Research article

Uncertainty principle for vector-valued functions

  • Received: 04 January 2024 Revised: 08 March 2024 Accepted: 15 March 2024 Published: 01 April 2024
  • MSC : 42B10, 94A12

  • The uncertainty principle for vector-valued functions of $ L^2({\mathbb{R}}^n, {\mathbb{R}}^m) $ with $ n\ge 2 $ are studied. We provide a stronger uncertainty principle than the existing one in literature when $ m\ge 2 $. The phase and the amplitude derivatives in the sense of the Fourier transform are considered when $ m = 1 $. Based on these definitions, a generalized uncertainty principle is given.

    Citation: Feifei Qu, Xin Wei, Juan Chen. Uncertainty principle for vector-valued functions[J]. AIMS Mathematics, 2024, 9(5): 12494-12510. doi: 10.3934/math.2024611

    Related Papers:

  • The uncertainty principle for vector-valued functions of $ L^2({\mathbb{R}}^n, {\mathbb{R}}^m) $ with $ n\ge 2 $ are studied. We provide a stronger uncertainty principle than the existing one in literature when $ m\ge 2 $. The phase and the amplitude derivatives in the sense of the Fourier transform are considered when $ m = 1 $. Based on these definitions, a generalized uncertainty principle is given.



    加载中


    [1] L. Cohen, The uncertainty principle in signal analysis, Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 1994,182–185. http://dx.doi.org/10.1109/TFSA.1994.467263
    [2] L. Cohen, Time-frequency analysis: theory and application, New Jersey: Prentice-Hall Inc., 1995.
    [3] P. Dang, Tighter uncertainty principles for periodic signals in terms of frequency, Math. Method. Appl. Sci., 38 (2015), 365–379. http://dx.doi.org/10.1002/mma.3075 doi: 10.1002/mma.3075
    [4] P. Dang, G. Deng, T. Qian, A sharper uncertainty principle, J. Funct. Anal., 265 (2013), 2239–2266. http://dx.doi.org/10.1016/j.jfa.2013.07.023 doi: 10.1016/j.jfa.2013.07.023
    [5] P. Dang, W. Mai, W. Pan, Uncertainty principle in random quaternion domains, Digit. Signal Process., 136 (2023), 103988. http://dx.doi.org/10.1016/j.dsp.2023.103988 doi: 10.1016/j.dsp.2023.103988
    [6] P. Dang, T. Qian, Y. Yang, Extra-string uncertainty principles in relation to phase derivative for signals in euclidean spaces, J. Math. Anal. Appl., 437 (2016), 912–940. http://dx.doi.org/10.1016/j.jmaa.2016.01.039 doi: 10.1016/j.jmaa.2016.01.039
    [7] P. Dang, T. Qian, Z. You, Hardy-Sobolev spaces decomposition in signal analysis, J. Fourier Anal. Appl., 17 (2011), 36–64. http://dx.doi.org/10.1007/s00041-010-9132-7 doi: 10.1007/s00041-010-9132-7
    [8] P. Dang, S. Wang, Uncertainty principles for images defined on the square, Math. Method. Appl. Sci., 40 (2017), 2475–2490. http://dx.doi.org/10.1002/mma.4170 doi: 10.1002/mma.4170
    [9] Y. Ding, Modern analysis foundation (Chinese), Beijing: Beijing Normal University Press, 2008.
    [10] D. Gabor, Theory of communication, Journal of the Institution of Electrical Engineers-Part Ⅲ: Radio and Communication Engineering, 93 (1946), 429–457.
    [11] S. Goh, C. Micchelli, Uncertainty principle in Hilbert spaces, J. Fourier Anal. Appl., 8 (2002), 335–374. http://dx.doi.org/10.1007/s00041-002-0017-2 doi: 10.1007/s00041-002-0017-2
    [12] Y. Katznelson, An introduction to harmonic analysis, 3 Eds., Cambridge: Cambridge University Press, 2004. http://dx.doi.org/10.1017/CBO9781139165372
    [13] K. Kou, Y. Yang, C. Zou, Uncertainty principle for measurable sets and signal recovery in quaternion domains, Math. Method. Appl. Sci., 40 (2017), 3892–3900. http://dx.doi.org/10.1002/mma.4271 doi: 10.1002/mma.4271
    [14] F. Qu, G. Deng, A shaper uncertainty principle for $L^2({\mathbb{R}}^n)$ space (Chinese), Acta Math. Sci., 38 (2018), 631–640.
    [15] X. Wei, F. Qu, H. Liu, X. Bian, Uncertainty principles for doubly periodic functions, Math. Method. Appl. Sci., 45 (2022), 6499–6514. http://dx.doi.org/10.1002/mma.8182 doi: 10.1002/mma.8182
    [16] Y. Yang, P. Dang, T. Qian, Stronger uncertainty principles for hypercomplex signals, Complex Var. Elliptic, 60 (2015), 1696–1711. http://dx.doi.org/10.1080/17476933.2015.1041938 doi: 10.1080/17476933.2015.1041938
    [17] Y. Yang, P. Dang, T. Qian, Tighter uncertainty principles based on quaternion Fourier transform, Adv. Appl. Clifford Algebras, 26 (2016), 479–497. http://dx.doi.org/10.1007/s00006-015-0579-0 doi: 10.1007/s00006-015-0579-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(585) PDF downloads(33) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog