Research article Special Issues

Nature-Inspired Metaheuristic Algorithm with deep learning for Healthcare Data Analysis

  • Received: 28 November 2023 Revised: 22 February 2024 Accepted: 05 March 2024 Published: 01 April 2024
  • MSC : 11Y40

  • Cardiovascular disease (CVD) detection using deep learning (DL) includes leveraging advanced neural network (NN) models to analyze medical data, namely imaging, electrocardiograms (ECGs), and patient records. This study introduces a new Nature Inspired Metaheuristic Algorithm with Deep Learning for Healthcare Data Analysis (NIMADL-HDA) technique. The NIMADL-HDA technique examines healthcare data for the recognition and classification of CVD. In the presented NIMADL-HDA technique, Z-score normalization was initially performed to normalize the input data. In addition, the NIMADL-HDA method made use of a barnacle mating optimizer (BMO) for the feature selection (FS) process. For healthcare data classification, a convolutional long short-term memory (CLSTM) model was employed. At last, the prairie dog optimization (PDO) algorithm was exploited for the optimal hyperparameter selection procedure. The experimentation outcome analysis of the NIMADL-HDA technique was verified on a benchmark healthcare dataset. The obtained outcomes stated that the NIMADL-HDA technique reached an effectual performance over other models. The NIMADL-HDA method provides an adaptable and sophisticated solution for healthcare data analysis, aiming to improve the interpretability and accuracy of the algorithm in terms of medical applications.

    Citation: Hanan T. Halawani, Aisha M. Mashraqi, Yousef Asiri, Adwan A. Alanazi, Salem Alkhalaf, Gyanendra Prasad Joshi. Nature-Inspired Metaheuristic Algorithm with deep learning for Healthcare Data Analysis[J]. AIMS Mathematics, 2024, 9(5): 12630-12649. doi: 10.3934/math.2024618

    Related Papers:

  • Cardiovascular disease (CVD) detection using deep learning (DL) includes leveraging advanced neural network (NN) models to analyze medical data, namely imaging, electrocardiograms (ECGs), and patient records. This study introduces a new Nature Inspired Metaheuristic Algorithm with Deep Learning for Healthcare Data Analysis (NIMADL-HDA) technique. The NIMADL-HDA technique examines healthcare data for the recognition and classification of CVD. In the presented NIMADL-HDA technique, Z-score normalization was initially performed to normalize the input data. In addition, the NIMADL-HDA method made use of a barnacle mating optimizer (BMO) for the feature selection (FS) process. For healthcare data classification, a convolutional long short-term memory (CLSTM) model was employed. At last, the prairie dog optimization (PDO) algorithm was exploited for the optimal hyperparameter selection procedure. The experimentation outcome analysis of the NIMADL-HDA technique was verified on a benchmark healthcare dataset. The obtained outcomes stated that the NIMADL-HDA technique reached an effectual performance over other models. The NIMADL-HDA method provides an adaptable and sophisticated solution for healthcare data analysis, aiming to improve the interpretability and accuracy of the algorithm in terms of medical applications.



    加载中


    [1] M. A. Qureshi, K. N. Qureshi, G. Jeon, F. Piccialli, Deep learningbased ambient assisted living for self-management of cardiovascular conditions, Neural Comput. Appl., 34 (2022), 10449–10467. https://doi.org/10.1007/s00521-020-05678-w doi: 10.1007/s00521-020-05678-w
    [2] W. A. W. A. Bakar, N. L. N. B. Josdi, M. B. Man, M. A. B. Zuhairi, A review: Heart disease prediction in machine learning & deep learning, 19th IEEE Int. Colloq. Signal Process. Appl. (CSPA), 2009. https://doi.org/10.1109/CSPA57446.2023.10087837
    [3] P. Wang, Z. Lin, X. Yan, Z. Chen, M. Ding, Y. Song, et al., A wearable ECG monitor for deep learning based real-time cardiovascular disease detection, 2022, arXiv: 2201.10083, https://doi.org/10.48550/arXiv.2201.10083
    [4] Y. A. Z. A. Fajri, W. Wiharto, E. Suryani, Hybrid model feature selection with the bee swarm optimization method and Q-learning on the diagnosis of coronary heart disease, Information, 14 (2022), 1–15. https://doi.org/10.3390/info14010015 doi: 10.3390/info14010015
    [5] I. S. Brites, L. M. Silva, J. L. Barbosa, S. J. Rigo, S. D. Correia, V. R. Leithardt, Machine learning and IoT applied to cardiovascular diseases identification through heart sounds: A literature review, Informatics, 8 (2021), 73. https://doi.org/10.3390/informatics8040073 doi: 10.3390/informatics8040073
    [6] U. Nagavelli, D. Samanta, P. Chakraborty, Machine learning technology-based heart disease detection models, J. Healthcare Eng., 2022 (2022), Article ID 7351061. https://doi.org/10.1155/2022/7351061 doi: 10.1155/2022/7351061
    [7] C. Kim, G. Lee, H. Oh, G. Jeong, S. W. Kim, E. J. Chun, et al., A deep learning–based automatic analysis of cardiovascular borders on chest radiographs of valvular heart disease: Development/external validation, Eur. Radiol., 32 (2022), 1558–1569, https://doi.org/10.1007/s00330-021-08296-9 doi: 10.1007/s00330-021-08296-9
    [8] B. Kolukisa, B. Bakir-Gungor, Ensemble feature selection and classification methods for machine learning-based coronary artery disease diagnosis, Comput. Stand. Inter., 84, 1–11. https://doi.org/10.1016/j.csi.2022.103706
    [9] M. K. Malnajjar, S. S. Abu-Naser, Heart Sounds Analysis and Classification for Cardiovascular Diseases Diagnosis Using Deep Learning, 2022.
    [10] P. K. Shrivastava, M. Sharma, P. Sharma, A. Kumar, HCBiLSTM: A hybrid model for predicting heart disease using CNN and BiLSTM algorithms, Meas. Measurement: Sensors, 25 (2023), 100657. https://doi.org/10.1016/j.measen.2022.100657 doi: 10.1016/j.measen.2022.100657
    [11] A. Khanna, P. Selvaraj, D. Gupta, T. H. Sheikh, P. K. Pareek, V. Shankar, Internet of things and deep learning enabled healthcare disease diagnosis using biomedical electrocardiogram signals, Expert Syst., 40 (2021), 1–15, https://doi.org/10.1111/exsy.12864 doi: 10.1111/exsy.12864
    [12] A. Rath, D. Mishra, G. Panda, S. C. Satapathy, Heart disease detection using deep learning methods from imbalanced ECG samples, Biomed. Signal Proces., 68 (2021), 102820. https://doi.org/10.1016/j.bspc.2021.102820 doi: 10.1016/j.bspc.2021.102820
    [13] S. Iftikhar, M. Golec, D. Chowdhury, S. S. Gill, S. Uhlig, FogDLearner: A deep learning-based cardiac health diagnosis framework using fog computing, 2022 Australasian Computer Science Week, 2022. https://doi.org/10.1145/3511616.3513108
    [14] S. Ahmad, M. Z. Asghar, F. M. Alotaibi, Y. D. Alotaibi, Diagnosis of cardiovascular disease using deep learning technique, Soft Comput., 27 (2023), 8971–8990. https://doi.org/10.1007/s00500-022-07788-0 doi: 10.1007/s00500-022-07788-0
    [15] S. Hussain, S. K. Nanda, S. Barigidad, S. Akhtar, M. Suaib, N. K. Ray, Novel deep learning architecture for predicting heart disease using CNN. 19th OITS international conference on information technology (OCIT), 2021, IEEE. https://doi.org/10.1109/OCIT53463.2021.00076
    [16] H. Bensenane, D. Aksa, F. W. Omari, A. Rahmoun, A deep learning-based cardio-vascular disease diagnosis system, Indones. J. Electr. Eng. Comput. Sci., 25 (2022), 963–971. https://doi.org/10.11591/ijeecs.v25.i2.pp963-971 doi: 10.11591/ijeecs.v25.i2.pp963-971
    [17] F. Ali, S. El-Sappagh, S. M. R. Islam, D. Kwak, A. Ali, M. Imran, et al., A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion, Inform. Fusion, 63 (2020), 208–222. https://doi.org/10.1016/j.inffus.2020.06.008 doi: 10.1016/j.inffus.2020.06.008
    [18] A. Najafi, A. Nemati, M. Ashrafzadeh, S. H. Zolfani, Multiple-criteria decision making, feature selection, and deep learning: A golden triangle for heart disease identification, Eng. Appl. Artif. Intel., 125 (2023), 1–18. https://doi.org/10.1016/j.engappai. 2023.106662 doi: 10.1016/j.engappai.2023.106662
    [19] M. H. Sulaiman, Z. Mustaffa, Optimal chiller loading solution for energy conservation using Barnacles Mating Optimizer algorithm, Results Control Optim., 7 (2022), 1–12. https://doi.org/10.1016/j.rico.2022.100109 doi: 10.1016/j.rico.2022.100109
    [20] M. Mafarja, T. Thaher, M. A. Al-Betar, J. Too, M. A. Awadallah, I. Abu Doush, et al., Classification framework for faulty-software using enhanced exploratory whale optimizer-based feature selection scheme and random forest ensemble learning, Appl. Intel., 53 (2023), 18715–18757. https://doi.org/10.1007/s10489-022-04427-x doi: 10.1007/s10489-022-04427-x
    [21] M. Chen, H. Yang, B. Mao, K. Xie, C. Chen, Y. Dong, An ensemble forecast wind field correction model with multiple factors and Spatio-Temporal features, Atmosphere, 14 (2023), 1–23. https://doi.org/10.3390/atmos14111650 doi: 10.3390/atmos14111650
    [22] H. Yu, Y. Wang, H. Jia, L. Abualigah, Modified prairie dog optimization algorithm for global optimization and constrained engineering problems, Math. Biosci. Eng., 20 (2023), 19086–19132. https://doi.org/10.3934/mbe.2023844 doi: 10.3934/mbe.2023844
    [23] Heart Disease Dataset. Available from: https://www.kaggle.com/datasets/sid321axn/heart-statlog-cleveland-hungary-final
    [24] M. Obayya, J. M. Alsamri, M. A. Al-Hagery, A. Mohammed, M. A. Hamza, Automated cardiovascular disease diagnosis using Honey Badger Optimization with modified deep learning model, IEEE Access, 11 (2023), 64272–64281. https://doi.org/10.1109/ACCESS.2023. 3286661 doi: 10.1109/ACCESS.2023.3286661
    [25] A. K. Dubey, K. Choudhary, R. Sharma, Predicting heart disease based on influential features with machine learning, Intell. Autom. Soft Comput., 30 (2021), 929–943, https://doi.org/10.32604/iasc.2021.018382 doi: 10.32604/iasc.2021.018382
    [26] N. Mary, B. Khan, A. A. Asiri, F. Muhammad, S. Alqhtani, K. M. Mehdar, et al., Investigating of classification algorithms for heart disease risk prediction, J. Intell. Med. Healthcare, 1 (2022), 11–31. https://doi.org/10.32604/jimh.2022.030161 doi: 10.32604/jimh.2022.030161
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(873) PDF downloads(72) Cited by(1)

Article outline

Figures and Tables

Figures(12)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog