Research article Special Issues

Diagnosis of attention deficit hyperactivity disorder: A deep learning approach

  • Received: 07 December 2023 Revised: 29 February 2024 Accepted: 02 March 2024 Published: 18 March 2024
  • MSC : 68Q32

  • In recent years, there has been significant interest in the analysis and classification of brain dis-orders using electroencephalography (EEG). We presented machine learning and deep learning (DL) frameworks that integrate an EEG-based brain network with various DL models to diagnose attention deficit hyperactivity disorder (ADHD). By incorporating an objective biomarker into the diagnostic process, the accuracy and effectiveness of diagnosis could be enhanced. We used public EEG datasets from 61 ADHD youngsters and 60 normally developing children. The raw EEG data underwent preprocessing, including the application of filters in clinically relevant frequency bands and notch filters. From the preprocessed EEG segments, statistical features (e.g., standard deviation, kurtosis) and spectral features (e.g., entropy) were extracted. Principal component analysis (PCA) and chi-square with PCA were used as feature selection methods to obtain the most useful features and keep them. The machine learning models achieved the highest accuracy result of 94.86% by utilizing support vector machines (SVM) with PCA features. Furthermore, integrating models combining a convolutional neural network (CNN) with bidirectional long short-term memory (BiLSTM) networks, and gated recurrent unit-Transformer (GRU-Transformer block) with Chi-square and PCA features achieved accuracies of 94.50% and 95.59%, respectively. The suggested framework demonstrated a wide range of applicability in addressing the identification of ADHD. To evaluate the performance of the proposed models, comparisons were made with existing models, and the proposed system exhibited superior performance. We enhanced EEG-based analysis and categorization of ADHD by demonstrating the capabilities of advanced artificial intelligence models in enhancing diagnostic accuracy and efficacy.

    Citation: Nizar Alsharif, Mosleh Hmoud Al-Adhaileh, Mohammed Al-Yaari. Diagnosis of attention deficit hyperactivity disorder: A deep learning approach[J]. AIMS Mathematics, 2024, 9(5): 10580-10608. doi: 10.3934/math.2024517

    Related Papers:

  • In recent years, there has been significant interest in the analysis and classification of brain dis-orders using electroencephalography (EEG). We presented machine learning and deep learning (DL) frameworks that integrate an EEG-based brain network with various DL models to diagnose attention deficit hyperactivity disorder (ADHD). By incorporating an objective biomarker into the diagnostic process, the accuracy and effectiveness of diagnosis could be enhanced. We used public EEG datasets from 61 ADHD youngsters and 60 normally developing children. The raw EEG data underwent preprocessing, including the application of filters in clinically relevant frequency bands and notch filters. From the preprocessed EEG segments, statistical features (e.g., standard deviation, kurtosis) and spectral features (e.g., entropy) were extracted. Principal component analysis (PCA) and chi-square with PCA were used as feature selection methods to obtain the most useful features and keep them. The machine learning models achieved the highest accuracy result of 94.86% by utilizing support vector machines (SVM) with PCA features. Furthermore, integrating models combining a convolutional neural network (CNN) with bidirectional long short-term memory (BiLSTM) networks, and gated recurrent unit-Transformer (GRU-Transformer block) with Chi-square and PCA features achieved accuracies of 94.50% and 95.59%, respectively. The suggested framework demonstrated a wide range of applicability in addressing the identification of ADHD. To evaluate the performance of the proposed models, comparisons were made with existing models, and the proposed system exhibited superior performance. We enhanced EEG-based analysis and categorization of ADHD by demonstrating the capabilities of advanced artificial intelligence models in enhancing diagnostic accuracy and efficacy.



    加载中


    [1] R. Thomas, S. Sanders, J. Doust, E. Beller, P. Glasziou, Prevalence of attention-deficit/hyperactivity disorder: A systematic review and meta-analysis, Pediatrics, 135 (2015), 994–1001. https://doi.org/10.1542/peds.2014-3482 doi: 10.1542/peds.2014-3482
    [2] S. Young, D. Moss, O. Sedgwick, M. Fridman, P. Hodgkins, A meta-analysis of the prevalence of attention deficit hyperactivity disorder in incarcerated populations, Psychol. Med., 45 (2015), 247–258. https://doi.org/10.1017/S0033291714000762 doi: 10.1017/S0033291714000762
    [3] S. V. Faraone, H. Larsson, S. Org, Genetics of attention deficit hyperactivity disorder, Mol. Psychiatr., 24 (2018), 562–575. https://doi.org/10.1038/s41380-018-0070-0 doi: 10.1038/s41380-018-0070-0
    [4] M. Arns, C. K. Conners, H. C. Kraemer, A decade of EEG Theta/Beta Ratio Research in ADHD: a meta-analysis, J. Atten. Disord, 17 (2013), 374–383. https://doi.org/10.1177/1087054712460087 doi: 10.1177/1087054712460087
    [5] A. R. Clarke, R. J. Barry, R. McCarthy, M. Selikowitz, Excess beta activity in children with attention-deficit/hyperactivity disorder: An atypical electrophysiological group, Psychiatry Res., 103 (2001), 205–218. https://doi.org/10.1016/S0165-1781(01)00277-3 doi: 10.1016/S0165-1781(01)00277-3
    [6] S. S. Poil, S. Bollmann, C. Ghisleni, R. L. O'Gorman, P. Klaver, J. Ball, et al., Age dependent electroencephalographic changes in attention-deficit/hyperactivity disorder (ADHD). Clin. Neurophysiol, 125 (2014), 1626–1638. https://doi.org/10.1016/J.CLINPH.2013.12.118 doi: 10.1016/J.CLINPH.2013.12.118
    [7] L. E. Arnold, P. Hodgkins, J. Kahle, M. Madhoo, G. Kewley, Long-term outcomes of ADHD: academic achievement and performance, J. Attent. Disord., 24 (2020), 73–85. https://doi.org/10.1177/1087054714566076 doi: 10.1177/1087054714566076
    [8] J. Cook, E. Knight, I. Hume, A. Qureshi, The self-esteem of adults diagnosed with attention-deficit/hyperactivity disorder (ADHD): A systematic review of the literature, Attent, Deficit Hyperact. Disord., 6 (2014), 249–68. https://doi.org/10.1007/s12402-014-0133-2 doi: 10.1007/s12402-014-0133-2
    [9] M. Adamou, M. Arif, P. Asherson, T. C. Aw, B. Bolea, D. Coghill, et al., Occupational issues of adults with ADHD, BMC Psychiatry, 13 (2013), 59. https://doi.org/10.1186/1471-244X-13-59 doi: 10.1186/1471-244X-13-59
    [10] S. Dalsgaard, S. D. Østergaard, J. F. Leckman, P. B. Mortensen, M. G. Pedersen, Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: A nationwide cohort study, Lancet, 385 (2015), 2190–2196. https://doi.org/10.1016/S0140-6736(14)61684-6 doi: 10.1016/S0140-6736(14)61684-6
    [11] T. Chen, C. Shang, P. Su, E. Keravnou-Papailiou, Y. Zhao, G. Antoniou, et al., A decision tree-initialised neuro-fuzzy approach for clinical decision support, Artif. Intell. Med., 111 (2021), 101986. https://doi.org/10.1016/j.artmed.2020.101986 doi: 10.1016/j.artmed.2020.101986
    [12] I. Tachmazidis, T. Chen, M. Adamou, G. Antoniou, A hybrid AI approach for supporting clinical diagnosis of attention deficit hyperactivity disorder (ADHD) in adults, Health Inform. Sci. Syst., 9 (2021), 1–8. https://doi.org/10.1007/s13755-020-00123-7 doi: 10.1007/s13755-020-00123-7
    [13] J. W. Kim, V. Sharma, N. D. Ryan, Predicting methylphenidate response in ADHD using machine learning approaches, Int. J. Neuropsychoph., 18 (2015), 1–7. https://doi.org/10.1093/ijnp/pyv052 doi: 10.1093/ijnp/pyv052
    [14] S. Kim, H. Lee, K. Lee, Can the MMPI Predict Adult ADHD? An approach using machine learning methods, Diagnostics, 11 (2021), 976. https://doi.org/10.3390/diagnostics11060976 doi: 10.3390/diagnostics11060976
    [15] Y. Zhang-James, E. C. Helminen, J. Liu, B. Franke, M. Hoogman, S. V. Faraone, Evidence for similar structural brain anomalies in youth and adult attention-deficit/hyperactivity disorder: A machine learning analysis, Transl. Psychiatry, 11 (2021), 1–9. https://doi.org/10.1038/s41398-021-01201-4 doi: 10.1038/s41398-021-01201-4
    [16] A. Yasumura, M. Omori, A. Fukuda, J. Takahashi, Y. Yasumura, E. Nakagawa, et al., Applied machine learning method to predict children with ADHD using prefrontal cortex activity: A multicenter study in Japan, J. Atten. Disord., 24 (2020), 2012–2020. https://doi.org/10.1177/1087054717740632 doi: 10.1177/1087054717740632
    [17] M. Duda, R. Ma, N. Haber, D. Wall, Use of machine learning for behavioral distinction of autism and ADHD, Transl. Psychiatry, 6 (2016), 732. https://doi.org/10.1038/tp.2015.221 doi: 10.1038/tp.2015.221
    [18] M. Duda, N. Haber, J. Daniels, D. Wall, D. Crowdsourced validation of a machine-learning classification system for autism and ADHD, Transl. Psychiatry, 7 (2017), 1133. https://doi.org/10.1038/tp.2017.86 doi: 10.1038/tp.2017.86
    [19] M. Uluyagmur-Ozturk, A. R. Arman, S. S. Yilmaz, O. T. P. Findik, H. A. Genc, G. Carkaxhiu-Bulut, et al., ADHD and ASD classification based on emotion recognition data, In Proceedings of the 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, USA, 2016,810–813. https://doi.org/10.1109/ICMLA.2016.0145
    [20] O. Slobodin, I. Yahav, I. Berger, A Machine-Based Prediction Model of ADHD Using CPT Data, Front. Hum. Neurosci., 14 (2020), 383. https://doi.org/10.3389/fnhum.2020.560021 doi: 10.3389/fnhum.2020.560021
    [21] A. S. Morrow, A. D. Campos Vega, X. Zhao, M. M. Liriano, Leveraging machine learning to identify predictors of receiving psychosocial treatment for Attention Deficit/Hyperactivity Disorder, Adm. Policy Ment. Health, 47 (2020), 680–692. https://doi.org/10.1007/s10488-020-01045-y doi: 10.1007/s10488-020-01045-y
    [22] M. Moghaddari, M. Z. Lighvan, S. Danishvar, Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG, Comput. Meth. Prog. Bio., 197 (2020), 105738. https://doi.org/10.1016/j.cmpb.2020.105738 doi: 10.1016/j.cmpb.2020.105738
    [23] M. Tosun, Effects of spectral features of EEG signals recorded with different channels and recording statuses on ADHD classification with deep learning, Phys. Eng. Sci. Med., 44 (2021), 693–702. https://doi.org/10.1007/s13246-021-01018-x doi: 10.1007/s13246-021-01018-x
    [24] S. Khoshnoud, M. Shamsi, M. A. Nazari, Non-linear EEG analysis in children with attention-deficit/hyperactivity disorder during the rest condition, In Proceedings of the 2015 22nd Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 25–27 November 2015, 87–92. https://doi.org/10.1109/ICBME.2015.7404122
    [25] H. Chen, Y. Song, X. Li, A deep learning framework for identifying children with ADHD using an EEG-based brain network, Neurocomputing, 356 (2019), 83–96. https://doi.org/10.1016/j.neucom.2019.04.058 doi: 10.1016/j.neucom.2019.04.058
    [26] A. Tenev, S. Markovska-Simoska, L. Kocarev, J. Pop-Jordanov, A. Müller, G. Candrian, Machine learning approach for classification of ADHD adults, Int. J. Psychophysiol., 93 (2014), 162–166. https://doi.org/10.1016/j.ijpsycho.2013.01.008 doi: 10.1016/j.ijpsycho.2013.01.008
    [27] S. Saini, R. Rani, N. Kalra, Prediction of Attention Deficit Hyperactivity Disorder (ADHD) using machine learning Techniques based on classification of EEG signal, In Proceedings of the 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 25–26 March 2022,782–786. https://doi.org/10.1109/ICACCS54159.2022.9785356
    [28] L. Dubreuil-Vall, G. Ruffini, J. A. Camprodon, Deep learning convolutional neural networks discriminate adult ADHD from healthy individuals on the basis of event-related spectral EEG, Front. Neurosci., 14 (2020), 251. https://doi.org/10.3389/fnins.2020.00251 doi: 10.3389/fnins.2020.00251
    [29] H. T. Tor, C. P. Ooi, N. S. Lim-Ashworth, J. K. E Wei, V. Jahmunah, S. L. Oh, et al., Automated detection of conduct disorder and attention deficit hyperactivity disorder using decomposition and nonlinear techniques with EEG signals, Comput. Methods Prog. Bio., 200 (2021), 105941. https://doi.org/10.1016/j.cmpb.2021.105941 doi: 10.1016/j.cmpb.2021.105941
    [30] H. W. Loh, C. P. Ooi, P. D. Barua, E. E. Palmer, F. Molinari, U. Acharya, Automated detection of ADHD: Current trends and future perspective, Comput. Biol. Med., 146 (2022), 105525. https://doi.org/10.1016/j.compbiomed.2022.105525 doi: 10.1016/j.compbiomed.2022.105525
    [31] H. Christiansen, M. L. Chavanon, O. Hirsch, M. H. Schmidt, C. Meyer, A. Müller, et al., Use of machine learning to classify adult ADHD and other conditions based on the Conners’ Adult ADHD Rating Scales, Sci. Rep., 10 (2020), 18871. https://doi.org/10.1038/s41598-020-75868-y doi: 10.1038/s41598-020-75868-y
    [32] J. R. Sato, M. Q. Hoexter, A. Fujita, L. A. Rohde, Evaluation of pattern recognition and feature extraction methods in ADHD prediction, Front. Syst. Neurosci., 6 (2012), 68. https://doi.org/10.3389/fnsys.2012.00068 doi: 10.3389/fnsys.2012.00068
    [33] L. Tan, X. Guo, S. Ren, J. N. Epstein, L. J. Lu, A computational model for the automatic diagnosis of attention deficit hyperactivity disorder based on functional brain volume, Front. Comput. Neurosci., 11 (2017), 75. https://doi.org/10.3389/fncom.2017.00075 doi: 10.3389/fncom.2017.00075
    [34] N. A. Khan, S. A. Waheeb, A. Riaz, X. Shang, A novel knowledge distillation based feature selection for the classification of ADHD, Biomolecules, 11 (2021), 1093. https://doi.org/10.3390/biom11081093 doi: 10.3390/biom11081093
    [35] Y. Sun, L. Zhao, Z. Lan, X. Z. Jia, S. W. Xue, Differentiating boys with ADHD from those with typical development based on whole-brain functional connections using a machine learning approach, Neuropsychiatr. Dis. Treat., 16 (2020), 691–702. https://doi.org/10.2147/NDT.S239013 doi: 10.2147/NDT.S239013
    [36] X. Peng, P. Lin, T. Zhang, J. Wang, Extreme learning machine-based classification of ADHD using brain structural MRI data, PLoS One, 8 (2013), 79476. https://doi.org/10.1371/journal.pone.0079476 doi: 10.1371/journal.pone.0079476
    [37] C. J. Vaidya, X. You, S. Mostofsky, F. Pereira, M. M. Berl, L. Kenworthy, Data‐driven identification of subtypes of executive function across typical development, attention deficit hyperactivity disorder, and autism spectrum disorders, J. Child Psychol. Psychiatry, 6 (2020), 51–61. https://doi.org/10.1111/jcpp.13114 doi: 10.1111/jcpp.13114
    [38] Y. Tang, X. Li, Y. Chen, Y. Zhong, A. Jiang, C. Wang, High-accuracy classification of attention deficit hyperactivity disorder with l 2, 1-norm linear discriminant analysis and binary hypothesis testing, IEEE Access, 8 (2020), 56228–56237. https://doi.org/10.1109/ACCESS.2020.2982401 doi: 10.1109/ACCESS.2020.2982401
    [39] H. Chen, Y. Song, X. Li, Use of deep learning to detect personalized spatial frequency abnormalities in EEGs of children with ADHD, J. Neural Eng., 16 (2019), 066046. https://doi.org/10.1088/1741-2552/ab3a0a doi: 10.1088/1741-2552/ab3a0a
    [40] S. Kim, J. H. Baek, Y. J. Kwon, H. Y. Lee, J. H. Yoo, S. Shim, et al., Machine-learning-based diagnosis of drug-naive adult patients with attention-deficit hyperactivity disorder using mismatch negativity, Transl. Psychiatry, 11 (2021), 484. https://doi.org/10.1038/s41398-021-01604-3 doi: 10.1038/s41398-021-01604-3
    [41] A. Ekhlasi, A. M. Nasrabadi, M. R. Mohammadi, Direction of information flow between brain regions in ADHD and healthy children based on EEG by using directed phase transfer entropy, Cogn. Neurodyn., 15 (2021), 975–986. https://doi.org/10.1007/S11571-021-09680-3/METRICS doi: 10.1007/S11571-021-09680-3/METRICS
    [42] M. I. Jordan, T. M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science, 349 (1979), 255–260. https://doi.org/10.1126/SCIENCE.AAA8415 doi: 10.1126/SCIENCE.AAA8415
    [43] D. Bzdok, M. Krzywinski, N. Altman, Machine learning: supervised methods, Nat. Methods, 15 (2018), 5. https://doi.org/10.1038/NMETH.4551 doi: 10.1038/NMETH.4551
    [44] I. Rish, An empirical study of the naive Bayes classifier, Computer Science, 2001, 41–46. https://www.cc.gatech.edu/home/isbell/classes/reading/papers/Rish.pdf
    [45] T. Joachims, Training linear SVMs in linear time. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006 (2006), 217–226. https://doi.org/10.1145/1150402.1150429 doi: 10.1145/1150402.1150429
    [46] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (2015), 436–444. https://doi.org/10.1038/nature14539 doi: 10.1038/nature14539
    [47] K. O’Shea, R. Nash, An introduction to convolutional neural networks, Neural Evol. Comput., 1 (2015). https://doi.org/10.48550/arXiv.1511.08458 doi: 10.48550/arXiv.1511.08458
    [48] H. Yu, X. Lei, Z. Song, C. Liu, J. Wang, Supervised network-based fuzzy learning of EEG signals for Alzheimer’s disease identification, IEEE T. Fuzzy Syst., 28 (2020), 60–71. https://doi.org/10.1109/TFUZZ.2019.2903753 doi: 10.1109/TFUZZ.2019.2903753
    [49] H. Yu, X. Wu, L. Cai, B. Deng, J. Wang, Modulation of spectral power and functional connectivity in human brain by acupuncture stimulation, IEEE T. Neur. Syst. Reh., 26 (2018), 977–986. https://doi.org/10.1109/TNSRE.2018.2828143 doi: 10.1109/TNSRE.2018.2828143
    [50] K. Li, J. Wang, S. Li, H. Yu, L. Zhu, J. Liu, L. Wu, Feature extraction and identification of Alzheimer's disease based on latent factor of multi-channel EEG, IEEE T. Neural Syst. Reh., 29 (2021), 1557–1567. https://doi.org/10.1109/TNSRE.2021.3101240 doi: 10.1109/TNSRE.2021.3101240
    [51] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling, In NIPS 2014 Workshop on Deep Learning, December 2014. https://doi.org/10.48550/arXiv.1412.3555
    [52] A. Alim, M. H. Imtiaz, Automatic identification of children with ADHD from EEG brain waves, Signals, 4 (2023), 193–205. https://doi.org/10.3390/signals4010010 doi: 10.3390/signals4010010
    [53] A. Ekhlasi, A. M. Nasrabadi, M. Mohammadi, Analysis of EEG brain connectivity of children with ADHD using graph theory and directional information transfer, Biomed. Tech. (Berl), 68 (2022), 133–146. https://doi.org/10.1515/bmt-2022-0100 doi: 10.1515/bmt-2022-0100
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1051) PDF downloads(116) Cited by(3)

Article outline

Figures and Tables

Figures(16)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog