Research article

Asymptotic behavior of a stochastic hybrid SIQRS model with vertical transmission and nonlinear incidence

  • Received: 10 February 2024 Revised: 25 March 2024 Accepted: 27 March 2024 Published: 01 April 2024
  • MSC : 60H10, 92D30

  • We studied a class of a stochastic hybrid SIQRS model with nonlinear incidence and vertical transmission and obtained a threshold $ \Delta $ to distinguish behaviors of the model. Concretely, the disease was extinct exponentially when $ \Delta < 0 $. If $ \Delta > 0 $, the model we discussed admitted an invariant measure. A new class of the Lyapunov function was constructed in proving the latter conclusion. Some remarks were presented to shed light on the major results. Finally, several numerical simulations were provided to test the reached results.

    Citation: Shan Wang, Feng Wang. Asymptotic behavior of a stochastic hybrid SIQRS model with vertical transmission and nonlinear incidence[J]. AIMS Mathematics, 2024, 9(5): 12529-12549. doi: 10.3934/math.2024613

    Related Papers:

  • We studied a class of a stochastic hybrid SIQRS model with nonlinear incidence and vertical transmission and obtained a threshold $ \Delta $ to distinguish behaviors of the model. Concretely, the disease was extinct exponentially when $ \Delta < 0 $. If $ \Delta > 0 $, the model we discussed admitted an invariant measure. A new class of the Lyapunov function was constructed in proving the latter conclusion. Some remarks were presented to shed light on the major results. Finally, several numerical simulations were provided to test the reached results.



    加载中


    [1] Number of COVID-19 cases reported to WHO, World health organization, 2024, Available from: https://covid19.who.int/.
    [2] Z. Feng, H. Thieme, Recurrent outbreaks of childhood diseases revisited: the impact of isolation, Math. Biosci., 128 (1995), 93–130. http://dx.doi.org/10.1016/0025-5564(94)00069-C doi: 10.1016/0025-5564(94)00069-C
    [3] X. Zhang, X. Zhang, The threshold of a deterministic and a stochastic SIQS epidemic model with varying total population size, Appl. Math. Model., 91 (2021), 749–767. http://dx.doi.org/10.1016/j.apm.2020.09.050 doi: 10.1016/j.apm.2020.09.050
    [4] L. Wang, N. Huang, D. O'Regan, Dynamics of a stochastic SIQR epidemic model with saturated incidence rate, Filomat, 32 (2018), 5239–5253. http://dx.doi.org/10.2298/FIL1815239W doi: 10.2298/FIL1815239W
    [5] Y. Zhou, D. Jiang, Dynamical behavior of a stochastic SIQR epidemic model with Ornstein-Uhlenbeck process and standard incidence rate after dimensionality reduction, Commun. Nonlinear Sci., 116 (2023), 106878. http://dx.doi.org/10.1016/j.cnsns.2022.106878 doi: 10.1016/j.cnsns.2022.106878
    [6] G. Zhang, Z. Li, A. Din, A stochastic SIQR epidemic model with Lévy jumps and three-time delays, Appl. Math. Comput., 431 (2022), 127329. http://dx.doi.org/10.1016/j.amc.2022.127329 doi: 10.1016/j.amc.2022.127329
    [7] H. Hethcote, Z. Ma, S. Liao, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci., 180 (2002), 141–160. http://dx.doi.org/10.1016/S0025-5564(02)00111-6 doi: 10.1016/S0025-5564(02)00111-6
    [8] N. Du, N. Nhu, Permanence and extinction for the stochastic SIR epidemic model, J. Differ. Equations, 269 (2020), 9619–9652. http://dx.doi.org/10.1016/j.jde.2020.06.049 doi: 10.1016/j.jde.2020.06.049
    [9] B. Zhou, B. Han, D. Jiang, Ergodic property, extinction and density function of a stochastic SIR epidemic model with nonlinear incidence and general stochastic perturbations, Chaos Soliton. Fract., 152 (2021), 111338. http://dx.doi.org/10.1016/j.chaos.2021.111338 doi: 10.1016/j.chaos.2021.111338
    [10] T. Tang, Z. Teng, Z. Li, Threshold behavior in a class of stochastic SIRS epidemic models with nonlinear incidence, Stoch. Anal. Appl., 33 (2015), 994–1019. http://dx.doi.org/10.1080/07362994.2015.1065750 doi: 10.1080/07362994.2015.1065750
    [11] W. Zhang, X. Meng, Y. Dong, Periodic solution and ergodic stationary distribution of stochastic SIRI epidemic systems with nonlinear perturbations, J. Syst. Sci. Complex., 32 (2019), 1104–1124. http://dx.doi.org/10.1007/s11424-018-7348-9 doi: 10.1007/s11424-018-7348-9
    [12] X. Zhao, X. He, T. Feng, Z. Qiu, A stochastic switched SIRS epidemic model with nonlinear incidence and vaccination stationary distribution and extinction, Int. J. Biomath., 13 (2020), 2050020. http://dx.doi.org/10.1142/S1793524520500205 doi: 10.1142/S1793524520500205
    [13] A. El Koufi, A. Bennar, N. Yousfi, M. Pitchaimani, Threshold dynamics for a class of stochastic SIRS epidemic models with nonlinear incidence and Markovian switching, Math. Model. Nat. Pheno., 16 (2021), 55. http://dx.doi.org/10.1051/mmnp/2021047 doi: 10.1051/mmnp/2021047
    [14] X. Guo, J. Luo, Stationary distribution and extinction of SIR model with nonlinear incident rate under Markovian switching, Physica A, 505 (2018), 471–481. http://dx.doi.org/10.1016/j.physa.2018.02.024 doi: 10.1016/j.physa.2018.02.024
    [15] W. Wei, W. Xu, J. Liu, Y. Song, S. Zhang, Dynamical behavior of a stochastic regime-switching epidemic model with logistic growth and saturated incidence rate, Chaos Soliton. Fract., 173 (2023), 113663. http://dx.doi.org/10.1016/j.chaos.2023.113663 doi: 10.1016/j.chaos.2023.113663
    [16] Q. Liu, The threshold of a stochastic susceptible-infective epidemic model under regime switching, Nonlinear Anal.-Hybri., 21 (2016), 49–58. http://dx.doi.org/10.1016/j.nahs.2016.01.002 doi: 10.1016/j.nahs.2016.01.002
    [17] A. Settati, A. Lahrouz, M. El Fatini, A. El Haitami, M. El Jarroudi, M. Erriani, A Markovian switching diffusion for an SIS model incorporating Lévy processes, Discrete Cont. Dy.-B, 28 (2023), 209–229. http://dx.doi.org/10.3934/dcdsb.2022072 doi: 10.3934/dcdsb.2022072
    [18] B. Han, D. Jiang, Threshold dynamics and probability density functions of a stochastic predator-prey model with general distributed delay, Commun. Nonlinear Sci., 128 (2024), 107596. http://dx.doi.org/10.1016/j.cnsns.2023.107596 doi: 10.1016/j.cnsns.2023.107596
    [19] T. Caraballo, M. El Fatini, I. Sekkak, R. Taki, A. Laaribi, A stochastic threshold for an epidemic model with isolation and a non linear incidence, Commun. Pur. Appl. Anal., 19 (2020), 2513–2531. http://dx.doi.org/10.3934/cpaa.2020110 doi: 10.3934/cpaa.2020110
    [20] W. Liu, S. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biology, 23 (1986), 187–204. http://dx.doi.org/10.1007/BF00276956 doi: 10.1007/BF00276956
    [21] X. Zhang, S. Chang, Q. Shi, H. Huo, Qualitative study of a stochastic SIS epidemic model with vertical transmission, Physica A, 505 (2018), 805–817. http://dx.doi.org/10.1016/j.physa.2018.04.022 doi: 10.1016/j.physa.2018.04.022
    [22] M. Li, H. Smith, L. Wang, Global dynamics of an SEIR epidemic model with vertical transmission, SIAM J. Appl. Math., 62 (2001), 58–69. http://dx.doi.org/10.1137/S0036139999359860 doi: 10.1137/S0036139999359860
    [23] G. Lan, B. Song, S. Yuan, Epidemic threshold and ergodicity of an SEIR model with vertical transmission under the telegraph noise, Chaos Soliton. Fract., 167 (2023), 113017. http://dx.doi.org/10.1016/j.chaos.2022.113017 doi: 10.1016/j.chaos.2022.113017
    [24] X. Zhang, S. Chang, H. Huo, Dynamic behavior of a stochastic SIR epidemic model with vertical transmission, Electron. J. Differ. Eq., 2019 (2019), 125.
    [25] X. Mao, C. Yuan, Stochastic differential equations with Markovian switching, Singapore: Imperial College Press, 2006. http://dx.doi.org/10.1142/p473
    [26] D. Nguyen, N. Nguyen, G. Yin, General nonlinear stochastic systems motivated by chemostat models: Complete characterization of long-time behavior, optimal controls, and applications to wastewater treatment, Stoch. Proc. Appl., 130 (2020), 4608–4642. http://dx.doi.org/10.1016/j.spa.2020.01.010 doi: 10.1016/j.spa.2020.01.010
    [27] C. Zhu, G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM J. Control Optim., 46 (2007), 1155–1179. http://dx.doi.org/10.1137/060649343 doi: 10.1137/060649343
    [28] N. Phu, D. O'Regan, T. Tuong, Longtime characterization for the general stochastic epidemic SIS model under regime-switching, Nonlinear Anal.-Hybri., 38 (2020), 100951. http://dx.doi.org/10.1016/j.nahs.2020.100951 doi: 10.1016/j.nahs.2020.100951
    [29] X. Zhai, W. Li, F. Wei, X. Mao, Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations, Chaos Soliton. Fract., 169 (2023), 113224. http://dx.doi.org/10.1016/j.chaos.2023.113224 doi: 10.1016/j.chaos.2023.113224
    [30] L. Stettner, On the existence and uniqueness of invariant measure for continuous time Markov processes, Providence: Brown University Press, 1986. http://dx.doi.org/10.21236/ada174758
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(642) PDF downloads(48) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog