U | B, n,

..... kn=1 j=1

for some radius r. Hence, for each u = (uy,...,u,) € [0, 1]", there exists l(u) = (I(uy),...,I(u,)),
where V1 <i <m,1 < I(u;) < Ny, and such that

m
ue | |Bauw,r) and =gl <7, for 1<i<m,
i=1

then, for each u € [0, 1], the closest center will be u;(u), and the ball with the closest centre will be
defined by

B, ), r) = [ | Blug, .
j=1

In the same way, ®” X H™ should be covered by

N N m

U U [ [Bewn,

km—l kl ----- km—l J 1

.....

for some radius r. Hence, for each x = (x1,..., x,,) € H"™, there exists 1(x) = (I(xy), ..., l(x,,)), where
V1 <i<m,1<I(x;) <Ny and such that

X € 1_[ B(uyy,), r) and dp,(x;, X)) <1, for 1 <i<m,
i=1

then, for each x € H™, the closest center will be x;(x), and the ball with the closest centre will be
defined by

By(x,1x), 7) := | | B (xiceys 7)-

i=1
We define

K'(@,) = C | | Tgouercy | | K20 for (w,v) e R2.
k=1 k=1
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We can show that, for (u, x) € B, and n large enough,
& d i\ANiy Xi n
Jo ez
Iy,

LI e,
K (Mn - ﬁ, dy, (i Xi,n)) ‘
hy

<«

Let

_ 1 S (n—m)! =z ug — %, dy, (i, Xipn)
(H * n
0.u,x) = E | | K W, ,
¥, (¢, 0,u,%) nh"g(h) S (n= D! L L [ h, :

L | dyg, (Xk, Vi)
Xf%(l ..... et | | )Kz( % hk ‘ )P(dvla---advf—ladvf’---,de—l)]l{|QBi’n|ng}-
k=1 n n

Note that E [|&(11)(90, O,u, X)” < M < oo for some sufficiently large M. Then, we obtain

sup sup sup sup (71" (4,6, u,% — E[31"(¢,6,u,%) (8.7)

me’é’ 6O xcH™ ueB"

< supg,qn Sup sup ’\(11) (u,,x,0) - E [A(l]) (a,, X, 0)”

Ge@™ xeH™

+ sup sup sup @, ( " (u,,x,0)| + E [Wll) (u,, X, 0)”)

FnfKtly 0O xeH™

7 (,,x,0) ~E[d" (u,.x, 0)]'

IA

sup sup sup
,%,Lﬁg 0@ xeHm

+ sup sup sup
TS0 GO xeHM

3 (0, x.0) - B[ (W, x.0)]| + 2MF(y)ar,

Therefore

P[ sup sup sup sup "(11)(% 6,u,x)-E [A(ll)(cp, 0,u, x)]' > 4M0/,,)

TSy O™ xeH™ ueB™

< Ngz,auNgNGHNG —max  sup — max sup
° LSty < <im=m gy ,r) IS0 < <im<m By, r)

P ("117(11)(907 03 u, X) -E [’\(11)(80, 0, u, X)]' > 4Man)
< Qint+ Qo (8.8)

where, for Nz, an N N7 N,y denotes the covering number related respectively to the class of functions

F g, the balls that cover [0, 1]" and the balls that cover H" x ™.

Qin = Ngan N(’Z)N(";)N(’Z) max sup max sup
° LSy <o <imSm By, r) 1SH < <in<m pugey) r)

B (71 (%) 2[5 () > ).
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O2n = Ngz,aNig Ny N, max sup max sup
° Vi< <inSm By, r) 1S <<imSm Bluey),r)

P('lpl (llj,X) —-E [l,p] (llj,X)]' > MCYn) .
Notice that Q;, and Q,, might be treated in the same way, so, we restrict our attention to Q;,. Write:

P (7. 0.0.%) ~ B 6.0 o, > M)

=P h’n¢m(hn) Z Z Z é:il T é:ie—]é:ié:ic o 'é:im_lHig)(Z)
=1 -l(=i) t=1
- E hm¢m(hn) Z Z Z é:il U é::ie-]é:ié‘:ic T é:im—lHi@(Z)
i=1 1’"71(71') =1
n-1 ?mﬁg
- 1!
(n—m)!
n —1)!
= P Z D;,.(p,0,u,x) > Mn (n ) anhm¢m(hr1) .
i=1 TSl (n = m)!
mNg

Note that the array {®;,(u, x)} is @-mixing for each fixed (u, x) with mixing coefficients B¢, such that
Bon(k) < B(k). We apply Lemma A.4 with

(n—1)!

(n—m)!

and b, = Cr,for sufficiently large C > O and S, = a;l‘r; . As same as [133, Theorem 2], we can see
that o5 < C'S ,h"¢"(hy,), and we obtain:

"™ (hy)a,,

e:=Mn

n 82 n
P Zin(u,x)| > el <4dexp|— +4—pB(S,
(Z‘ Alth %) ] P 640'§mnsi+§sb,,5n] Snﬁ( )
n=1!\? m 1 2m
M?a2n? (L) g () n
<dexp|- — D) +45 B S0
64C,th¢(hn)i + gMnmhm(ﬁm(hn)anbnS,, n
2 |
M (lognfnh¢™(hy)) n (G
<dexp|- W — Z (=) +4B(S,)
64C’hm¢m(l’l")M(n_15! + §Chm¢m(hn) S
M= 100 n
< exp [— (n(i;:f)!c/ - +nS ;7"
64 A §C

To get the last inequality, we must choose M > C’. Since N < Ch™"¢(h,)a,", it follows that

—

Qn <0 (Rln) +0 (R2n) )
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with
(n=1)!
(n—m)!

R _ h—m -m _64((n__';1>),!+3c
T =n, @, n ",

— M, —m -y-1
Ryr = h,"a,"nS """

G = o(1) by

For M sufficiently large, we can see that R;, < n™* for some small ¢ > 0. As

assumption, we further get that

_ -m _ —m —-y-1
Ry, = h,"a,"nS,

- ’ logn _ —1_—1y=y-1
= p™ 5%
n l’l[ nhm¢m(hn)] (a/n Tn )
—m+y+1
logn
= pm 1 G0, 1/8yy+1
. [\/nhm(pm(hn)] (tog m)n'%)

oy +1)

_ (logn)—>
- —m 1 I m —m :
n%_l_%h +27+l ¢(hn) Ew—l

Under Assumption 4 ii), we establish that R,, tends to zero, confirming the obtained result. Now, let’s
move on to the nonlinear segment of the Hoeffding decomposition. Here, the goal is to illustrate that

— 0 as n — oo.

P [ sup sup sup sup |$2,i(90, 6,u, x)| > A

TS 00" xeH™ ueB™

The conclusive phase in establishing Proposition 3.1 involves leveraging Lemma 8.2 to demonstrate
O

the convergence of the nonlinear term to zero.

Proof of Theorem 3.3. Equation (4.1) in Section 4 shows that

1 . _ _
(816, 1, %) + 226, u,%) - (¢, X, WFi (¢, 6,1, %)),

7" (p,u,x,0;h,) — 1" (p,0,0,X) = ————
ri(¢, 6,u,x)

where
Fi(p.00x) = —n,(Zm;Zg) 2 : {Kl & _h:"/ 2k, dek(x’;l;xik’") }
21(0,u,x) = %EW : {Kl Uy —hnik/n K, de(X];l,nXik,n) }%i,w,m
BuE) % m {K1 n —h:'k/n X, dek(x,;l;Xik,n) }r(’")(%,xi,n)~

iel" k=1

The proof of this theorem is intricate and divided into the following four steps; wherein each step, our
objective is to demonstrate that:
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Step 1.
sup sup sup sup [g1(0,u,x)| = Op ( \/log n/nh’”¢(hn)) .
FufIl GO xeHm ueB"
Step 2.
sup sup sup sup [g2(6, u,x) — 1" (¢, 6, u, X)71 (¢, u,X; h,))
FuIl 9O xeHm ueB"
~E(82(0,u,%) - " (g, 0,0, X7, (¢, 0, X; h,)| = Oz (logn/nh"¢(h,)) .
Step 3.

= O(h%) + O(h%).

sup sup sup sup [E(g2(6, u, x) — " (p, 6, u, X)7 (¢, u,

/mﬁm 0@ xcH{™ ueB"

Step 4.
1

inf inf inf [r1(p, 0,u,x)|
TSI xeH™ ue[C1h,1~Cyh]" %, 6, u,%)

= Op(1).

Step 1 is an immediate consequence of Proposition 3.1. The validity of the second step is ensured by
substituting ¢(Y;,, ..., Y; ) with

22(60,u,x) — r"(p, 0, u, X1 (¢, u, X; ),
and applying Proposition 3.1. We will now proceed with the demonstration of Step 4. Consider

T1(p, 0,u,X) =71(p, 6,u,X) + 7 (¢, 0,0,X), (8.9)

where

! - g, (e, XU
e - o)

el k=1

(n—m)! = u, — ix/n
|hm m h ) Kl h
" (hn iely k=1 "

ﬁ [ (dﬁk(xka iks n)) K2 (dgk(-xla 1(;/:)))]
h, '

k=1

r1(p, 0,u,Xx)

For W = 1, the preceding proposition established that

Sup Sup Sup Sup I-F] (‘10’ 0’ u, X) - E (-Fl (90, 05 u, X))| = OP(l)'
TR 00" xeH™ ueB™

Therefore, it is evident that

7;1 (‘)0’ 0’ u, X) = 71 (‘pa 0’ u, X) + E(Fl (90’ 0’ u, X)) - E(’:’l (‘)0’ 0’ u, X))
op(1) + E[r1(p, 0,u,x)] + E[F(¢, 0, u,X)]. (8.10)
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Furthermore, we have

i (n—m)! u — iy /n
E(rl((p’a’uax)) = E(nlhm¢m(hn)zn ( )

i€l k=1
m do, (X, Xi, ) dgk(x Xl(lklin)))])
K (;) -K [—k
l/:l[ o N
(n—m)! m Ltk—ik/n m¢m—l(hn) _
WZH’Q( I )( v )— o(1). (8.11)

The final outcome arises from the Lipschitz continuity of K,(-) (as stipulated in Assumption 2, 1)), along
with the utilization of Assumption 1 i) and Lemma A.2). This holds uniformly in u. Furthermore,

— — _ m dk( Xl(zkr{n))
spens = o (522 [ (57

el k=1 k=1
(I’l m)! up — ix/n Vi

n\hgm(hy) ; lk_ll ( ) . 1}:[ K2( )szk/n(Yk, Xi)
(I’l - m)' lk/l’l m

nthngn(hy) ; lk_l[ ( ) (h)fix) ~ fi(x) >0,

uniformly in u. Then, we obtain

1

inf inf inf  [ri(p,6,u,x)|
FuSixeHmue[C1h,1~Cyh]" et

1

- — Oz(1). (8.12)
1n£nX1€rql}Cmue[Cl}1[r}fC] o(1) + 0p(1) + E[r1(¢, 0, u, X)]

Take K : [0, 1] — R to be a Lipschitz continuous function with its support in [0, g] for some g > 1,
and ensure that Ky(x) = 1 for all x € [0, 1]. Importantly,

4
E [0, u,%) - 1" (¢, 8,0, X7 (¢, w, x; 1) | = ) 046, u,x), (8.13)
i=1

where Q; can be defined as follows

0:(8,u,x) = % > {l_[ K (”k;_’k/”)} g6, u,x), (8.14)
ier k=1 "

such that

¢1(0,u,x) = E

- dgk (Xk, Xik,n) - d9k (.Xk, Xik,n)
[ [% ( Iy D %2 h,
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_:Is

dy, (X2, X(lk/n)) :
K2 ( Ok Lk, X {r(m)(go’ %, Xi,n) - r(m)(QD, 0, u, X)} )

| d s Njpn d (X Xl(lkrfn))
¢2(0,u,x) = E {Ko 9k(Xk " ))Kz( o . ,
=1 n
(.- i, ]
r( m d , Xin m d (X X,(lk,{n))
g3;(0,u,x) = E {rl o( o, (X, X, )) 1—[ ( o 5
n k=1
m d (X X(lk/n))
l—[KQ[ Ok i { (m)( lk Xl(]:k,{n)) (m)((P, 0.u, X)} ’
k=1
2 d@ (.x l(lkr{n)) l )
q4(0,u,x) = E[l—[ 2( , ks {(m)(‘P, k Xz(,:k,{ - <m)(¢,9,u’x)} .
k=1

Observe that

(n—m)! U, — ix/n = do, (Xi, Xign)
Q0w vhm¢m<h>;{kn ( ) HK‘)(h—n)

e (o X m(dg (o, XY
[T (% k,>)_1—[,<2[_9k o

ons]}

Utilizing Assumption 3 (i), the properties of (6, u, x) allow us to establish that

i
r(m)((p, ;17 Xi,n) - r(m)(So, 0, u, X)

m

do, (X, Xi, n)
[T (252

m d X a
l_[ Ko( 0k(xk k> )) (dem (Xi,n,x) + ||ll _ LII) < hm/\a/.
n

k=1

(m) (90 - X; )— r(’")(cp,G u, X)

With Assumption 2, part ii) in mind, we will employ Lemma 8.1 and Eq (8.58) to verify that:

i

(n—m)! - U — ig/n e MY ()
Q1(0,u,x) < m;{g[(l (h—n)}Xh Xn—hn.

1

< W uniformly in u. (8.15)
Likewise, it can be observed that
1
sup sup su su 0,0,u,x) < ————, (8.16)
ylsge; s xe7£n ue[Clh,II—)Cthm ? ng(hy,)hm=mne)
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and 1
sup sup su su 0:(0,u,x) < —————. (8.17)
,;@,ls}i:)'@" et zepin ue[Clh,IE)Clh]m ’ ng(hy )=o)
Concerning the final term, we derive
(n-m! U = ig/n zk /n
04(6,u,x) =
! n\h" g (h,) Z,: 1_[
m (ix/m)
1—[ (dek(-xk’ Xlk n )) { (m)(SD, X(l/n)) (m)(so, 0’ u, X)}] )
k=

By utilizing Lemma A.1 along with the inequality (2.12) and considering Assumption 1, it becomes
evident that

sup sup sup sup  [Q4(6,u,x)|
TR 0€0™ xeH™ ue[Cih,1-Ch]"

(n—m) e~ ie/n
: n'hmw(h)Z{H ( h )}

iel”

. ﬁKz (dek(x;c},le(;Z"))] {r(m) (90, X(l/n)) " (.00, X)}u
k=1 "
(n—m)! U, — ix/n
< ) 2 {H ( T )}
E[lﬂle(dok(xh f,fk,f"))] (dﬂ (Xl(ll’{n)’ )+”u_%”)a]
k=1 "
(n—m)! U — ix/n
S g h, >Z,: 1,:[ ( T )
LT a2
k=1 k=
! 1 & —
an%ZZ 3 Z f f h_nK( ) .
| e{E) o
k=1
< o(nmh%m) B + b (8.18)

Keep in mind
(I’l) mh(x 2m < h2m¢) (I’l ) < h2m

we deduce that

sup sup sup  sup  |Q4(6,u,x)| < 2" + K.
TR 00" xeH™ ue[C1h,1-Ch]"
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Certainly, within the framework of our assumptions, the approximation error can be considered as

1 2mAa
0 (nm¢(h )hm—W)) < B2, (8.19)

With this inequality, the proof is concluded. O

Proof of Theorem 4.1. The goal is to establish weak convergence, encompassing finite-dimensional
convergence and asymptotic equicontinuity, for the stochastic U-process:

"¢y (h)Du(@) = A[nh"¢ /' (hy) (F" (.1, 0, %, 0 ) = ™ (@, i, u,X,0) — B,(6,u,%)),

across all the specified function classes within the framework. According to [64, Section 4.2], finite-
dimensional convergence asserts that every finite set of functions fi,..., f; in L,

(N Ly B DuCF, o Nl gLy ) Duf) (8.20)

convergences to the corresponding finite-dimensional distributions of the process G,. By leveraging
Cramér-Wold and considering the countability of various classes, we can simplify the scenario from
the weak convergence of the U-process to the weak convergence of U-statistics with the kernel f, for
all » € {1,...,q}. As the U-process is a linear operator, our focus narrows down to demonstrating the

convergence of /n h’"d)l/ "' (h,)D,(f,) towards a Gaussian distribution. Therefore, for a fixed kernel, we
have:

7 (g, i,u,x,0; hy) — (g, 1,0, %, 6)
1 - - —
= = . < (g1(09 u, X) + g2(0’ u, X) - r(m)(‘p’ i9 u, X, O)rl (‘109 i, u, X, 0; hn))
ri(g,i,u,x,0)
1 —
= = = 2 09 ) G 0’ s s 8'21
PR (21(6.u,x) + G(6.u,x)) (8.21)
where

G(6,u,%x) =0, u,x) — " (¢, i, u,X, )71 (¢, i, u, X, 0; 1,).

We begin treating each term. For this sake, we will calculate the variance of 5(0, u, x). Take

= (dek (Xks Xik,n)

Ai,n(aa u, X) = n KZ h ) |:r(m)(‘70’ %a u, Xi,n) - r(m)(SO’ i’ u, X, 0):| .
k=1 n

Observe that
Var(GO,u,x) = Var (g0, u,%) - r"(p,i,u,x, 077 (¢, i,u,x, 6; h,))

(n—m)! —ir/n
va (n'hmaﬁ'"(h)z{n ( )}Ai’"(e’u’x)]

el

((n —m)!)? —ix/n
(n)2h2mg?n(h,,) Z rl ( : ) Var (A;.(6,u,x))

iel) k=1

AIMS Mathematics Volume 9, Issue 6, 14807-14898.
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((n_m)!)z I/lk—lk/l’l Up —1 /n
+(n!)2h2m¢zm(h) Z nKl( )n (h—nk)

#..Fin =
z .. ;f':zm,

e
Hj/lﬂtlj

Cov (Ai4(0,0,%), Ay ,(6,u,X))

= Vi + V. (8.22)

Looking on V;, we have

m

((n—m)!)? B U — ix/n
Vil = (n')2h2’"¢2’"(h,,)z K? T Var (A; (0, u,x))

iel k=1
((n —m)!)? o (U= ik/n ) B ' 2
Gty gy 21 | K| =5 ) [B(4206.0.50) = (B (8006, u.%))°]

m

((n — m)!)? — 2 Uk — ik/n )
(n!)2h2m¢2m(hn) il ] K] h—n E (Aivn(O, u, X))
((n — m)!)? = U — i /n - do, (Xi, Xign)

sl s, (l—[ = ( )

<
(ny2h2mg (h iy k=1 k=1

2
l
[r("” (=0, Xi) - r™ (g, i,u, X, 0)] )

((n —m)!)? —ix/n o (e (xes X )
<n'>2h2m¢2m<h>zn ( ) (HKZ( B )

iel” k=1
X(lk/"))] m [dak(xk, Xl(klklin)))
2

m a’(x,ln
Tl T

k=1
l 2
(g, ~ U, X;) - (g, i, 0, X, 0)] )

((n — m)!)*h* —ix/n 5 [ do.(xks Xiy )
(n!)2h2m¢2m(hn) Z 1—[ ( ) [rl K ( hn )

ielll k=1

m dek(xk,xflk,j”b m dek(xk,Xf“,f"b
]—[ b } H T R 2 (8.23)
k=

k=

The last part of (8.23) follows from the smoothness assumption on 7™ in 3 1)

2
< . (8.24)

i .
r(m) (‘P, ;l, u, Xi,n) - r(m)("p, LU, X, 0)

Combining the latter inequalities with Egs (8.60) and (8.58) from Lemma 8.1 where:

m m (ix/n)

dy (x> Xin) dgk(xk’X, n )

E K| 2wl | | K222 ten ©
(g ’ ( hn k=1 ’ hy
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N

m m (ix/n)
dg, (X1, Xi ) dg (xx, X; n )
E K, | 2—— % _| |K S0 Pin ) ,
(kzl ’ ( hn ) ’ [ hy

k=1

to get

i

((n —m)!)? —iy/n
|V1| < (ny)2h2m¢2m(h ) ; 1k—1[ ( )
R (h)((n = m)))* [ m¢™ ' (hy,)
(n!)2h>" ¢ (h,) nhy,

< _t . (8.25)

+¢" (hy) ()

A deep sight into the work of [10], specially Lemma 2, makes us see V, as follows:

((n=m)1y e = i/
Vi = g 2. r”% )

1<ip<- <12m<n k=1
]l>.]2 ]m

..........

(1= m)1Y? (W‘Wﬁ
()22 g2n(hy) 1<,1<Z‘,2m<nﬂ
J1ZJ25eesm

((n - m)y)Z U — /N lk/l’l 2 « (p-2)/
K XcM* |1+ ) K" g7
(n')2h2m¢2m(h ) ]<11<Z<lzm<n lk—ll : k=1
]1>J2 Jm
(= m)!)’ ty — g/ 1
_ © 2L 8.26
~<mW%Wmmg;qﬂl nhm ) -
J1>]2 ;nm
where 1/
14
M:= sup E [|Ai,n g] ,

1<i) <+ <ipy<oo

and jl = iz - i], jl = min (i21_1 - i21_2,i21 - iZZ—l) for2 <l <m- 1, and jm = izm — i2m—1- If we
designate j; = max (ji,..., jn), we can align the original sequence {Xi, ..., X,,} with another sequence
characterized by independent blocks {iy, i, . . ., i>,} while preserving the identical block distribution. It
is straightforward to demonstrate now that

—~ 1
Var(G(0,u,x) < |Vi| + |V, = 0| ———]|. 8.27
ar(G(0,u,x) < |Vi[ + [V O(th(hn)) (8.27)
This indicates the quadratic-mean convergence of G (6, u,x) with the specified rate as follows:
—~ —~ 1
G(6,u,x) - E(G(6,u,x)) =0 (W) in probability. (8.28)
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Let’s remember that

1

7" (p,i,0,x, 0; h,) — 1" (e, i,u, X, 6) -
ri(p,Lu, X, 6)

(81(6.u,x) + G(6.u,x)),

B,(0,u,x) = E[g%u,x)/ElFi(e,i u,x,0)],
T(p,i,u,x,0) = E[r(e,iu,Xx,60)]+ op(l),
lim E[ri(p,i,u,x,60)] > O,
then
21(0,u,x) 1
i x, 0 ) — i ux0) = S BY 0w+ [— .
(e, ,w,X,0;h,) —r"(p,1,0,X,0) S @iux0) (0,u,x) + op TR

In the next step, we will consider the first part of the last equation.

\/WVW(I(X))
\/IW,/‘;"(%)((H—m)!)2 Zﬁ 2(uk—lk/n)‘,arl - K, (M)&n]
el k= k=l

(n!)*h>" g2 () hy

mal/m 2 . [ m
\, nh ¢x0 (h )((I’L m)') Z 1—[ lz(uk - lk/n)E n Kzz (df)k(xk’Xik’”)_) Siz’n]
iel k=1 L k=1

(n!)*h>" " (hy,) hy hy

(n1)*h>" " (hy,) hy

Y ) (n = m)1) y m ~ i
k/n) z(dﬁk(xk9Xlk,n)) 2( 1 ) 2:|
K — | O 07 ) Xi,n Si
; lk—l[ ( n 2 n
({&i}iez is a sequence i.i.d r.v.’s, independent of {X; ,}i_,)

E(812) \/’m((” - m)!)? Z n K2 (”k - lk/n)

(n!)*h>"¢>"(hy,)

(o)

i€l k=1

B(]) "9y () ((n mmzzn z(uk_lk/n)

(n!)2h2m¢2m(h )

ﬁ [de( k’X:/]:/r:z))

k=1

E(e2)o(¢" (hy)) [y () (n - m)wzzl_[ ( —ix/n
+

(n1)*h>" ¢ (hy,)

iel)! k=1

[0‘2 @,u,x) + 0(1))] (According to Assumption 3 [ii)- ii1)- 1v)] )

) |2 (6.u.%) + o(1)]

i€l k=1

E(é‘lz) \/’m((n - m)!)? Z n K2 (”k - lk/”)

(n|)2h2m¢2m(h )

i€l k=1
lk/l’l)

o|1(™5)
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~

E(])(0 (6, u,%) + 0(1)) [0y (hy)(n = m)1)? 5 ﬁ ) (uk - lk/n)
(n)*h2 5 (hy) e k=

~ ;E(s )02 (6, u,X) nKz(z)dP(zl,...,zm) (8.29)

,nhm(pl/m(h ) [0.A]™ G—1

The intricate relationship between weak convergence and g; is further substantiated. To elucidate this
connection, we undertake the following steps:

(1) Truncation of the function g is performed, given the unbounded nature of the function class.

(2) The convergence of the remainder term resulting from truncation to zero is established.

(3) Hoeffding’s decomposition is applied to the truncated part.

(4) The convergence to zero of the non-linear term in this decomposition is validated.

(5) The weak convergence to the linear term is established by demonstrating finite-dimensional
convergence and asymptotic equicontinuity.

These steps closely parallel the proof strategy employed in Theorem 4.2. Consequently, the proof is
concluded. O

Proof of Theorem 4.2. Keep in mind that

201 {K1 (”" — i/ ”) K, (d"k(x,’;’ Kin) )} o(Yin)

el k=1

75:")(()0’ u» X’ 09 hl’l) . (830)

ﬁ { (Mk - lk/n) e (dek(xkaXik,n))}
ier” k=1 hn

{Kz (M)} ¢(Yin)
k=1 h

Let’s define

Gui(x,y) = — dn for xe H",y € Y",
En{ ( Qk(xka tkn))}
1
g = { (,01( ) SOE mal_(lla"'aim)}7
GY = {mnOuC.) 9 € Ff,
WG = WO, = C S 6,0, Y,

el k=1

and the U-empirical process is defined to be

fa, 1) = gl () (W, §) — EQL (0, D)) -

W, (g, 1)
W,(1,0)

Subsequently, we have

7" (g, 0, X, 0;h,) =

AIMS Mathematics Volume 9, Issue 6, 14807-14898.
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To ensure the weak convergence of our estimator, it is essential to first establish it for u,(¢,i). As
mentioned earlier, dealing with unbounded function classes necessitates truncating the function
®,i(x,y). Specifically, for 2, = n'/¢, where ¢ > 2, we have:

Gui(x,y) = Oui(X,Y)Lirm<a) + OuiX, V)1 irg)>a,
= (_Y)gi)(x, y)+ (ﬁfp];) (x,y).

We can write the U-statistic as follows :

i) = ol (o) - 2 (0)
) [ (52) = B (1 (62))
Vg () U, 1) — B (U (1))}
+ kgl () P e, §) - B (UP (e, D))

w0 + 1P (e, 1) (8.31)

The first term is the truncated part and the second is the remaining one. We have to prove that:

(1) ,u(T)(go, i) converges to a Gaussian process.
(2) The remainder part is negligible, in the sense that

P
— 0.
TS

” nhn gl () (U (o, 1)~ E (AP (. D))

For the initial step, we will utilize the Hoeffding decomposition, akin to the one presented in the
previous Subsection 3.1, with the sole modification of replacing 23; ,, with ¢(Y;,)

UD(p,1) - E (U (. D)) = Uyl 1) + Wn(ip. ),

where
Uia(p,d) 1= = ZHl,(u X,0,¢), (8.32)
|
W) = (”(n)”,” S & Hoi(a). (833)
el

The convergence of U, (¢, i) to zero in probability has been established by Lemma 8.2. Therefore, it
suffices to demonstrate the weak convergence of U, ,(¢, 1) to a Gaussian process denoted as G(g). To
accomplish this, we will proceed with finite-dimensional convergence and equicontinuity.
Finite-dimensional convergence asserts that for every finite set of functions fi, ..., f; in L,, where I
represents the centered form of 2I:

( o ()W (fud), -, gL ()T (S, i)) (8.34)
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convergences to the corresponding finite-dimensional distributions of the process G(¢). We only need
to demonstrate that for every fixed collection (ay, ..., a;) € R, we have

a;,,(f;.1) = N(0.07),

~.
Il S
—_

where

q
o? = 3" @Var(Tl,(f D) + D asa,Cov(ly (£, ), T u(fi D). (8.35)

j=1 SEF

q
W) = ) aifi).
j=1

By linearity of W(-), we have to see that fI]’,,(‘P, i) > G(W¥). Let us denote

Take

e

N — E {K2 (dek(-xk’ Xik,n))} )
k=1 By
We have
D . Gl m-m) = 1 dy (xi, X))
W) = N x = £ EEE ( z )
1 2 2 D! I”;i);f Eiiéibic & 5o .
m—1
dg, (X, Vi)
fh(yh'--’yé’ 1’Ytayf7~"7ym l)l_[¢(h) 2( O hk k)

k#l

PA(vi,y1)s .-, dvee1,Ye-1),d(Ve, o), - - oo d(Vi-15 Yin=1))s
_ _11 - ' 1 dei(xi,Xi) oy
=N n;§,¢(hn)K2( . )H(Y,).

Now, we shall employ the blocking procedure for this empirical process. We intend to partition the
set {1,...,n} into 2v, + 1 subsets, each containing small and large blocks. In alignment with the

notation used in Lemma 8.2, we denote the size of large blocks as a, and the size of small blocks as
b,, satisfying:

Vy o=

bﬂ n
" | 50, 0 Lpw,) o (8.36)
a, + b, n

ay, n
In this case, we can see that :

o = ST S

= 11(11,,1 11(]2) ), (8.37)
where
Jlan+by)+ay
7 1 dy. iaXi ~
w, = Ny b 2(6'(2 ))H(Y,-), (8.38)
i:j(atz+bn)+1 ¢( ) n

AIMS Mathematics Volume 9, Issue 6, 14807-14898.
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72
u Jjn

u
u-

First, we aim to prove that

(j+D(ap+by,)
1 dy (. X))\ ~
_ N - 2( "'(; ))H(Y,-), (8.39)
i= j(an+bn) iy +1 §ip(hn) n
- d, i’Xi ~
= N i, (2 XD . (8.40)
i=v(a,+by)+1 ¢(h ) hy

1 - 1_ -
—EA®)? - 0 and -EW)? - 0
n ’ n ’

to show that the case of summation over the small blocks and the summation over the last one is
asymptotically negligible. Hence, we infer

vp—1
E(II(Z)) = Var [Z 11(2)] Z Var 11(2)
=1

We have :

Var (07)

N

Thus, we have

Z Var 11(2) <

and

—1v,—

72 (2)

Z ZCOV 11 i ll
=1 k=1

Jj#k

Cov

AIMS Mathematics

V=1 v,—

)+ > ZCOV

j=1 k=1
j#k

u(z) u(z)

jn’ kn

(j+1)(@n+bn) 1

S 5

i=j(ap+by)+an+1

dg,(x;,
Var[N_1 2( o (x

h, '
1 (+1)(@n+bn)

an 2 do,(xi, Xi) | ~
Foa 2 & V‘"(Kz( h, )H(Y"))

i=j(an+by)+a,+1
w
y [ [ Kf(_)dw]
[0,A] hn

by
(Using Lemma 8.1i1))

-2

¢2(h,) (mg™=1(h,) [nh, + ¢ (hy,))’

xVar(K (d9 (Z” ’))H(Yi)).

1 ) [ W do,(xi, Xi) \ ~
V"b"—qbz(m“)(h,,) [f[;)’h] K; (h_n) dw| X Var (K2 (—hn )H(Yi))
nb,,
b, ~ = op(n), (by (8.36)) . (8.41)
a, + b a,
vo=1v,=1  (j+1)(an+by) (k+1)(an+by) N_z
Jj=1 k=1 i=j(an+by)+an+1 i'=k(an+b,)+a,+1
Jj#k
do,(xi, Xi) | ~ dg, (X, Xir)\ ~
Ko (%5 X0 gy g (LX) gy
h, h,
Vo—=1lvy,=1 b, b, 1
§/l,+l1§/1 +I
j=1 k=1 I;=1 L=1 N2¢2(h)
Jj#k

Volume 9, Issue 6, 14807-14898.
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dg/[ + (x/l,+l]’X/l,+l]) dgﬂ +]2(x/l +12’X/1 +12)
Cov |K, P H(Yy,41), K> h H(Y,,41)],

where A; = j(a, + b,) + a,, but for j # k,|A; — Ay + [} — | > b, then

-1 Vn— -1 Vn— 9 ( J, ) Hk(Xk’ Xk) _
,-Z: ;Cov i 1) ,Z: ; N2¢*(h, N2y Cov( ( hy )H(Y) Kz( By )H(Y")) ’
J#k | j—k|=by,

here, the use of Davydov’s lemma (Lemma A.7) is necessary, we have

(x:, X
Cov (Kz (W) H(Y)), Ks (M) H(Yk))
(s XN \|P\7
S(E 1@(%) ) E(EY )P PB(li - )"

GBI 7B — )7,

IA

A

it follows that

-1 v,— Va—1vp—1
ZZCOV u2.u) < >\ 2 gy e BGEP) i = )
j=1 k=1 j=1 k=1
J#k |j=k|=by
S s $BEY )N 1B
bﬁN2¢2(hﬂ) l:bn+1
S $(h)E(HEY )I")!Pno = op(n), (8.42)

buN*¢*(hy)

where the last inequality follows also from (8.36) and the size of b,. Then, (8.41) and (8.42) shows us
that

1 -
~EA) >0
Pl

Using the same footsteps, we find that

G\ ~ - do,(xi, Xi) | ~
Var(lll’n) = Var [N li:y((;? )+1§l¢(h ) 2( I H(Y))
_ - 1 d(),'(xi’ Xl) T
= N 2 Z é:’2¢2(hn) Var (Kz (h—n)H(Yl))

i=v(ay+by)+1

do (xi, X\ .
e TR YN VYot [ R EA A L )

i=v(ap+bp)+1 j=v(a,+b,)+1 n
[i=j1>0

-2 - ) 1 M _ |
N i:v(az+;7 )+1 é:i ¢2(hn) Var (K2 ( hn ) H(Yz))
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1 n—=v(a,+b,) n—v(a,+by)
—_ &i€j
242 )
N*¢*(h) =1
i-j1>0
d9/1,~+11 (x/li+ll’X/1i+ll) ~ dgﬂi*’z(x/li+12’x/li+12) 3
Cov|K, p H(Yy.1,), K> - H(Y3,41,)

(For A; :=n—v(a, + b,))

n-— V(an + bn) f 2( t ) } ( (dHi(xi’ Xz)) o )
Kil—\|d V K| ——H(Y;
() (™ () 1y + 7)) X[ R V7 el R L G Rt
1
T = @y + b)) (™ (o)l + ")) ()

X Z 1231\ ~2/P

I=(n—v(ap+by))+1

¢, E(E(Y )

(Using Lemma 8.1 ii) and Lemma A.7)
n—v,(a, +b,) f 2( t ) ] ( (de,-(xi,Xi)) ~ )
Kil—|d Var| K, | ———— | H(Y;
¢*(hy) (mgm="(hy) /nhy, + ¢™(h,))° X[ TR V% A R U o
1

i (n = v(a, + b,))2 (mgm"(hy)/nhy, + ¢"(h,))* $2(hy)
By (8.36), we find that

$(h)E(H(Y ") Pno. (8.43)

%Var (ﬁfi)) - 0.

Now, we need to establish that the summands in fI(llfl are asymptotically independent, allowing us to
apply the conditions of Lindeberg-Feller for asymptotic finite normality. We can utilize Lemma A.8,
where llﬁ,],l is ﬁi“—measurable with i, = a(a, + b,) + 1 and j, = a(a, + b,) + a,, giving us

—_

E (exP(,-m—l/sz(ﬁ’)l ) B Va— o (exp(ifn_l/zﬁz(',ln))

i

< 16v,B(b, + 1), (8.44)

Il
(=}

which tends to zero using (8.36), then the asymptotic independence is achieved. We can see also that

1 ~ vV,a t dg.(x,-,Xi) ~
) V4 u(”sfo K| —|dt| x Var| K, | 22222 HY;
,Ver(3) g2 (7, )N? [ om iy i el (¥

1 t ~ )
— W X [j{;m K12 (h_n) dt| x Var (Kz( - )H(Yi)) (since v,a,/n — 1).

dy,(xi, Xi)

Up to this point, we have addressed the final condition for finite-dimensional convergence. It is
important to observe that, for sufficiently large n, the set

(U] > eV(X, Y) Vi)

is empty, thus

Vp—1

1 —
D24
n Z(; = (utzn Ligsevoon m) — 0. (8.46)

AIMS Mathematics Volume 9, Issue 6, 14807-14898.



14861

Therefore, we conclude the proof of finite-dimensional convergence. Now, we shift our focus to
asymptotic equicontinuity, aiming to demonstrate that:

: : mpl/m 3 » _
lim lim P{ g ) [ D) >e}—0, (8.47)
where
FRGIN) = {T, D) = T, (s )
[T s ¥y = T (R D] < 6,3, (B, D, T, (i, ) € FK, (8.48)
for
~ . L1x 1 dg,(xi, X))\ ~ .
¢ hn’ = - i K l H Yi - E (] hna s
i) = N n;ﬁ N 2,1( " ) (YD) = B (2], (k. D)
~ . L1 < 1 dg,(xi, Xi) | ~ .
W (hp,i) = N'= ; K : A, (Y) — B (W (h,, 1)). 8.49
(B ) nzljf N 2,2( . ) oY) = B (07, (1, ) (8.49)

Now, we will employ the chaining technique from [13] and follow the approach outlined in [39] for the
conditional setting. The fundamental idea is to decompose a sequence (X, ..., X,) into 2v, equal-sized
blocks, each of length a,, and a residual block of length n — 2v,a,, where, for 1 < j < v,:

Hi = {i:2(j-Da,+1<i<2j- Da,},
T) = {i:2j-Da,+1<i<2ja,},
R = {i:Quua,+1<i<n}

The values of v,, a, are given in the following. Another ingredient is essential, in this proof, that is a
sequence of independent blocks ({1, ..., {,) such as:

L(gl,...,gn) = L(Xla--~aXa,,)XL(Xan+1,~~-,X2an)X"' .

In the same line as [39], the results of the work of [73] on S-mixing are applied, and get, for any
measurable set A:

PAL1 o L Gt - s Goaps -+ LoDyt 15 - - - L) € Al
—P{(X1,. .. Xeps Xoayst1s - X3aps -+ o> Xowp—tyags1s - - - » Xovpa,) € A}|
< 20— DB (8.50)

We will focus solely on the independent blocks represented as {; = (1;,s;) sequences, rather than
dealing with the dependent variables. We will utilize a strategy akin to the one employed in Lemma 8.2
to transition from the sequence of locally stationary random variables to the stationary one:

dy,(xi, X;)

P
B

> €

(ngp () PPN Y (giKz ( ) h(Y;) - E QU (R, i)))
J=1

FH b
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- m Hl(x” 771) i /
(l’l(b (hn)) 1/2h /2N Z Z (é:LKZ ( hn )h(gl) - E(ul,n(hnvl)))ng%(bl ) > € }

< 2P
j=1 i€H;

+2(v, — DB, + op(1). (8.51)

We choose
= [(log )~ (n"~2¢" (h,))' >~V

n
= - 1.
v [Za,,]

Exploiting condition (v) from Assumption 4, we deduce that (v,—1)8,, — 0asn — oco. This primarily
pertains to the first term on the right-hand side of (8.51). Given the independence of the blocks, we
symmetrize the sequence using a set {€;} - Of i.i.d. Rademacher variables, where

and

P(e; = 1) = P(e; = —1) = 1/2.

It is noteworthy that the sequence {€;} e+ is independent of the sequence {&; = (i, i)} ,q-- Now, our
objective is to establish, for all € > 0,

owm»Y“%“N*Ejz]@%a(“émUh<» Ewmmmm)

j=1 i€H,

lim lim P {
6—0 n—oo

> 6} (8.52)

FH b

Define the semi-norm:

%g:&wwW%WEZ

j=1 ieH;

do.(x;, 1)\ » .
(fiKz,l (M) hi(s) —E QU ,(hy, l)))

ha
d@j(-xi, 771) 4 7" . 2\
- (fiKz,z (—) hy(si) — E (11 10 (M, l))) > (8.53)

hy

and the covering number defined for any class of functions & by :
Nugats €) = Nog ot € dog2).

Building upon the preceding discussion, we can bound (8.52), with further elaboration available
in [39]. Similarly, by following the methodology in [39] and referring back to [13], the independence
between the blocks, coupled with Assumption 6 ii) and the utilization of [89, Lemma 5.2], ensures
equicontinuity, thus laying the foundation for weak convergence. Now, our task is to establish that:

e il

In this proof, for clarity, we present the case where m = 2, with different sizes for a, and b,,, where b,
denotes the size of the alternate blocks. Both a, and b, satisfy:

t)||¢ﬁm>/l}—>0 as n — oo.

b,<a, w,—-1D@,+b,)<n<v,(a,+b,), (8.54)
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andset,for 1 < j<v,—1:

H&U):{z G=1(an+b)+1<i<(—1)(ay,+b,) +a},

TV ={i: (= D(an+b) +a,+ 1 <i<(j=1) (@, +by) +a,+ by},
HY ={i: (v, = D (@ +b) + 1 <i<nA@,—1D(a,+b,) +a},
TV ={i: (v, - D@ +b)+a,+1<i<n}.

We have:

pP@ i) = gty ) UP e, i) - E (1P (. 1))
[ l/m(h ) n

- D {O (K X, (Y, Y,)

nn—1)

i1 #ip

[ P (X, X)), (Y, Yiz))]}
\/n;TZ DD g (68 (X X, (¥, 7))

pP#q 11€H(U) leH(U)

N

“E[65 (X, X,), (Y, Y)])

S S e ()

P=1 i iy iy ipeHY

_E [(sagf’i) ((Xiy, Xi,), (Y, Yiz))]}

a S5 55 e (5 (n.0.0)

) p=1 ;e ¢la-p>2 jeT?

B[ (X, X,), (¥, Y) |}

1 Z Z $(hn)éi n {68 (X5 X)), (V. Y)))
1

ng(h = 4=pl<1 jyer

B0 (X Xo), (¥, Y2))

:
N—"

" \/,Q;T Z DT> bt {68 (X X)), (Y, V)

P#q 1T ireT?

E[65 (X, Xo). (Y. Y) |}

\/nqb(h_zz 2, & {6 (X X). (7. 1))

p=1i1#iy; i lzGT(U)

—E [0 (X, Xi). (Y. Y)]}
= I'+II'+10'+IV + V' + VI.

AIMS Mathematics Volume 9, Issue 6, 14807-14898.
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We will employ blocking arguments and address the resulting terms. Let’s begin by examining the first
term I’. We have:

WZ S ot {68 (X Xe). (Vi Y2))

P#4 jjeH} ireH
[(ﬁ(R) ((X”,Xlz) (Y”’ 2))]}HL72)£/2 g 6}

1
Vng(hy) ; i1§(,w izeZH;U)
B[00 (55 G| ., > 6} + 20880,

$(h)énn {68 (510 50)- G- 6)

Notice that v,8,, — 0 and recall that for all ¢ € .%,,, and :

dg (X, X
0’ Xe 7{2’ ye yZ : ]l{dg(x,X,-,n)Sh}F(y) > ()D(y)KZ (M) .

hy,
Hence, by the symmetry of F(-):

h 151 GB(R) i1>Siy i1>6ip -E (5(R) i1>5i i1> 6ip
Wi;;;a Dénén (08 (S5 @ 0) ~E[6 (s @ s )],

\/’W ;lgu) 12§U) ¢(h )é:ué:lz F(é{l’ é’/j)]l {F>,} -E [F({i,éuj)]l{F>/ln}]} . (855)

We are going to use Chebyshev’s inequality, Hoeffding’s trick and inequality, respectively to obtain:

«/WZ DU $EE (FG t)Virsay —B[FE )]} > 6

P#q itV ireHV

Pl hoVar| Yo Y $h)EEF (G,

ireH)” ireH”

S P ¢ h)Var| D D & EF (G D iras,

e iy

S 200,807 () Y D $hIEEE|(F(G, ) Lipaa) - (8.56)

ireHY ieH”
Under Assumption 6 iii), we have for each 4 > 0 :

v, dn 27 () Y D dUEEEB[(F, L)Y i, |

ireH)” ipeH”
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w62 () YT D e, f P{(F(£1,0)* Uipsay > 1) dt

11€H(U) 12€H(U)

An
o ) D g f P{F > 4,}di

i eH(U) zzeH(U)
e, d e ) Y ) b f P{(F) > tfdr
lleH(U) i EH(U)

which tends to 0 as n — oco. Terms II’, V’, and VI’ will be handled similarly to the previous term.
However, II" and VI" deviate from this pattern due to the variables {Zj, {}}; ;0 (01 {£i, {j}; jern for VI')
belonging to the same blocks. Regarding term I'V’, its analysis can be inferred from the study of terms
I’ and III". Considering term III’, we have:

\/’"PTZ 2. Z 2, &, (60 (X X)), . v)))

p=1 eH<U) q:lg—pl>2 ,26T<U>

E[65 (X, X,), (Y, Yi)]} > 6
T K2

WZ Z Z Z ¢(h")§ll‘flz (5(R) ((6‘11,92) ({”’42))

p=1 i EH(U) q:lg—p|>2 leT(U)

2 nbn n
E[6% (660, G &)} > 6+ WT\/%C;)' (8.57)

T H?

We also have

P WZ ST D e (58 (6 Gr )

p=1 eH(U) q:lg—pl=2 leT(U)

B (6 (s G > o)

P WZ Z Z Z ¢(h, )fnfzz (S(R) ((5'11’92) (41’{12))

p=1 ijeH @:la-pl>2 jheT?

[(ﬁ(m ((Sir> S1n)s (41,{,2))]}“ o 5} :
Since the Eq (8.55) is still satisfied, the problem is reduced to

WZ SN Y e PG,

p=1 i eH(U) q:lg—pl=2 lzeT(U)

AIMS Mathematics Volume 9, Issue 6, 14807-14898.



14866

~E[F@G ()i} | > 6

< 6 n'¢(h,)Var 2 Z 2 Z ¢(h)éi En F(Gis E)Lipsa, |

P=1 i eH Y qla—pl>2 eV

we follow the same procedure as in (8.56). The rest has just been shown to be asymptotically negligible.
Finally, with
'™ (¢, 8,u,%) — E U, (¢, 1)) | = 0,

and for
(U,(LD) = 1,

the weak convergence of our estimator is accomplished. O

Technical lemmas

The forthcoming proof relies on the arguments delineated in [39, 40, 165], extended to the single
index model framework.

Lemma 8.1. Let K,(-) denote one dimensional kernel function satisfying Assumption 2 part i), if
Assumption 1, then:

(g o X ) do, i X\ mg= (R
i) E ];[K ( ) rle A S (8.58)
m . ] m—1
ii) E[l—[ Kz(dek(xZ’Xlk’n)) < m¢nh(h”)+¢’"(hn); (8.59)
k=1 n n

m (lk/n)
i) E ]_[ [ o X )J]~¢’"(hn). (8.60)

k=1

Proof of Lemma 8.1. For the first inequality i), by assuming that the kernel function K,(-) is an
asymmetrical triangle kernel, that is, K>(x) = (1 — x)1L(,ef0.17)» We have

me(do (s X, )) m (dek(x Xf,f",f"))]
D () e

= da, (%> Xipn dy, (i, X4
g K Gy
1—1[ (dek(xk, ,,cn))><

=1

me(dg (i, XY
n K, h

Jj=k+1

(Using a telescoping argument)
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IA

Zml[ (dek(Xk, tkn)) Kz(dek(x Xl(klkr{n))]]
1 h

1/3
1"—[ (dgxxk, w))3} {
i=1
dy, (X, X, dy, (xz, Xf‘k,f”))
(e o)

E K2 (d@k(Xk, Xik,n)) p) }

hy,
N 1/3
i i, X0\
K, h—k (By Holder’s inequality)

B (ke
3 3[71' 1/1’:‘
X l_[ E |]l{dek(xk,Xik,n)§h}|

i=1

I

ﬁ [d@ (xk,xf;k,{"b]

Jj=k+

’

(By Holder’s inequality)

I

.
{

k—
X
i=1

IA
—_———
(es]

—
—

1
(ix/n)
nh,, Utk,n

A
—_——
Ngb
LTJ

mn 3qJ 1/(1/
X 1—[ (E‘]l{d (% X““’”)<h} ) } (By Assumption 1)
j=k+1
m 13 (k=1 m 1/3
1 (ix/n) 3p; /Pi 3q, 1/q;
s {Z n3h3E|Ulkkn } X{n Fp(h xk) 1—[ ( lk/n(h’ k))
k=1 i=1 joke1
m 13 (k1 m 1/3
1 i/n)|3
S h {ZE|Ufkif) } X{ Cat* () FE ) x | | Cagha)? ff(xk)}
" k=l i=1 j=k+1
m—1
< me (hn). w1
nh,

For the second inequality ii), we have:

ﬁ (dek(xk» tkn))
k=

o (de o X )\ T (e (ks Xf,fk,f")) (e Gx, Xf,fﬁf"))
o (55) i 21550 i (0257

k=1 k=1

= E

By linearity of the expectation, inequality 7) and for

m deA(xk,Xf;k,jm) 1
|| | % ] S ¢ (h),

k=1

AIMS Mathematics Volume 9, Issue 6, 14807-14898.



14868

using Assumption 1 part iv), the proof of this inequality holds. Now, we consider the last one. Set

K3(x0) = K3 (dg, (e, X))

{E[ ( )]] f fohﬁKz(yk)P(dyl,...,dyk)
_ _h_nfo fo ﬁ % ()

J=1,j#k

We have

h
X f Ky (ve) K ) P(dyrs - - - s dye-1, Ve, dYesas - - -, Yi)dy, (Integration by parts)
0

2m
_ & )f f]_[Kz(ykm<yk>P<y1,...,yk>dy1

0 =1

2m — -
~ h_’"f fo nKz()’k)Kﬁ()’k)fﬁk()’k)dP(}m---’yk)

= h’"f fl—[( __)¢k(yk)dP(YI"~"yk)
0 %=1

(Using Assumption 2 ii) and K>(x) = (1 — x)I(x € [0, 1]))

= hsz f(f f ¢k(6k)d(61’~--’€k) dP(yi, ..., Yk)
0 %=1

(By an integration by parts)

~ hsz folk_ll)’kﬁbk()’k)éﬂp(m,---,Yk)N h2m¢'"(h Y

The final result is established by utilizing the small-ball lower bound provided in (2.11). Consequently,
inequality (8.60) follows. O

In the ensuing discussion, we will present a lemma that can be regarded as a technical result in the
proof of our proposition.

Lemma 8.2. Consider .%,,87, as a uniformly bounded class of measurable canonical functions, where
m > 2. Suppose there exist finite constants a and b such that the #,,]¢ covering number satisfies:

N(€, FuS0, || * l1a0) < a€™ (8.62)

for every € > 0 and every probability measure Q. If the mixing coefficients 3 of the local stationary
sequence {Z; = (Xin, Win)}ien~ satisfy:

Bk — 0, as k — oo, (8.63)
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for some r > 1, then:

sup sup sup sup P |n"™*¢™?(h, )11_"1“/2215,l & H(Zy,. ... Z; )| — 0. (8.64)

Im
Rm fGc@m xeH™ ueB" e
n

Remark 8.3. As mentioned before, W;,, will be equal to 1 or &;,, = a(%,Xi’n) &i. In the proof of the
previous Lemma, 05;,, will be equal &;,, = O'(%,Xi,n) &;, and we will use the notation QBEL;) to indicate
o (u,X)& ’

Proof of Lemma 8.2. The proof of this lemma relies on the blocking method, specifically drawing
upon techniques introduced by [13]. The central idea involves partitioning the strictly stationary
sequence (Zi,...,Z,) into 2n blocks, each of length a,, along with a residual block of length
n — 2v,a,. This approach, known as Bernstein’s method and discussed in [22], facilitates the
application of symmetrization and various techniques designed for i.i.d. random variables. To
establish the independence between the blocks, the smaller blocks are placed between two
consecutive larger blocks, and their contribution should be asymptotically negligible. Next, introduce
the sequence of independent blocks (774, . . ., 1,) such that:

g(ﬂl,...,ﬂn) :X(Zl,...,Zan)xf(ZanH,...,Zzan)><---

An application of the result of [73] implies that for any measurable set A:

|P{ My e My Maay 15« - - Maays « « s M2wy=Dyag+1s - - - » M2vpa,) € A
—P{(Zi,.... 24, Zogy 15+ Z3ays - - Loyy—t)ay+1s - - - » Lovya,) € A}|
< 2@, - 1)B(a,). (8.65)

Since we are working with a locally stationary sequence (Xi,..., X,), the sequence of independent
blocks used subsequently is denoted by {7;};cn:. We decompose the process based on the distribution
of these blocks:

Z h2¢2(h ) ]—[ { (uk - lk/n) X, (ko(Xka i n))} W,
ll¢lz
Z Z Z 2(;212;;" l}f[ {Kl (uk - lk/n)K2 (dgk(xz;Xik’n))}

%4 jicHY jenV)

— QBH 2,00 = Up — lk/n d(ik (Xk, Xik n)
K s
+ Z Z R2¢2(h,) | { h, 2 h,

P=1j #iysiy ieH'Y

Vn

250 2, L ()6 (*5)

p=1 11€H(U) q:lg— p|>21 eT(U)

+22 Z Z Z hZ(;ZlZ;n) i[{Kl (uk —hnl'k/n)K2 (de(xZ;Xik’n))}

P=1jjeH ¢la-pI<1 jeT?
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035 % T (4 e (o))

p#q lleT(U) leT(U) k=1

11 i, Up — lk/n dé)k(xk’Xik,n)
DIIDY 22 | {K( i )Kz( I )}

p=1 i1#i2 i eT(U)

= I+I0+II+IV+V+ VL (8.66)

(I): The same type of block but not the same block: Assume that the sequence of independent
blocks {n;}ien- 1s of size a,. An application of (8.65) shows that:
> 6)

2
dg, (x> Xi.n)
P| sup sup sup |n>*h¢ " (h, )Z Z Z & &, HKz(ng—k)ﬁB,l o

Z KG xeH™ ueB™
" P#q zleH(U) ir eH(U)

P( sup sup sup [n—>"*h¢ (b, )Z Z Z &,

TSI xeHM ueB™
P#4 i eHY ireH”

2 2 (i/n)
do, (X, Xiy ) dBk(xk’Xi,n )
[ﬂ o)) [ (B K Dy

k=1 k=1

:

P( sup sup sup |n~>"*h¢~' (hy, )Z Z Z &in&i

F Sy X€H™ ueB™
P4 iy A jycH

2 d, (e, XU W)
1—[ K, h—’ [%il,izwn QBH Ji2 S""] > 6)
k=1 "

-3/2 2 dek (st Xl(’l’,{n)) W)
P( sup sup sup |n"*h¢! (h, )Z Z Z &y n h—n %il,iz,w,n

S0l XEHM ueB _
¥ %4 j1eHY ipeHV =

:

<?| sup sup sup g, DY Y sk

TS XEH™ ueB™
p#q ZIEH(U) leH(U)

d s Ifi u
Kz( 92(;2 Uz)%g’;’n

(d91 (xla 771'1))
hy,

> 5) + 2v,8(b,) + op(1) + 0p(1).

By the fact that

(i/n)
E I’l_3/2]’l¢ (I’l )Z Z Z é:ll'flz [1—[ K, (de(xk’ iks n)) ﬁ (df)A(xk,X ))] %il’iz’%n
k=

p#q zleH(U)z eH(U>
2 2 (i/n)
dy (X1, Xio ) do, (x5, X; )
-3/2 s p.n k in
=n / h¢ (h )Z Z Z §l1§lz n (kh—k - KZ h— %il,iz,gp,n
k=1 n k=1 n
AIMS Mathematics Volume 9, Issue 6, 14807-14898.
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—n-3/2h¢—1<hn)i DD, G

P#4 jjeHY ireH)”

[ﬁ K (dgk(Xk, i, n)) ﬁ X, [dé)k(Xk, X(’/n)))] i (rll’ Xi’n) .
=1
LAY IDIPWTETE l—[ o )

P#4 i eHY ireH”

2 d , X(l/n) .
)

< I’l_3/2h¢_1(hn) Z Z Z filé:izE(si)(O- (u, %) + 0x(1))

P#4 jjeH}” ireH(”

2 2 (i/n)
dy, (Xic, Xipn) dg, (x, Xi,n )
[ (255 [

k=1 k=1
me"" (hy)
nhy,

E

<0 Phg !, )Z > B wx) + 0x(1)

piq 11€H(U) 12€H(U)

(where m = 2 and using Lemma 8.1 Equation (8.58))
~ op(1),

and

g (o, X1
slene o 31 3 3 e [ M-

P#4 i ireH k=1

do, (% X0\ (i
=) Y, Y Y 668 l_l [h—][“(x)“()}
%4 i en ) jyen” " "
2 d ,X(l/”) . ]
= e (b, )Z Z Z & & B(s)E nKz[ o (X )][O'(%,Xi,n) — o (u,x)
<)Y Y S 6 on(1) f ]—[Kz(yk)dﬂwk,xk)

P#4 el ieHV
P#4 i et e

n‘3/2h¢‘1(hn)z D, D EnEBE) (D)@ ()

P#4 jjeHY ireH)”

~ op(l). (8.67)

We keep the choice of b, and v,, such that

b, < 1, (8.68)

n
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which implies that 2v,a;,, — 0 as n — oo, so the term to consider is the second summand. For the
second part of the inequality, we turn to the work of [11] in the non-fixed kernel setting. Specifically,
we define

and F;, _; represents a collection of kernels and the corresponding class of functions associated with
this kernel. Subsequently, we will apply [64, Theorem 3.1.1 and Remarks 3.5.4 part 2] for decoupling
and randomization. Given our assumption that m = 2, we can observe that:

E ln~he (hn)Z Z Z lefnﬁKZ (dek(xkaﬂu)) f:@lz,w

P#q j) eH(U) zzeH(U)

FrH?
= B0 Photh) Y. >0 Y finwm)
P#4 ijeHY i,eH
! ! Firiy
< B Pheh) Y 66 D D> fin@m)
p#q ireHY ireH
g ! Firiy

D(l}jl)
< E f (t Firins nhz)dt (by Lemma A.5 and Proposition A.6) (8.69)

0

)

where D(Ul) is the diameter of ¥, ;,according to the distance d,, ,, respectively defined as

i1,i2

D .= B, n_3/2h¢(hn)zfp6q Z Z Juia(ats )

p#q ineHY ireH” 7 .
-2
2
do, (X 1;,)
_ 032 2 : | | 6 \Xk> Miy m®
B he™ (hy )Z €r€ Z &iéin K> ( 11 Jd2pin ’
p#q 11€H(U) 12€H(U)

FrK>?
and :

nhz(fl K WY &K, qBH(“))

= ‘3/2h¢ (h, )Zepeq Z Z [-fmflunKlz( oy k,nlk))%;f?z,san

p;tq 11€H(U) lzGH(U)

2 dek (Xks Uik) 11(u)
= &6, nKz,z 7 W, o || -
k=1 n

Let’s consider another semi-norm ;1(2)

v 2
1 - do, (Xi, 11i,)
72) (u) e _ O \Aks g r(u)
Qo (LKW, £ KW)  = s [Z [f”lf”zlk—[K"z( By ) e
L) =1 "
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, ) 1/2
dH (-xka ni ) 1m(u
- §2i1§2i2 l_[ KZ,Z ( - h : QBilfiZ)s‘P”’
k=1 "

One can see that
(f] QB,(M) fz K2 SIB/I(L{)) <a n_1/2h¢(h )JZ) (é:] QB/(M) §2 m/l(u))
We readily infer that

E|[n=32h¢ ™ (, )Z Z Z leftanZ (dHA(xkanlk ) f:t)lz’w

P#q j eH(U) zzeH(U)

Ty A2
D(Zl)
< czEf N(ta Tn!/?, L%,j,;llﬁ)»dt
o .
An
< e PP{D Ve, n'? > A} + cuan f log r~'dt, (8.70)
0
where 4, — 0. We have
An
(f log t‘ldt)
0 -0

b

(/l,, log A, 1)

where a, and 4, must be chosen in such a way that the following relation will be achieved
a,,n" " log 4, — 0. (8.71)
Utilizing the triangle inequality along with Hoeffding’s trick, we readily obtain that

an PP{DV > Aua,n?) (8.72)

’ 12
d91 (X1, nil)) K2 (dez(XZa niz)) EIB(M)

hn hn i ,iz,tp,n_

Un

< 2 PheT mIE| Y DL D, filfth(

p#4 |ijen iren\ T

’ 12
d@] (X] 5 r]il)) K2 (d92(x2’ 77,'2)) fIB(u)

h h i1,i2,,n ’
n n - 3”\}%/2

< cudy’ay,'nPhe™! (hy)E Z > f,-lfisz(

p=1 i1 ,izeH;U)

where {nlf}l_eN* are independent copies of (77;);cn+. By imposing:

A2al~ 'm0, (8.73)
we readily infer that

2

2
RN DY N L C ] IR

p=1 ) hy
11 lzGH (22.2%2
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Symmetrizing the last inequality in (8.72) and subsequently applying Proposition A.6 from the
Appendix yields

v, ’ 2
o 1 - _ - dy, (x1, Ni,) dgz()Cg, n; ) u
Un/ln2an1n 5/2h¢ l(hn)E Z Z EpgilfizKZ (% K h—Z %51,)1'2,%:2
p=1 i1,iz€H1(,U> " " T K2
i 12
< B [ f (log N, 7 .d,,)) ) (8.74)
0
where
DY = |[Befond;?a, ' n 7 (hy)
2
= dg, (x1,1;)) do, (X2, )\
Z € Z & &Ko ( : h : K, : h : QBEl,)iz,%n
p=1 inireHY " " T

and for & K, | W', & K>, W' € F;

(’}Zlh,z (fl.KzﬂB'(”) ; fz.Kz,zﬂB”("))

P S dy (x1, 1) dg,(x2,1")) 2
= Eelvadya,'n™%¢ l(hn)Zep Z fulfusz,l( 01 T )K2,1 (; W) )

i1,i2,,n
p=1 i1,iz€H§,U) hn hn
2
d (X], ni ) d@ (XQ,T]; ) 11(u
- Z &Ko (—61 W ' K>, SR 0 2 QBilfiz)’w
i ireHY) " "
By the fact that :
2
~ dy, (x1,1;,) dg,(x2,1;)
-2 -1_-5/2 1 6\ X1, 10i i ()
E. U"/ln a, n ¢ (hn)ZEP Z gilfisz( h, K h, SIBi1,i2,<p,n
p=l \iLieHy
L2
- dg.(x;,m;,) dg,(x2,17")
3/29-2 1|, -1 _-2,-2 g 6;\Xi> iy J ()
< a, /1n n v, q, ¢ (hn)z Z (é‘:ll‘flzKZ( hn K2 hn QBi],i2,<,0,n ’
p=liien?
S0:
a1 -0, (8.75)

we have the convergence of (8.74) to zero. For the choice of a,, b, and v,, it should be noted that all
the values satisfying (8.54), (8.68), (8.71), (8.73), and (8.74) are suitable.

(IT): The same block:

1

mfilfiz

P| sup sup sup n_3/2h¢(hn)z Z

Fu QKM xeH™ ueB™
=1 : 4+ o+ _1(U)
© P=1 iy #irsiyireH)
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K2 (dHI (x1 N Xll,ﬂ)) K2 (dez(xlz/l’ Xlz,n)) %l’l,iz’()p,n

:

hy,
Vn 1
< P|sup sup sup n~"he(h,) 5 SiiSi
t%ngg XE‘]‘E” uEBI?" ¢ Z Z ¢2(hn)é‘: 162

P=1 i #iyiiy ieH()

2 2 (i/n)
do, (Xk, Xiyn) dg, (x, Xi,n )

k=1

.

+ P| sup sup sup n_3/2h¢>(hn)z Z &i iy

TR XeH™ ueB™
> 6)

+ P| sup sup sup n_3/2h¢(h,,)z Z &in&i

TG XeH™ ueB™

P=1 i iyiiy ineHy)

2 (o XU)
[ 25 -

k=1

P=1 iy #irsiyireHY

:

dg (xz, X\

2
[ 25w

2 h iz
k=1

n

P| sup sup sup n_3/2h¢_1(hn)z Z &6, K

) (de,-(xi, 771‘1))
) 2O
T Qm Jfm " h
FnR X€H™ ueB P=1 i #iriiy ipeHy) '
dg (-xz, i
K, (zl’l—nl2 %z('r,)iz,tp,n > 0]+ 2v,a,. o
n

Similar to I, we can show that both the first and second terms in the previous inequality are of order
op(1). Therefore, as in the preceding proof, it is enough to establish

Un

- - dp, (x1,7;,) dg, (X2, 1; "
B he Y Y fi.fisz("h—n) Kz(“h— B

) - 0.
T2

Notice that when we consider a uniformly bounded class of functions, we obtain uniformity in B” X
Fr

P=1 i igsiy ineH

dg, (x1, ;) dp, (X2, 7;
Bl > fl-lf,-zlg( S T | Wisien | = Ol

T U
11¢12;11,126H§, )

This implies that we have to prove that, for u € B”

_ _ < de,-(xi, niy) dg,(x2,1;,) u
E||ln=32h¢ l(hn)z Z [filfisz( " ! )Kz( 0, - 2 iBElfizw

P=1 iy tinsiyieH

AIMS Mathematics Volume 9, Issue 6, 14807-14898.



14876

dy, (x1,7;,) dg, (X2, 1;
_E (filfisz (glh—lnl) K, (@h—zm) %il’iz’%n)]

) — 0.
T2

As for empirical processes, to prove (8.77), it suffices to symmetrize and show that

Un

d , N d s I u
E n_3/2h¢_1(hn)z Z fpfilfizlﬂ( 91();11 771)) KZ( 92();12 m))%gl’)iz’w

) - 0.
p= T #2
[ i2;il;i2€H[()U) T X

In a similar way as in (8.69), we infer that :

- _ S dg, (x1,7;,) dg, (X2, M) \ <
B||lnhe ) Y. Epfilfisz(% K, % W,
P=1 iy #insiyireHY) " " T

D 12

<B| [ (logh (u.Fid3) " .
o ,
where
Uz _ -3/27 -1 N dg, (x1,1;,)
Dnh = ||Ee|n h¢ (hn)ZEP Z &6 Ko h—
P=l iiinsiyineH Y "
dy, (x , i u
K2 62(h2 nz))ﬂBgl’)iz’%n ’ (877)
n gzjgfz

and the semi-metric 21331)2 is defined by

4>

nh,2 (fl-KQ,lﬁBl(u) ) fz.Kz,ﬂB”(u))

— — S d l(x ’ il) dz(x ) i2)
= Bl ) Y e Y (fliflez,l (%)Kz,l (%)

P=l i #iginireHy

d, (x > Ni ) d (x s i )
/(u) 0 1 6 2 //(u)
%il,ib‘ﬁsn — £i&2jKs (—1 I — | Kpp | ——= I 2 %il’iz’%n )

Since we are trading uniformly bounded classes of functions, we infer that

Un d s Ifi d > i
E. n—3/2h¢—1(hn)Zep Z ‘fhé:izKZ( ot nl))Kz( e ’72))%57’)1_2’%”

h h
=l iy ieHY " "
1 dy, (x1, 1)
3/2 \—17, 1—1 O\ i
<& hg )| — > ). (filfisz(%)
Undyy p=1 e o () n
t];ttz,t],tzer

1/2

dy,(x2,1;) ?
KZ(GZ—W)QB(”) ) <O(a*m) ¢ (hy).

h i1,02,.1
n

Since a, *(n)'¢~"(h,) — 0, D> — 0, we obtain Il — 0 as n — co.
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(IIT): Different types of blocks:

N N dy, (x1, X;,)
P| sup sup sup sup ———&ié 2(1—
FmKG 0€O™ xeH™ ueB™ pzz; i1g;;m q;|qZpl|>2 Z.Z;U) ¢2(hn) hn
d, , X;
K2 (@(Xh;ﬂ) QBI.]JL%" > 6)
< P|sup sup sup [n g7 () DT DT DT Y o =48,

¢2(h )

.

P( sup sup sup [n>"*he~ (h, )Z Z Z Z & &,

m m m
TG xeH™ ueB p= 1116H<U)q|q p|>212€T(U)

2 (da X))
K, [9"—1"] (98,0 -2 > 5)
k=1

hn 11,12,p,n
+P( sup sup sup n_3/2h¢_l(h,,)i Z i Z &in&i

TS xeHm ueB” — ,
" P=1 iy eH®) G132 eV

2 (i/n)
dg, (xi, X
| |K2[M]SIB(.”). >5).
h 11,02,,n
k=1 n

As mentioned earlier, we have addressed the first and second summands in the previous inequality.
What remains is the last summation, where the application of (8.65) reveals that

o A

ieHYD 4g-p>2 jer®

ZE P h () Y Z D, bika

l]EH(U) q:lg—p|>2 12€T(U)

dg, (x1,1;,) dg,(x2, i) (u)
o (B ()

g m m GBWI
Fnfig xeH™ u =1 etV ¢lg=pl>2 jpeTV

2 2 (i/n)

d, s Ajp.n d k(x ’X )
—[ ( ek(Xk o )) H ( 0 Xk )] gBh,iz,cp,n
k=1 k=

n

F—|

FrH?

+n7h¢™ (hy)vpanbaBlay),
T A2

we have
n=2¢~ (hyyvaub,Blay) — 0,
using Condition (8.63) and the choice of a,, b, and v,. For p=1and p = v,:

Un d ,Xi d ’Xi
gy Y Y filfisz( ! 1))K2( — 2))%5732,%

h h
. n n
e\ ¢la-pPP2 jerV

Fr
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Un

. - do, (x1, X)) dp,(x2, X;,) u
= E|n 3/2h¢ l(hn) Z Z Z fl]‘fizKZ( d h ] )KZ( = h - %5]32,%”
ileH(lU) q=3 izeT,(,U) " ! Fr 2
For2 < p <wv, -1, we obtain :
_ _ S do, (x1, X;,) d, (X2, X)) \ 1w
Bln2hg ™ () > fi.fisz( e LS) el RIS
ieH a:la=pl>2 jer(® " ! Ty 2
. - S do, (x1, X3,) dp,(x2, X;,) u
= E|n 3/2h¢ l(hn) Z Z Z fﬂ‘fizKZ( d h ] )KZ( > h - QBI('l,)l'z,tP,n
ieH\Y =4 jerV) " " T
_ _ S dp, (x1, Xiy) de, (X2, X)) \ 1w
< Efn 3/2h¢ l(hn) Z Z Z é:ilé:isz( l h : K> : h . QBZ('l,)iz,%n ’
i1€HEU) q=3 izeTéw " " Ty 2
therefore it suffices to treat the convergence:
_ _ N dp, (x1,1,) dg,(x2,1i,)
3/2 1 e 01 \A1s 1 () 2 (u)
E Jvan*he™ (hy) ZU 2 _ZU a.f,sz( ) K| T Wi —0-878)
z.eHi ) =3 zzeT,(] ) 2
Using similar arguments as in [13], we apply the standard symmetrization and:
N do, (x1,1;) do, (X2, M) \ g
Bllownhe ™ (R DT DT g,-lgisz( - ) Kz( . )mgl;w
i eg O q=3 7@ n n T 2
i1€H| 9=2 ieT,

N d s i d s Ifi
<2B | Phe ) YD iy Kz( 01(?2 ’71)) Kz( 02();12 nz))%ﬁﬁw
ieH\" 4=3 ierV " n T 2
= 2B |lv,n 2 he ! (hy) Z i Z €& &Ko do, (x1,1iy)
n n qSi1Siy h
ileHﬁy) q=3 izeT,(IU)
dg, (X2, 7; “
KZ( 92();12 r/z))ﬂBgl’)iz’%n ]I{D(U4)< }
n Fr A2 b STn
= dg, (x1,1:))
- - 0 1> 1fi
+2E Uph 3/2h¢ 1(hn) Z Z Z eqé:ilé‘:isz( 1 h | )
neH” 4=3 jher? "
1 q
dg,(x2,1M;,)
Ko [ 22220 ™) 1
2( i B P2 (Do)
= 2111, + 2III,, (8.79)
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where

DY = oy | S Yy g,lg,sz(d”‘(x“”“))

q= 3 lzGT(U)IIEH(U)

172
dy, (2.1, ?
Kz(—"z(’;f "2))1357;2%") l (8.80)
" Fr A
In a similar way as in (8.69), we infer that
Yn 74) 1/2
M <c; | (logN(t, Ziindy,)) dt, (8.81)
0

where

ijl)z(flK W, &K slBN(M)) Ee [vun*?h™" (hn) Z Z Z € [fmfusz,l (—dgl(XI’m'))

h
n
ineH\" 4=3 perV

d s i (u d| s 110y dz s iy 1(u
XKZ,] (M)%() _ 621']62,'2]{2’2( H(X] 77 ))KZ,Z( (% ('xz T] ))QB() ] .

hn 1,02,,1 hn hn 1,12,,n

Since we have

_ _ N dg, (x1, i) dg,(x2,1;,) u
]EE uphn 3/2h¢ l(hl’l) Z Z Z quilfisz( - hl L )Kz( : h2 ! )QB;,)iz,(p,n

ieH\Y 4=3 etV

< a;l/zbnh2¢(hrl) b Un;2¢4(h ) Z Z Z

H(U) q= ’3 T(U)

d91 (xl’ '71‘1))

[filfisz ( I

1/2

d92 ('x27 niz) (u) ?
K> ( h, mil,iz,%ﬂ ’

and considering the semi-metric

), (61K WY, & K> 0 )

= : Z i Z [flilfusz,l(

anb Unh2¢4(h ) H(U) q=3 ; T(U)

dﬁ](-xh nh))Kz’l (dez(XZ’ niz)) SIB,(M)

hn hn 11,02,,1

1/2
d(X,l') d(x»i) 11(u ?
— &6 Kon (th—lnl) K>» ( 0> hz Ni %ilfiz)’%n
We show that the expression in (8.81) is bounded as follows
1/2b 1 1/2h2 1/2
1/2b I’l_l/2h2¢(h )f (IOgN( i1ins &;(51)’2)) dt,
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by choosing y, = n™* for some a > (17r — 26)/60r, we get the convergence to zero of the previous
quantity. To bound the second term on the right-hand side of (8.79), we observe that

N dg, (x1,7;
R S AT YDIDIT TN AL S

ire”\" 4=3 jer(”

M) n Ly
yzjz {Dnh4 >'}’n}

K> h, iz
< a;'bn'Phg” ()PP R e h) D Y D G
q=3

2
K, (d91 (x1, 77:'1)) K, dg, (x2, 771'2)) I

h, h, i1,i2,.n > 75} (8.82)

Ty K2

Now, we apply the square root trick to the last expression conditional on HY. Denoting Ey as the
expectation with respect to o{n;, : i» € T,,q > 3}, we assume that any class of functions .%#,, is
unbounded, and its envelope function satisfies, for some p > 2:

0, := sup E(FP(Y)X =t) < oo, (8.83)

teS7,

for 2r/(r — 1) < s < oo, (in the notation in of [89, Lemma 5.2]).

M, = v,’Er Z Z filfisz(

O) jey V)

d9| (XI’Xi,')) Kz (dez(x27Xij)) QB(M)

S s
hn hn 1,02,,n
JeTy

where
t =y’ n'?h¢™ (h,), p=2A=2"ya n'"*n'¢7*(h,),

and

m = exp (yanh®¢(h,)b,?).
Nevertheless, since we require t > 8M, and m — oo, using similar arguments as in [13, page 69], we
achieve the convergence of (8.81) and (8.82) to zero.

(IV): Different types of blocks: The target here is to prove that:

dp, (x1, X; dg, (X2, X;
P| sup sup sup sup Z Z Z Z fllf,sz( 0, (X1 1)) ( 02();2 2))%i1,i2,¢p,n

m g m ueB™M
TSy 0€O™ xeH™ u H(U) ¢:lg—pI<l j, en(U)

>§)—>0.

We have

dg (XI,X(”/n)) d@ (.Xz,X;iZ/n)) .
I WPMSTVA LA PRE AR

p=l ey a:la-pIsl eTW)

Fr A2
< cuayb,n” mh(/) (h,) — 0.

Hence the proof of the lemma is complete. O
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Appendix
A. Additional information

This appendix includes additional information that is integral to achieving a more comprehensive
understanding of the paper.

Lemma A.1 ( [165]). Let I, = [C1h,1 — C\h]. Suppose that kernel K, satisfies Assumption 2 part(i).
Then, forq =0,1,2 and m > 1:

Z l—l X (uk — zk/n) (uk — zk/n)
nmhm

ic [m —

S L e ) e Y - ola)

Lemma A.2 ([165]). Suppose that kernel K, satisfies Assumption 2 part (i) and let g : [0, 1]X7 — R,
(u,x) — g(u, x) be continuously differentiable with respect to u. Then,

Zl—[ (uk—lk/n)( ) Hg(uk,xk)

el k=1

Im

sup
u€ly

( e ) + o(hy). (A.1)

< b, with a-mixing

Lemma A.3 ( [124]). Let {Z;,} be a zero-mean triangular array such that |Z,-,n
coefficients a(k). Then, for any € > 0 and S, < n with € > 4S ,b,,

2

i=1

i,i(ua Xx) 6402

SnS

82 n
" bnSn] +4S—na(Sn). (A.2)

28] §4exp[

< b, with B-mixing coefficients

Lemma A 4. Let {Z;,} be a zero-mean triangular array such that |Zl~,n
B(k). Then, for any € > 0 and S, < n with € > 4S5 ,b,,

P(
i=1

2

&
+—88bS
3¢UnIn

Z Z;.(u, x)
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Proof of Lemma A.4. Using Lemma A.3 and the fact that for any o-algebra A and B, a(A,B) C
B(A, B), Lemma A.7 holds. O

Lemma A.5 ( [63]). Let Xy, ..., X, be a sequence of independent random elements taking values in a
Banach space (B, || - ||) with EX; = 0 for all i. Let {&;} be a sequence of independent Bernoulli random
variables independent of {X;}. Then, for any convex increasing function @,

ZXiSi ZXZ ZXisi
i=1 i=1 i=1
Proposition A.6 ( [11]). Let {X; : i € n} be a process satisfying, form > 1:
1/ p—1\"? 1/
(Elx - x{")" < (qj) Elx-x{)". 1<g<p<oo,

E(I)l
2

SE(D[

<E0 (2

and the semi-metric :
172

ot = (B]% - X))

There exists a constant K = K(m) such that :

D
E sup ||X,~ - Xj” < Kf [log N(e,n,p)]m/zde,
i,jen 0

where D is the p-diameter of n.

Lemma A.7 ( [61]). Suppose that X and Y are random variables which are 4 and 7¢-measurable,
respectively, and that E|X|P < oo, E|Y|? < oo, where p > 0,

g>1Lplt+qg'<1.

Then,
[EXY — EXEY| < 8| X||,IYIl, [, 7)) 7~

Proof of Lemma A.7. This Lemma follows directly using Lemma A.7 and the fact that for any

o-algebra A and B, a(A, B) C (A, B). O
Lemma A.8 ([180]). Let Vi, ..., V. be strongly mixing random variables measurable with respect to
the o-algebras 5{.’1‘, o Flrespectively with 1 < iy < j1 <ip < -+ < jp < iy —ji>w>1and

i

|Vj| <lforj=1,...,L Then,

< 16(L — Da(w),

E[ﬁ Vj] - ﬁ E(V))

J=1 J=1

where a(w) is the strongly mixing coefficient.
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Al. Examples of classes of functions

Example A.9. The set ¥ of all indicator functions Wy of cells in R satisfies :

2

Ve 7.d?) < 2,

for any probability measure P and € < 1. Notice that :

1 1 00
f log (—)de < f u'? exp(—u)du < 1.
0 € 0

For more details and discussion on this example refer to Example 2.5.4 of [178] and [114, p. 157].

The covering numbers of the class of cells (—oo, t] in higher dimension satisfy a similar bound, but with
higher power of (1/€), see Theorem 9.19 of [114].

Example A.10. (Classes of functions that are Lipschitz in a parameter, Section 2.7.4 in [178]). Let %
be the class of functions x — ¢(t, x) that are Lipschitz in the index parameter t € T. Suppose that:

le(t1, x) = @(t2, )| < d(ty, 12)K(x)

for some metric d on the index set T, the function «(-) defined on the sample space X, and all x.
According to Theorem 2.7.11 of [178] and Lemma 9.18 of [114], it follows, for any norm || - || # on %,
that :

N(elFllz, 7, - =) < N(e/2,T,d).

Hence if (T, d) satisfy

J(co,T,d) = f Vlog N(e, T, d)de < oo,
0

then the conclusions holds for 7.

Example A.11. Let us consider as an example the classes of functions that are smooth up to order
a defined as follows, see Section 2.7.1 of [178] and Section 2 of [177]. For 0 < a < oo let |a] be
the greatest integer strictly smaller than a. For any vector k = (ky,...,ky) of d integers define the
differential operator

i

d
W, where k = kl'.

i=1

D: =

Then, for a function f : X — R, let

b

DFf(x) — D
11l = max sup D £(o) + max sup 2L D=L IO
k<la] k=la] ||x_y||a—|_a/J

where the suprema are taken over all x,y in the interior of X with x # y. Let C4,(X) be the set of all
continuous functions f : X — R with
Iflle < M.

Note that for a < 1 this class consists of bounded functions f that satisfy a Lipschitz condition. [112]
computed the entropy of the classes of C},(X) for the uniform norm. As a consequence of their
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results, [177] shows that there exists a constant K depending only on a,d and the diameter of X such
that for every measure y and every € > 0,

d/a
log N1 1(eMy(X), Cyy(X), La(y)) < K(E) ,

N | is the bracketing number; refer to Definition 2.1.6 of [178] and we refer to Theorem 2.7.1 of [178]
for a variant of the last inequality. By Lemma 9.18 of [114], we have

d/a
log N(eMy(X), Cy(X), Ly(y)) < K(Z_e) )

A2. Examples of U-kernels

In this section, we present some classical U-kernels.

Example A.12. [99] introduced the parameter

A= f f DX(y1,y2)dF (31, 2),

where D(y1,y,) = F(y1,y2) — F(y1, 0)F(c0,y,) and F(-,-) is the distribution function of Y, and Y,. The
parameter A has the property that A = 0 if and only if Y| and Y, are independent. From [117], an
alternative expression for A can be developed by introducing the functions

I if y<y1 <ys,
U (1,y2,¥3) = 0 if yi<ynysory =y,ys,
=1 if y3<y1 <y,

and

1
h(V11,Y125 Y51, Y52) = Zl/’()’l,la)’l,27y1,3) U1, Y14915) ¥ 012,322, Y32) ¥ (V125 Va2, Y52) -

We have
A= f--~fh()71,1,y1,2,--~,YS,I,yS,Z)dF()’Ll,yl,z)~--dF(YI,S’y2,5)~

Example A.13. (Hoeffding’s D). From the symmetric kernel,

hp (z1,...,25)
1
=15 Z HT (zi1 < 2is1) = 1 (21 < Zis,)H (2o < 2isat) = 1 (zig1 < 2isa1)]
(i],...,is)eps

X [{]l (Zi1,2 < Zi5,2) -1 (Ziz,2 < Zi5,2)} {]l (Zi3,2 < Zl'5,2) -1 (Zi4,2 < Zi5,2)}] >

we recover Hoeffding’s D statistic, a rank-based U-statistic of order 5, and gives rise to Hoeffding’s D
correlation measure Ehp.
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Example A.14. (Blum-Kiefer-Rosenblatt’s R). The symmetric kernel

hR(Zl’“'aZG)

X [{]l (Zi1,2 < Ziel) -1 (Ziz,z < Zi6,2)} {]l (Zi3,2 < Zi6,2) -1 (Zi4,2 = Zis,z)}]
vields Blum-Kiefer-Rosenblatt’s R statistic ( [24]),

Example A.15. (Bergsma-Dassios-Yanagimoto’s v*). [21] introduced a rank correlation statistic as a
U-statistic of order 4 with the symmetric kernel

h‘r* (Zl 7'-'7Z4)

1
= Z {1 (ziy15 Zist < Zigt> Zig1) + 1 (2iy15 Zig1 < Zig1s Zis1)

-1 (Zil,la Tig1 < Zi2,1,2i3,1) -1 (Zi2,1,2i3,1 < Zil,laZi4,l)}

X AL (212, 2132 < Zi2sZig2) + 1 (2iy25 Zig2 < 2012 2i32)

_]]- (Zi1,27 Zi4,2 < Ziz,Za Zi3,2) - ]l (Zi2,27 Zi3,2 < Zi|,2’ Zi4,2)}
Here, 1 (y1,y2 <y3,¥4) =1 (y1 <y3) L(y1 <ya) L(y2 <y3) L(y2 < ys).

Example A.16. The Wilcoxon Statistic. Suppose that E C R is symmetric around zero. As an estimate
of the quantity

[ Plin - 1)dreodro,
(xy)EE

it is pertinent to consider the statistic
W, = PRER! 1},
n n(n _ 1) X +X; >0}
I<i<j<n
which is relevant for testing whether or not u is located at zero.

Example A.17. The Takens estimator. Denote by || - || the usual Euclidean norm on RY. In [29], the
following estimate of the correlation integral,

CF(r) = fﬂ{llx—x’||<r}dF(x)dF (X,) . r > 0,

is considered:

Cu(r) = —— n(n _1) Z {||1x:—x||<r}

1<i#j<n

In the case where a scaling law holds for the correlation integral, i.e., when there exists (a, ry, c) € R*ﬁ
such that Cg(r) = ¢ - r™® for 0 < r < ry, the U-statistic

5 el
n(n—) &

1<i#j<n

is used in order to build the Takens estimator &, = =T, of the correlation dimension a.
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Example A.18. Let ﬁz denote the oriented angle between Y,,Y, € T, T is the circle of radius 1 and
center 0 in R%. Let:
h(Y1,Y,) = 1{Y Y, <t} —t/n, for t € [0,n).

Reference [159] has used this kernel in order to propose a U-process to test uniformity on the circle.
Example A.19. For m = 3, let :
oY1, Y2, Y3) =1{Y; - Y, - Y3 > 0},
We have
re,t1,0,6) =PV > Yo + V3 | X1 = X2 = X3 = 1)

and the corresponding conditional U-Statistic can be considered a conditional analog of the
Hollander-Proschan test-statistic ( [101]). It may be used to test the hypothesis that the conditional
distribution of Y, given X, = t, is exponential, against the alternative that it is of the New-Better
than-Used-type.

Example A.20. The Gini mean difference. The Gini index provides another popular measure of
dispersion. It corresponds to the case where E C R and h(x,y) = |x —y| :

2
oo s 3, =

1<i<j<n

Example A.21 ( [113]). Let the sample central moments of any order m = 2,3, ... be given by
0,(F)=E(X; -EX))" = f(x - EX))"dF (x).

In this case, the U-statistic has a symmetric kernel
1 m m—1
h(.)ﬁ,...,xm):%z x?f_ 1 xil i

m\ .- m— m
+( 2 )xil zxizxi3_'..+(_1) 1(( m_l )_]‘)xilxiz"'xim]’

where summation is carried out over all permutations (iy,...,i,) of the numbers (1,...,m). In
particular, if m = 3, then

1 1
h(xy,x0,x3) = 3 (x? + xg + xg) -3 (x%xg + x%xl + xfx3 + x%xl + x%x3 + x%xz) + 2X1 X2X3.

In the case of m = 2,

0,(F) = E(X, - EX))* = f (x — EX))*dF(x).

For the kernel ) )
X5+ x5—-2x1x 1
L2 == (x1 —x0)*.

h(xy,x) = 5 5
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the corresponding U-statistic is the sample variance

U, () = —2 > h(xx))

n(n—1) 1<i<j<n
1 = 1 ¢ ’
= X?P-ni{-)> X} |=

we refer also to [155].
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