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1. Introduction

Since the interval-valued dates with the human uncertain were frequently used in real life, the
concept of uncertainty theory was initiated by Liu [5]. In order to rationally deal with belief degrees of
an uncertain event, he gave the exact definition of uncertain measure, which is a set function satisfying
normality, monotonicity, self-duality, countable subadditivity, and product axioms. In recent years,
many authors began to study and develop the uncertain variables, such as Liu [9,10], Wang et al. [13],
Wen et al. [14], Zhao [20], and Das et al. [1]. Ye and Liu [19] employed uncertain hypothesis
tests to determine whether an uncertain differential equation is suitable for an observed date. With
the development of uncertainty theory, uncertain variable had been applied to many fields, including
statistics by Yao [16], Bayesain statistics by Ding and Zhang [2], and regression analysis by Ding and
Zhang [3]. Apparently, uncertain regression analysis is a significant mathematic tool to estimate the
relationship between explanatory variables and response variables when the imprecise observations are
regarded as uncertain variables. The regression models include linear regression, nonlinear regression,
and nonparametric regression.

For that matter, Yao and Liu [17] investigated the principle of least squares, which estimate the
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unknown parameters of uncertain linear regression models. Song and Fu [12] discussed the uncertain
linear regression model with multiple response variables. Next, Lio and Liu [8] proposed the method
of maximum likelihood estimation to estimate the parameter of uncertain linear regression models.
The least squares estimation was used for an uncertain moving average model by Yang and Ni [18].
For the nonlinear regression, Fang et al. [4] proposed the Johnson-Schumacher growth model by the
least squares method.

The logistic regression is the standard approach, which analyzes the binary and categorical date
applied to many areas, such as epidemiologic and biomedical studies. The traditional logistic
regression analysis estimates the relationships between the explanatory variables and response
variables on the basis of the assumption that the samples of these variables are precisely observed.
However, since the observation of the samples are imprecise, we need to estimate the logistic regression
model, which is based on the relationships between the variables with imprecisely observed samples.
To sum up, we propose the uncertain logistic regression. Compared with the uncertain linear regression
models, the uncertain logistic regression model can better fit the classification problems.

We study the uncertain logistic regression models. The rest of this paper is organized as follows:
In Section 2, we recall some basic concepts of measure and distribution of uncertain variables. Then,
we introduce the concept of uncertain logistic distribution in Section 3. The estimations of uncertain
logistic regressions of binary classification and its maximum likelihood estimation are presented in
Section 4. We research the uncertain cumulative logistic regression and derive the maximum likelihood
in Section 5. Finally, some conclusions are given in Section 6.

2. Preliminaries

In this section, we review some basic concepts and theorems of uncertainty theory, as they will be
used throughout paper.

Definition 2.1. [5] LetL be a σ-algebra on a nonempty set Γ. A set functionM : L → [0, 1] is called
an uncertain measure if it satisfies the following axioms:

Axiom 1: (Normality Axiom)M{Γ} = 1 for the universal sat Γ.
Axiom 2: (Duality Axiom)M{Λ} +M{Λc} = 1 for any event Λ.
Axiom 3: (Subadditivity Axiom) For every countable sequence of events Λ1,Λ2, ..., we have

M{

∞⋃
i=1

Λi} ≤

∞∑
i=1

M{Λi}.

Axitom 4: (Product Axiom) Let (Γk,Lk,Mk) be uncertain space for k = 1, 2, ... The product
uncertain measureM is an uncertain measure satisfying

M{

∞∏
k=1

} =

∞∧
k=1

M{Λk}.

Definition 2.2. [5] An uncertain variable ξ is a measurable function from an uncertainty space
(Γ,L,M) to the set of real numbers, i.e., for any Borel set B of real numbers, the set
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{ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈ B}

in an event.

Definition 2.3. [5] The uncertainty distribution of an uncertain variable ξ is defined by

Φ(x) =M{ξ ≤ x}.

for any x ∈ R.

Definition 2.4. [7] An uncertainty distribution Φ(x) is said to be regular if it is a continuous and
strictly increasing function with respect to x at which 0 < Φ(x) < 1, and

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1.

Definition 2.5. [7] Let ξ be an uncertain variable with regular uncertainty distribution Φ(x). Then
the inverse function Φ−1(α) is called the inverse uncertainty distribution of ξ.

Theorem 2.1. (Sufficient and Necessary Condition) [7] A function Φ−1(α) : (0, 1) → R is an inverse
uncertainty distribution if and only if it is a continuous and strictly increasing function with respect to
α.

Definition 2.6. [7] The events Λ1,Λ2, ...Λn are said to be independent if

M{

n⋂
i=1

Λ∗i } =

n∧
i=1

M{Λ∗i }, (2.1)

where Λ∗i are arbitrarily chosen from {Λi,Λ
c
i ,Γ}, i = 1, 2, ...n, respectively and Γ is the sure event.

Theorem 2.2. [7] Let ξ1, ξ2, ..., ξn be independent uncertain variables with regular uncertainty
distributions Φ1,Φ2, ...,Φn, respectively. If f (ξ1, ξ2, ..., ξn) is a continuous and strictly increasing
function, then ξ has an uncertainty distribution

Ψ(x) = sup
f (x1,x2,...,xn)=x

min
1≤i≤n
Φi(xi). (2.2)

Definition 2.7. [5] Let ξ be an uncertain variable. Then the expected value of ξ is defined by

E[ξ] =
∫ +∞

0
M{ξ ≥ x}dx −

∫ 0

−∞

M{ξ ≤ x}dx, (2.3)

provided that at least one of the two integrals is finite.

Theorem 2.3. [7] Let ξ be an uncertain variable with uncertainty distribution Φ. Then,

E[ξ] =
∫ +∞

−∞

xdΦ(x). (2.4)

Definition 2.8. [5] Let ξ be an uncertain variable with finite expected value e. Then, the variance of
ξ is

V[ξ] = E[(ξ − e)2]. (2.5)
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3. Uncertain logistic distribution

In this section, we introduce the uncertain logistic variable and its distribution.

Definition 3.1. An uncertain variable ξ on (Γ,L,M) is called obeying logistic distribution if its
distribution function takes the form

Λ(x) = (1 + e
−(x−µ)
σ )−1, x ∈ R. (3.1)

Definition 3.2. An uncertain logistic distribution is standard if its uncertain distribution takes the form

Λ(x) = (1 + e−x)−1, x ∈ R. (3.2)

Theorem 3.1. [7] Let ξ be an uncertain variable with uncertainty distribution Φ. Then,

E[ξ] =
∫ 1

0
Φ−1(α)dα. (3.3)

Theorem 3.2. [15] Let ξ be an uncertain variable with uncertainty distribution Φ and finite expected
value m. Then,

V[ξ] =
∫ 1

0
(Φ−1(α) − m)2dα. (3.4)

Theorem 3.3. Let ξ be a uncertain logistic variable on the uncertain space (Γ,L,M). Then the
expected value and variance of ξ are

E[ξ] = µ, (3.5)

and

Var[ξ] =
π2σ2

3
. (3.6)

Proof.

E[ξ] =
∫ 1

0
σ[ln(α) − ln(1 − α)] + µdα.

Note ∫ 1

0
ln(α) − ln(1 − α)dα

=

∫ 1

0
ln(α)dα − (−1)

∫ 1

0
ln(1 − α)dα

=

∫ 1

0
ln(α)dα −

∫ 1

0
ln(β)dβ = 0.

Therefore, the expected value of ξ is µ.

Var[ξ] =
∫ 1

0
(Φ−1(α) − m)2dα
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=

∫ 1

0
(σ[ln(α) − ln(1 − α)])2dα

= σ2[
∫ 1

0
ln2(α)dα − 2

∫ 1

0
ln(α)ln(1 − α)dα +

∫ 1

0
ln2(1 − α)dα]

= 2 + (−1)
∫ 1

0
ln2(α)dα − 2

∫ 1

0
ln(α) ln(1 − α)dα +

∫ 1

0
ln2(1 − α)dα

= σ2[4 − 2 × (2 −
π2

6
)] =
π2σ2

3
.

Theorem 3.4. [11] Let ξ be an uncertain variable with regular uncertainty distribution Φ, and let k
be a positive integer. Then the k-th moment of ξ is

E[ξk] =
∫ 1

0
(Φ−1(α))kdα. (3.7)

Theorem 3.5. Let ξ be the standard uncertain logistic distribution. Then k-th moment of ξ is

E[ξk] =

 0, k = 2m + 1,∑2m
i=0

(
2m
i

)
(−1)2m−i

∫ 1

0
(lnα)i(ln(1 − α))2m−idα, k = 2m.

(3.8)

Proof. According to (3.7), we have

E[ξk] =
∫ 1

0
[ln(α) − ln(1 − α)]kdα

=

∫ 1

0

k∑
i=0

(
k
i

)
(−1)k−i(lnα)i(ln(1 − α))k−idα

=

k∑
i=0

(
k
i

)
(−1)k−i

∫ 1

0
(lnα)i(ln(1 − α))k−idα.

We notice when k = 2m + 1, then by changing variable, β = 1 − α
k∑

i=0

(
k
i

)
(−1)k−i

∫ 1

0
(lnα)i(ln(1 − α))k−idα

=

2m+1∑
i=0

(
2m + 1

i

)
(−1)(2m+1)−i

∫ 1

0
(lnα)i(ln(1 − α))(2m+1)−idα

=

2m+1∑
i=0

(
2m + 1

(2m + 1) − i

)
(−1)(−1)i

∫ 1

0
(ln β)(2m+1)−i(ln(1 − β))idβ

= −

∫ 1

0
[ln(β) − ln(1 − β)]kdβ.

Thus,
E[ξ2m+1] = 0.
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Theorem 3.6. [20] Let ξ1 and ξ2 be two regular uncertain variables with distributions Ξ1 and Ξ2 and
finite expected values E[ξ1] and E[ξ2]. Then the covariance of Ξ1 and Ξ2 is

Cov[ξ1, ξ2] =
∫ 1

0
{Ξ−1

1 (α) − E[ξ1]}{Ξ−1
2 (α) − E[ξ2]}dα. (3.9)

Theorem 3.7. Let ξ1 and ξ2 be uncertain logistic variable with the uncertain distribution

Λ(x) = (1 + e
−(x−µ1)
σ1 )−1, x ∈ R,

and
Λ(y) = (1 + e

−(y−µ2)
σ2 )−1, y ∈ R.

Then, the covariance of uncertain variables is

Cov[ξ1, ξ2] =
π2σ1σ2

3
. (3.10)

Proof. Since the expected values of ξ1 and ξ2 are µ1 and µ2, then,

Cov[ξ1, ξ2] =
∫ 1

0
{σ1[ln(α) − ln(1 − α)]}{σ2[ln(α) − ln(1 − α)]}dα

= σ1σ2

∫ 1

0
[ln(α) − ln(1 − α)]2dα

=
π2σ1σ2

3
.

Definition 3.3. [6] Suppose that ξ is an uncertain set with membership function Ξ. Then its entropy
is defined by

H[ξ] =
∫ +∞

−∞

S (Ξ(x))dx, (3.11)

where S (t) = −t ln t − (1 − t) ln(1 − t).

Theorem 3.8. Let ξ be a uncertain logistic variable with the uncertain distribution

Λ(x) = (1 + e
−(x−µ)
σ )−1, x ∈ R. (3.12)

Then, the entropy is expressed by σ.

Proof. Note that

H[ξ] =
∫ 1

0
[−t ln t − (1 − t) ln(1 − t)]d(σ(ln(α) − ln(1 − α)) + µ)

= −σ

∫ 1

0
−

ln t
1 − t

−
ln(1 − t)

t
dt

= σ.
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4. Uncertain binary logistic regression

4.1. The definition of model

Let x = (x1, x2, ..., xp) be a vector of crisp explanatory variables, and z = (z1, z2, ...zp) be a uncertain
response variable. We set a threshold value C (such as (C = 0)). The event occurs when zi > C. Then,
we have

yi =

{
1, zi > 0,
0, zi ≤ 0.

(4.1)

Let zi and xi be linear relationship, i.e.,

zi = a + bxi + εi. (4.2)

Then, the uncertain logistic regression model of binary classification is

M{yi = 1} =
1

1 + exp−(a +
∑k

j=1 b jxi j)
, (4.3)

where a, b are vectors of unknown parameters, and εi is a disturbance term. Next let εi obey the
standard uncertain logistic distribution, then,

M{yi = 1} =M{zi > 0}

=M{a + bxi + εi > 0}

=M{εi > −(a + bxi)}.

Due to the symmetry of standard uncertain logistic distribution, the previous formula can be written

M{εi ≤ (a + bxi)} = (1 + e−(a+bxi))−1. (4.4)

The (4.3) is defined as uncertain logistic regression model. According to (4.3), we have

M{zi > 0}
M{zi ≤ 0}

= ea+bxi . (4.5)

Then, we take the logarithm of (4.5), and obtain

ln(
M{zi > 0}
M{zi ≤ 0}

) = a + bxi. (4.6)

If there are k explanatory variables, then,

ln(
M{zi > 0}
M{zi ≤ 0}

) = a +
k∑

j=1

b jxi j. (4.7)
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4.2. Likelihood function

Let z1, z2, ..., zn, which are corresponding to y1, y2, ..., yn with uncertainty distribution F be iid
samples, and let z1, z2, ..., zn have observing values c1, c2, ..., cn, respectively. Then, the likelihood of
taking value at β can be represented by

lim
∆z→0
M{

n⋂
i=1

(ci −
∆z
2
< zi ≤ ci +

∆z
2

)|β}

= lim
∆z→0

n∧
i=1

M{(ci −
∆z
2
< zi ≤ ci +

∆z
2

)|β},

where β is a set of unknown parameters, and ∆z is a small number.

Theorem 4.1. Suppose z1, z2, ..., zn which are corresponding to y1, y2, ..., yn with uncertainty
distribution F are iid samples and β is a set of unknown parameters. Given that c1, c2, ..., cn are
observed, then we have

L(β|c1, c2, ..., cn) =
n∧

i=1

[exp(a +
k∑

j=1

b jxi j)]yi
1

1 + exp(a +
∑k

j=1 b jxi j)
. (4.8)

Proof. The likelihood function that we obtain is

L(β|c1, c2, ..., cn)

= lim
∆z→0

n∧
i=1

M{(ci −
∆z
2
< zi ≤ ci +

∆z
2

)|β}

=

n∧
i=1

M{zi > 0}yiM{zi ≤ 0}1−yi

=

n∧
i=1

[
1

1 + exp−(a +
∑k

j=1 b jxi j)
]yi[

exp−(a +
∑k

j=1 b jxi j)

1 + exp−(a +
∑k

j=1 b jxi j)
]1−yi

=

n∧
i=1

[exp(a +
k∑

j=1

b jxi j)]yi
1

1 + exp(a +
∑k

j=1 b jxi j)
.

The theorem is proved.

Next, we obtain the parameter value through letting the likelihood function reach maximum point.
Since the likelihood function is

L(β|c1, c2, ..., cn) =
n∧

i=1

[exp(a +
k∑

j=1

b jxi j)]yi
1

1 + exp(a +
∑k

j=1 b jxi j)
.

Then, the maximum likelihood estimator β̂ solves the maximization problem

max L(β|c1, c2, ..., cn).
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4.3. Binary classification example

Example 4.1. Let (xi1, xi2, xi3, zi), i = 1, 2, ..., 24 be a set of observed values (see Table 1), and the
uncertain binary logistic regression model is

z = a + b1x1 + b2x2 + b3x3 + ϵ,

where ϵ is a standard uncertain logistic distribution. Then we have

ln
M{y = 1}

1 −M{y = 1}
= a +

3∑
j=1

b jx j,

and

M{y = 1} =
1

1 + exp−(a +
∑3

j=1 b jx j)
,

where y = 0 when z ≤ 30 and y = 1 when z > 30 according to personal experimental. Then, we solve
the maximum problem

max
24∧
i=1

[exp(a +
3∑

j=1

b jxi j)]yi
1

1 + exp(a +
∑3

j=1 b jxi j)

for obtaining β̂. Hence, the uncertain logistic regression model is

M{y = 1} =
1

1 + exp−(85.799 + 8.456x1 − 3.776x2 + 2.525x3)
.

Table 1. Observed values of explanatory variables and response variable.

i 1 2 3 4 5 6 7 8
xi1 11 13 15 21 22 7 8 19
xi2 27 27 28 11 17 22 27 15
xi3 10 21 19 34 32 13 26 31
zi 23 30 29 37 31 27 29 31
i 9 10 11 12 13 14 15 16
xi1 4 22 5 6 4 6 6 13
xi2 21 9 16 23 22 7 8 12
xi3 6 48 26 12 10 21 19 34
zi 20 43 28 22 23 30 29 37
i 17 18 19 20 21 22 23 24
xi1 12 17 12 4 7 8 5 6
xi2 16 13 11 25 26 18 17 24
xi3 24 36 38 20 8 41 36 24
zi 33 34 32 24 24 38 28 26
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5. Uncertain cumulative logistic regression

5.1. Uncertain cumulative logistic regression

Next we generalized uncertain logistic regression model of binary classification. Let j = 1, 2, ..., J
be order variables, then the uncertain cumulative logistic regression can be represented by

zi = a +
n∑

k=1

bkxik + εi,

where εi is a disturbance term with standard uncertain logistic distribution, Suppose yi have J kinds of
situation, then,

yi = 1, zi ≤ η1,

yi = 2, η1 < zi ≤ η2,

......

yi = J, zi > ηJ−1,

where η j is the boundary point, and η1 < η2 < ... < ηJ−1. Then,

M{y ≤ j} =M{z ≤ η j}

= F(η j)

=M{a +
K∑

k=1

bkxk + ε ≤ η j}

=M{ε ≤ η j − (a +
K∑

k=1

bkxk)}

= Λ(η j − (a +
K∑

k=1

bkxk))

=
1

1 + exp[−(η j − (a +
∑K

k=1 bkxk))]

=
exp[η j − (a +

∑K
k=1 bkxk)]

1 + exp[η j − (a +
∑K

k=1 bkxk)]
,

where F is the uncertain distribution of z. Let α j = η j − a,

ln
M{y ≤ j}

1 −M{y ≤ j}
= α j +

K∑
k=1

bkxk.

5.2. Likelihood function of uncertain cumulative logistic regression

Let z1, z2, ..., zn which are corresponding to y1, y2, ..., yn with uncertainty distribution F be iid
samples, and β be a set of unknown parameters. Furthermore, let z1, z2, ..., zn have observing values
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c1, c2, ..., cn, respectively. Then, the likelihood of taking value at β can be represented by

M{

n⋂
i=1

(zi = ci)|β}.

From the independent of y1, y2, ..., yn, we get

=

n∧
i=1

M{(zi = ci)|β}

=

n∧
i=1

J∏
j=1

M{(yi = j)}yi j ,

where

yi j =

{
1, η j−1 < zi ≤ η j,

0, others.

On the other hand, from the subadditivity of uncertain measure, for each i, we obtain

M{ j −
∆

2
< yi ≤ j +

∆

2
}

≥ M{yi ≤ j +
∆

2
} −M{yi ≤ j −

∆

2
}

= F( j +
∆

2
) − F( j −

∆

2
).

Hence, we have

n∧
i=1

J∏
j=1

[lim
∆→0

M{ j − ∆2 < yi ≤ j + ∆2 }
∆

]yi j

≥

n∧
i=1

J∏
j=1

[lim
∆→0

M{yi ≤ j + ∆2 } −M{yi ≤ j − ∆2 }
∆

]yi j

=

n∧
i=1

J∏
j=1

[lim
∆→0

F(η j +
∆
2 ) − F(η j −

∆
2 )

∆
]yi j .

Next, we define a likelihood function of uncertain cumulative logistic regression with respect to a
set of unknown parameters β as follows.

Definition 5.1. Let z1, z2, ..., zn which are corresponding to y1, y2, ..., yn with uncertainty distribution
F be iid samples and β be a set of unknown parameters. Suppose z1, z2, ..., zn have observing values
c1, c2, ..., cn, respectively. Then the likelihood function of taking value at β can be represented by

L(β) =
n∧

i=1

J∏
j=1

[lim
∆→0

F(η j +
∆
2 ) − F(η j −

∆
2 )

∆
]yi j . (5.1)
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Theorem 5.1. Suppose z1, z2, ..., zn which are corresponding to y1, y2, ..., yn with uncertainty
distribution F are iid samples and β is a set of unknown parameters. Let z1, z2, ..., zn have observing
values c1, c2, ..., cn, respectively. If F is differentiable at c1, c2, ..., cn. Then the likelihood function of
taking value at β can be represented by

L(β) =
n∧

i=1

J∏
j=1

{
exp[η j − (a +

∑K
k=1 bkxk)]

{1 + exp[η j − (a +
∑K

k=1 bkxk)]}2
}yi j . (5.2)

Proof. Due to F(c|β) is differentiable at c1, c2, ..., cn, we have

L(β) =
n∧

i=1

J∏
j=1

[lim
∆→0

F(η j +
∆
2 ) − F(η j −

∆
2 )

∆
]yi j

=

n∧
i=1

J∏
j=1

F′(η j)yi j

=

n∧
i=1

J∏
j=1

{
exp[η j − (a +

∑K
k=1 bkxk)]

{1 + exp[η j − (a +
∑K

k=1 bkxk)]}2
}yi j .

Next, we obtain the parameter value through letting the likelihood function reach maximum point.
Since the likelihood function is

L(β) =
n∧

i=1

J∏
j=1

{
exp[η j − (a +

∑K
k=1 bkxk)]

{1 + exp[η j − (a +
∑K

k=1 bkxk)]}2
}yi j ,

so, we have

ln L(β) =
n∧

i=1

J∑
j=1

yi j{η j − (a +
K∑

k=1

bkxk) − 2 ln{1 + exp[η j − (a +
K∑

k=1

bkxk)]}}.

Then, the maximum likelihood estimator β̂ solves the maximization problem

max ln L(β|c1, c2, ..., cn).

5.3. Cumulative logistic regression example

Example 5.1. Let (xi1, xi2, xi3, zi), i = 1, 2, ..., 24 be a set of observed values (see Table 2), and the
uncertain multivariate logistic regression model is

z = a + b1x1 + b2x2 + b3x3 + ϵ,

where ϵ is a standard uncertain logistic distribution. Then, we have

ln
M{y = 1}

1 −M{y = 1}
= ln

M{y = 1}
M{y = 2} +M{y = 3}

= a +
3∑

j=1

b jx j,
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and

M{y = 1} =
exp[30 − (a +

∑3
k=1 bkxk)]

1 + exp[30 − (a +
∑3

k=1 bkxk)]

M{y = 2} =
exp[40 − (a +

∑3
k=1 bkxk)] − exp[30 − (a +

∑3
k=1 bkxk)]

{1 + exp[40 − (a +
∑3

k=1 bkxk)]}{1 + exp[30 − (a +
∑3

k=1 bkxk)]}

M{y = 3} =
1

1 + exp[40 − (a +
∑3

k=1 bkxk)]
,

where

y =


1, z ≤ 30,
2, 30 < z ≤ 40,
3, z > 40,

according to personal experimental. Then, we solve the maximum problem

max
32∧
i=1

3∑
j=1

yi j{η j − (a +
3∑

k=1

bkxk) − 2 ln{1 + exp[η j − (a +
3∑

k=1

bkxk)]}}

for obtaining β̂.
Hence, the uncertain logistic regression model is

M{y = 1} =
exp[30 − (9.305 − 20.341x1 + 1.877x2 − 0.639x3)]

1 + exp[30 − (9.305 − 20.341x1 + 1.877x2 − 0.639x3)]
,

M{y = 3} =
1

1 + exp[40 − (9.305 − 20.341x1 + 1.877x2 − 0.639x3)]
,

M{y = 2} = 1 −M{y = 1} −M{y = 3}.
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Table 2. Observed values of explanatory variables and response variable.

i 1 2 3 4 5 6 7 8
xi1 8 4 15 16 24 3 7 25
xi2 1 1 3 4 2 3 2 1
xi3 2 1 2 1 1 1 2 2
zi 15 23 34 45 43 41 47 21
i 9 10 11 12 13 14 15 16
xi1 3 9 25 17 3 7 3 15
xi2 3 3 4 4 3 3 4 3
xi3 1 2 1 2 2 1 1 1
zi 22 34 20 42 41 23 24 45
i 17 18 19 20 21 22 23 24
xi1 17 4 4 23 25 26 18 3
xi2 1 3 2 1 3 4 2 1
xi3 2 2 2 1 1 1 2 2
zi 17 36 22 37 38 31 32 25
i 25 26 27 28 29 30 31 32
xi1 3 14 29 30 9 9 4 31
xi2 1 1 3 3 4 3 2 4
xi3 1 1 2 1 1 2 2 1
zi 20 23 43 22 43 45 20 43

6. Conclusions

In this paper, we first recall some basic concepts of measure and distributions of uncertain variables.
Then, we introduce the concept of uncertain logistic distribution. In addition, we estimate the uncertain
logistic regression of binary classification and presented its maximum likelihood estimation. Finally,
we generalize the binary classification to the uncertain cumulative logistic regression and derive the
maximum likelihood. Through the above work, we found that uncertain logistic regression models
are more suitable to deal with the classification problems in practice than uncertain linear regression
models. Moreover, the output results of uncertain logistic models have probabilistic significance,
and the classification results can be interpreted by probability. However, due to the limitations of
uncertainty theorem, we can build only the order multi-classification model, and cannot establish the
disorder multi-classification model. In the future, we plan to apply our results to the field of uncertain
statistics research.
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