Research article

Convexity of nonlinear mappings between bounded linear operator spaces

  • Correction on: AIMS Mathematics 9: 15699–15700.
  • Received: 06 November 2023 Revised: 09 February 2024 Accepted: 23 February 2024 Published: 18 March 2024
  • MSC : 47B47, 47A30

  • Motivated by the work [7], in which the author studied the convexity of nonlinear mappings defined between bounded linear operator spaces, our research extends this inquiry. In this work, we continue the study of the convexity of nonlinear mappings defined between bounded linear operator spaces and we establish a characterization in terms of the second order directional derivative. We apply the main result to prove the convexity and the nonconvexity of well-known nonlinear mappings. The case of nondifferentiable mappings is also treated in the last section.

    Citation: Messaoud Bounkhel, Ali Al-Tane. Convexity of nonlinear mappings between bounded linear operator spaces[J]. AIMS Mathematics, 2024, 9(5): 10462-10477. doi: 10.3934/math.2024511

    Related Papers:

  • Motivated by the work [7], in which the author studied the convexity of nonlinear mappings defined between bounded linear operator spaces, our research extends this inquiry. In this work, we continue the study of the convexity of nonlinear mappings defined between bounded linear operator spaces and we establish a characterization in terms of the second order directional derivative. We apply the main result to prove the convexity and the nonconvexity of well-known nonlinear mappings. The case of nondifferentiable mappings is also treated in the last section.



    加载中


    [1] J. P. Aubin and H. Frankowska, Set valued analysis, Birkhauser, Boston, 1990.
    [2] H. Bauschke and P. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer, 2011.
    [3] J. M. Borwein and Q. J. Zhu, Variational methods in convex analysis, J. Glob. Optim., 35 (2006), 197–213. https://doi.org/10.1007/s10898-005-3835-3. doi: 10.1007/s10898-005-3835-3
    [4] J. M. Borwein, Subgradients of convex operators, Math. Oper. Stat. Ser., 15 (1984), 179–191. https://doi.org/10.1080/02331938408842921. doi: 10.1080/02331938408842921
    [5] J. M. Borwein, Continuity and differentiability properties of convex operators, London Maths. Soc., s3-44 (1982), 420–444. https://doi.org/10.1112/plms/s3-44.3.420. doi: 10.1112/plms/s3-44.3.420
    [6] J. M. Borwein, Convex relations in analysis and optimization, In: S. Schaible and W. T. Ziemba, (eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, 1981.
    [7] M. Bounkhel, Global minimum of nonlinear mappings and orthogonality in $C^1$-classes, New Zeal. J. Math., 36 (2007), 147–158.
    [8] J. Brinkhuis, Z. Q. Luo, and S. Zhang, Matrix convex functions with applications to weighted centers for semidefinite programming, Technical Report, El 2005-38, Econometric Institute, Erasmus University Rotterdam, 2005.
    [9] X. Chen, H. Qi, and P. Tseng, Analysis of nonsmooth symmetric-matrix-valued function with applications to semidefinite complementarity problems, SIAM J. Optim., 13 (2003), 960–985. https://doi.org/10.1137/S1052623400380584. doi: 10.1137/S1052623400380584
    [10] M. V. Dolgopolik, DC semidefinite programming and cone constrained DC optimization I: theory, Comput. Optim. Appl., 82 (2022), 649–671. https://doi.org/10.1007/s10589-022-00374-y. doi: 10.1007/s10589-022-00374-y
    [11] M. V. Dolgopolik, DC semidefinite programming and cone constrained DC optimization Ⅱ: local search methods, Comput. Optim. Appl., 85 (2023), 993–1031. https://doi.org/10.1007/s10589-023-00479-y. doi: 10.1007/s10589-023-00479-y
    [12] M. V. Dolgopolik, Subdifferentials of convex matrix-valued functions, arXiv: 2307.15856, 2023.
    [13] F. Hansen and J. Tomiyama, Differential analysis of matrix convex functions, Linear Algebra Appl., 420 (2007), 102–116. https://doi.org/10.1016/j.laa.2006.06.018. doi: 10.1016/j.laa.2006.06.018
    [14] N. Kirov, Generic fréchet differentiability of convex operators, P. Am. Math. Soc., 94 (1985), 1.
    [15] A. G. Kusraev and S. S. Kutateladze, Subdifferentials: Theory and applications, Kluwer Academic Publishers, Dordrecht, 1995.
    [16] B. S. Mordukhovich, Variational analysis and generalized differentiation I: Basic theory, Springer-Verlag, Berling, Heidelberg, 2006.
    [17] K. Nordstrom, Convexity of the inverse and Moore-Penrose inverse, Linear Algebra Appl., 434 (2011), 1489–1512. https://doi.org/10.1016/j.laa.2010.11.023. doi: 10.1016/j.laa.2010.11.023
    [18] N. S. Papageorgiou, Nonsmooth analysis on partially ordered vectors spaces: Part 1: Convex case, Pac. J. Math., 107 (1983), 403–458. https://doi.org/10.2140/pjm.1983.107.403. doi: 10.2140/pjm.1983.107.403
    [19] S. M. Robinson, Regularity and stability for convex multivalued functions, Math. Oper. Res., 1 (1976), 130–143. https://doi.org/10.1287/moor.1.2.130. doi: 10.1287/moor.1.2.130
    [20] R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, NJ, 1970.
    [21] R. T. Rockafellar, R. Wets, Variational analysis, Springer Verlag, Berlin, 1998.
    [22] D. Sun and J. Sun, Semismooth matrix-valued functions, Math. Oper. Res., 27 (2002), 150–169. https://doi.org/10.1287/moor.27.1.150.342. doi: 10.1287/moor.27.1.150.342
    [23] M. Théra. Subdifferential calculus for convex operators, J. Math. Anal. Appl., 80 (1981), 78–91.
    [24] M. Valadier, Sous-differentiabilité des fonctions convexes à valeurs dans un espace vectoriel ordonné, Math. Scand., 30 (1972), 65–74.
    [25] L. Vesely and L. Zajicek, On differentiability of convex operators, J. Math. Anal. Appl., 402 (2013), 12–22. https://doi.org/10.1016/j.jmaa.2012.12.073. doi: 10.1016/j.jmaa.2012.12.073
    [26] L. Vesely and L. Zajicek, Delta-convex mappings between Banach spaces and applications, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1989.
    [27] W. Watkins, Convex matrix functions, Proc. Amer. Math. Soc., 44 (1974), 31–34. https://doi.org/10.1090S0002-9939-1974-0340291-3.
    [28] W. Wyss, Two non-commutative binomial theorems, arXiv: 1707.03861, 2017.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1066) PDF downloads(167) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog