Research article Special Issues

Uncertain logistic regression models

  • Received: 19 January 2024 Revised: 27 February 2024 Accepted: 01 March 2024 Published: 18 March 2024
  • MSC : 03E72, 08A72, 26E50

  • Logistic regression is a generalized nonlinear regression analysis model and is often used for data mining, automatic disease diagnosis, economic prediction, and other fields. In this paper, we first aimed to introduce the concept of uncertain logistic regression based on the uncertainty theory, as well as investigating the likelihood function in the sense of uncertain measure to represent the likelihood of unknown parameters.

    Citation: Jinling Gao, Zengtai Gong. Uncertain logistic regression models[J]. AIMS Mathematics, 2024, 9(5): 10478-10493. doi: 10.3934/math.2024512

    Related Papers:

  • Logistic regression is a generalized nonlinear regression analysis model and is often used for data mining, automatic disease diagnosis, economic prediction, and other fields. In this paper, we first aimed to introduce the concept of uncertain logistic regression based on the uncertainty theory, as well as investigating the likelihood function in the sense of uncertain measure to represent the likelihood of unknown parameters.



    加载中


    [1] B. Das, B. C. Tripathy, P. Debnath, B. Bhattacharya, Characterization of statistical convergence of complex uncertain double sequence, Anal. Math. Phys., 10 (2020), 71. https://doi.org/10.1007/s13324-020-00419-7 doi: 10.1007/s13324-020-00419-7
    [2] J. Ding, Z. Zhang, Bayesian statistical models with uncertainty variables, J. Intell. Fuzzy Syst., 39 (2020), 1109–1117. https://doi.org/10.3233/JIFS-192014 doi: 10.3233/JIFS-192014
    [3] J. H. Ding, Z. Q. Zhang, Statistical inference on unceryain nonparametric regression model, Fuzzy Optim. Decis. Making, 20 (2021), 451–469. https://doi.org/10.1007/s10700-021-09353-0 doi: 10.1007/s10700-021-09353-0
    [4] L. Fang, S. Liu, Z. Huang, Uncertain Johnson-Schumacher growth model with imprecise observations and k-fold cross-validation test, Soft Computing, 24 (2020), 2715–2720. https://doi.org/10.1007/s00500-019-04090-4 doi: 10.1007/s00500-019-04090-4
    [5] B. D. Liu, Uncertainty theory, 2 Eds., Berlin: Springer-Verlag, 2007. https://doi.org/10.1007/978-3-662-44354-5
    [6] B. D. Liu, Uncertain entailment and modus ponens in the framework of uncertain logic, Journal of Uncertain Systems, 3 (2009), 243–251.
    [7] B. D. Liu, Uncertainty theory: A branch of mathematics for modeling human uncertainty, Berlin: Springger-Verlag, 2010. https://doi.org/10.1007/978-3-642-13959-8
    [8] W. C. Lio, B. D. Liu, Uncertain maximum likelihood estimation with application to uncertain regression analysis, Soft Comput., 24 (2020), 9351–9360. https://doi.org/10.1007/s00500-020-04951-3 doi: 10.1007/s00500-020-04951-3
    [9] Z. Liu, L. F. Jia, Cross-validation for the uncertain Chapman-Richards growth model with imprecise observations, Int. J. Uncertain. Fuzziness Knowl. Based Syst., 28 (2020), 769–783. https://doi.org/10.1142/s0218488520500336 doi: 10.1142/s0218488520500336
    [10] Z. Liu, Y. Yang, Least absolute deviations eatimation for uncertain regression with imprecise observations, Fuzzy Optim. Decis. Making, 19 (2020), 33–52. https://doi.org/10.1007/s10700-019-09312-w doi: 10.1007/s10700-019-09312-w
    [11] Y. H. Sheng, S. Kar, Some results of moments of uncertain variable through inverse uncertainty distribution, Fuzzy Optim. Decis. Making, 14 (2015), 57–76. https://doi.org/10.1007/s10700-014-9193-1 doi: 10.1007/s10700-014-9193-1
    [12] Y. L. Song, Z. F. Fu, Uncertain multivariable regression model, Soft Comput., 22 (2018), 5861–5866. https://doi.org/10.1007/s00500-018-3324-5 doi: 10.1007/s00500-018-3324-5
    [13] X. S. Wang, Z. C. Gao, H. Y. Guo, Delphi method for estimating uncertainty distributions, Intermational Journaal on Information, 15 (2012), 449–460.
    [14] M. L. Wen, Q. Y. Zhang, R. Kang, Y. Yang, Some new ranking criteria in data envelopment analysis under uncertain environment, Comput. Ind. Eng., 110 (2017), 498–504. https://doi.org/10.1016/j.cie.2017.05.034 doi: 10.1016/j.cie.2017.05.034
    [15] K. Yao, A formula to calculate the variance of uncertain variable, Soft Comput., 19 (2015), 2947–2953. https://doi.org/10.1007/s00500-014-1457-8 doi: 10.1007/s00500-014-1457-8
    [16] K. Yao, Uncertain statistical inference models with imprecise observations, IEEE T. Fuzzy Syst., 26 (2018), 409–415. https://doi.dog/10.1109/TFUZZ.2017.2666846 doi: 10.1109/TFUZZ.2017.2666846
    [17] K. Yao, B. D. Liu, Uncertain regression analysis: An approach for imprecise observations, Soft Comput., 22 (2018), 5579–5582. https://doi.org/10.1007/s00500-017-2521-y doi: 10.1007/s00500-017-2521-y
    [18] X. Yang, Y. Ni, Least-squares estimation for uncertain moving average model, Commun. Stat.-Theor. M., 50 (2021), 4134–4143. https://doi.org/10.1080/03610926.2020.1713373 doi: 10.1080/03610926.2020.1713373
    [19] T. Q. Ye, B. D. Liu, Uncertain hypothesis test for uncertain differential equations, Fuzzy Optim. Decis. Making, 22 (2023), 195–211. https://doi.org/10.1007/s10700-022-09389-w doi: 10.1007/s10700-022-09389-w
    [20] M. X. Zhao, Y. H. Liu, D. A. Ralescu, J. Zhou, The covariance of uncertain variables: definition and calculation formulae, Fuzzy Optim. Decis. Making, 17 (2018), 211–232. https://doi.org/10.1007/s10700-017-9270-3 doi: 10.1007/s10700-017-9270-3
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(962) PDF downloads(134) Cited by(0)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog