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1. Introduction

Convexity concept for functions, mappings, and set-valued mappings is a very important tool
in various applications. Its significance is most notably demonstrated in the realms of linear
programming and convex optimization. Convexity guarantees the existence of global minima or
maxima, streamlining the optimization process. Furthermore, it finds utility in signal processing,
machine learning, and data analysis, where convex models are employed to handle and manipulate data
efficiently. Extensive references to explore these applications can be found in [1–3,6,16,19–21,27], as
well as their associated sources.

The study of real-valued and vector-valued functions has received considerable attention, as
evidenced by references like [2, 3, 16, 20, 21]. However, the domain of matrix-valued functions,
where inputs and outputs are matrices, holds a special place. Particularly, when these functions
exhibit convexity concerning the Lowner partial order, they have wide applications in semi-definite
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programming and semi-definite complementarity problems, as detailed in [8–13, 15, 17, 22, 26, 27].
These matrix-valued functions also serve as the backbone for specialized numerical methods designed
to efficiently solve the associated problems.

A fascinating area of study revolves around mappings that take values in ordered Banach spaces, as
illuminated in various papers such as [3–5,14,15,18,23,24]. However, the applicability of this general
theory to convex matrix-valued functions encounters challenges. The primary constraint lies in the fact
that the space of symmetric matrices, when equipped with the Lowner partial order, deviates from the
typical characteristics of a vector lattice.

These deviations mean that many established techniques in convex analysis cannot be
straightforwardly extended or applied to the study of convex matrix-valued functions. Consequently,
alternative and specific techniques are necessitated to effectively analyze such functions.

In this work, our primary objective is to establish a characterization of convexity for matrix-
valued functions and, more broadly, for nonlinear mappings defined within the Banach space B(H)
of bounded linear operators. Our work unfolds as follows: Section 3 introduces the essential concepts
that underpin the entire paper and is dedicated to articulating and proving our key findings, while we
conclude with Section 4, which delves into the case of non-differentiable nonlinear mappings.

2. Preliminary

LetH be a real Hilbert space and let B(H) be the Banach space of bounded linear operators defined
on H . First, we define nonnegative and positive operators on B(H). An operator A ∈ B(H) is called
nonnegative provided that 〈A f , f 〉 ≥ 0 for all f ∈ H , and we write A ≥ 0. An operator A is called
positive, and we write A > 0 if it is nonnegative and sel-fadjoint (A = A∗). An operator A ∈ B(H) is
said to be nonpositive (resp., negative) if the operator −A is nonnegative (resp., positive). Using this
concept of nonnegativity and positivity of operators in B(H), we gather some important definitions
needed in all the paper.

Definition 2.1.

(1) A subsetU of B(H) is said to be convex if αX + (1−α)Y ∈ U, whenever X,Y ∈ U and α ∈ [0, 1].

(2) A map Ψ : B(H)→ B(H) is said to be convex (resp., strictly convex, concave, strictly concave) on
a convex subsetU of B(H), provided that [αΨ(X)+(1−α)Ψ(Y)]−Ψ(αX +(1−α)Y) is nonnegative
(resp., positive, nonpositive, negative) for all X,Y ∈ U and all α ∈ [0, 1].

(3) The set of all nonnegative (resp., positive) operators inB(H) is denoted byB+(H) (resp.,B++(H)).
We notice that B+(H) (resp., B++(H)) is a closed convex cone (resp., an open convex cone ) in
Bsa(H). A set S is said to be a cone provided that ∀α > 0, ∀s ∈ S , we have αs ∈ S .

(4) The set of all self-adjoint operators in B(H) is denoted by Bsa(H). This set is a closed linear
subspace of B(H). Obviously, we have B++(H) ⊂ B+(H) and B++(H) ⊂ Bsa(H).

(5) The set of all nonnegative functionals in the topological dual space B∗(H) of B(H) is denoted by
B∗+(H) and defined by

B∗+(H) := {Z ∈ B∗(H) : Z(X) ≥ 0, ∀X ∈ B+(H)}.
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(6) The negative polar of the closed convex cone B∗+(H) is denoted by [B∗+(H)]− and defined as
follows:

[B∗+(H)]− := {X ∈ B(H) : Z(X) ≤ 0, ∀Z ∈ B∗+(H)}.

Easily, we can check that [B∗+(H)]− = −B+(H).

Definition 2.2. Let E and F be two Banach spaces and let Ω be an open set in E. Let f : Ω → F be a
given mapping.

(1) We define the directional derivative of f at x ∈ Ω in the direction h, as follows:

∇ f (x; h) = lim
t→0+

f (x + th) − f (x)
t

.

When f is differentiable at x, we have ∇ f (x)(h) = f ′(x; h), ∀h ∈ E.

(2) We define the second order directional derivative of f at x in the directions (h, k), as follows:

f ′′(x; (h, k)) = lim
t→0+

∇ f (x + tk)(h) − ∇ f (x)(h)
t

.

When f is twice differentiable at x, we have ∇2 f (x)(h)(k) = f ′′(x; (h, k)), ∀h, k ∈ E.

3. Main results

The following result is well known and can be found in any calculus book. For completeness of our
work, we state it without proof.

Theorem 3.1. Let S be an open convex subset of a given Banach space E and let f : S → R be a twice
differentiable real function on S . Then for any x, y ∈ U, ∃z0 ∈ (x, y) := {z = ty + (1 − t)x, for some t ∈
(0, 1)} such that

f (y) = f (x) + ∇ f (x)(y − x) +
1
2
∇2 f (z0)(y − x)(y − x).

We use this result to prove the following characterizations of the convexity of real-valued functions
defined on open convex sets in Banach spaces.

Theorem 3.2. Let E be a given Banach space and let f : S → R be a twice differentiable function on
an open convex subset S in E. Then the following assertions are equivalent:

1- f is convex on S ;

2- (∇ f (x) − ∇ f (y))(x − y) ≥ 0,∀x, y ∈ S ;

3- ∇2 f (x)(h)(h) ≥ 0,∀x ∈ S ,∀h ∈ E.

Proof. (1)⇒ (2): Assume that f is convex on S . Let x and y be any two points in S . For any λ ∈ (0, 1),
we have

f (y + λ(x − y)) = f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) ≤ f (y) + λ( f (x) − f (y)),
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so

f (y + λ(x − y)) − f (y)
λ

≤ f (x) − f (y).

Taking λ→ 0 gives
∇ f (y)(x − y) ≤ f (x) − f (y).

Interchanging the roles of x and y, we get the inequality:

∇ f (x)(y − x) ≤ f (y) − f (x).

Adding these two inequalities, we get

(∇ f (x) − ∇ f (y))(x − y) ≥ 0,∀x, y ∈ S ,

which completes the proof of (2).

(2)⇒ (3): Let x be any point in S and h be any point in E. Since S is an open set, we have x+th ∈ S
for t > 0 small enough. Then by (2), we obtain

∇ f (x + th)(th) − ∇ f (x)(th) = (∇ f (x + th) − ∇ f (x))(th) ≥ 0.

Dividing by t2 and taking t → 0, we get

∇2 f (x)(h)(h) = lim
t→0

∇ f (x + th)(h) − ∇ f (x)(h)
t

≥ 0,

which proves (3).

(3) ⇒ (1): Let x and y be any two points in S and let λ ∈ [0, 1]. Using Theorem 3.1, we have, for
some z0 ∈ (y, x) ⊂ S ,

f (y) = f (x) + ∇ f (x)(y − x) +
1
2
∇2 f (z0)(y − x)(y − x). (3.1)

Since z0 ∈ S ⊂ E, we deduce from (3),

∇2 f (z0)(y − x)(y − x) ≥ 0, ∀x, y ∈ S . (3.2)

This inequality with (3.1) ensures

f (y) − f (x) ≥ ∇ f (x)(y − x), ∀x, y ∈ S . (3.3)

Interchanging the roles of x and y, we obtain

f (x) − f (y) ≥ ∇ f (y)(x − y), ∀x, y ∈ S . (3.4)

Adding inequalities (3.3) and (3.4) gives

(∇ f (y) − ∇ f (x))(y − x) ≥ 0, ∀x, y ∈ S , (3.5)
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and so (2) is satisfied. We continue showing (1), i.e., the convexity of the function f on S . To do that,
we define a scalar function ϕ : [0, 1] → R by ϕ(t) := f (y + t(x − y)), ∀t ∈ [0, 1]. Obviously, we have
for any t ∈ (0, 1), ϕ′(t) = ∇ f (y + t(x − y))(x − y). By convexity of S , we have for any α, β ∈ (0, 1),
yα = y + α(x − y), and yβ = y + β(y − x) will stay in S , so by (3.5), we get

ϕ′(β) − ϕ′(α)=∇ f (y + β(x − y))(x − y) − ∇ f (y + α(x − y))(x − y)

= (∇ f (yβ) − ∇ f (yα))(x − y) =
(∇ f (yβ) − ∇ f (yα))(yβ − yα)

β − α
≥ 0,

which implies that ϕ′ is increasing on (0, 1); and ϕ is convex on (0, 1). Hence, for any α ∈ (0, 1), we
obtain

f (αx + (1 − α)y) = ϕ(α) ≤ αϕ(1) + (1 − α)ϕ(0) = α f (x) + (1 − α) f (y).

This ensures that f is convex on S , and so the proof is complete. �

The next proposition is our main tool in the study of the convexity of nonlinear mappings defined
on B(H).

Proposition 3.3. Let U be an open convex subset of the Banach space of bounded linear operators
B(H). Let Ψ : U → B(H) be a given nonlinear mapping. Then Ψ is convex onU if, and only if, for
any Z ∈ B∗+(H), the real-valued function φZ := 〈Z,Ψ〉 is convex onU.

Proof. Assume that Ψ is convex onU. Fix any t ∈ [0, 1] and any X,Y ∈ U, we set Zt := tX + (1 − t)Y .
By convexity of U and Ψ, we have Zt ∈ U and Ψ(Zt) ≤ tΨ(X) + (1 − t)Ψ(Y), that is, tΨ(X) + (1 −
t)Ψ(Y) − Ψ(Zt) ∈ B+(H). Using the fact that B+(H) = −

[
B∗+(H)

]−, we can write

〈Z; tΨ(X) + (1 − t)Ψ(Y) − Ψ(Zt)〉 ≥ 0, ∀Z ∈ B∗+(H).

So,
tφZ(X) + (1 − t)φZ(Y) − φZ(Zt) = t〈Z,Ψ(X)〉 + (1 − t)〈Z; Ψ(Y)〉 − 〈Z,Ψ(Zt)〉 ≥ 0,

that is,
φZ(Zt) ≤ tφZ(X) + (1 − t)φZ(Y),

which mean that φZ is convex onU; for any Z ∈ B∗+(H).

Conversely, assume that φZ is convex onU for all Z ∈ B∗+(H). Fix any t ∈ [0, 1] and any X,Y ∈ U
and set Zt := tX + (1 − t)Y . Then φZ(Zt) ≤ tφZ(X) + (1 − t)φZ(Y), that is,

〈Z; tΨ(X) + (1 − t)Ψ(Y) − Ψ(Zt)〉 ≥ 0,∀Z ∈ B∗+(H).

This means that

−[tΨ(X) + (1 − t)Ψ(Y) − Ψ(Zt)] ∈ [B∗+(H)]− (the negative polar of B∗+(H)).

Recall that [B∗+(H)]− = −B+(H). Hence, we obtain tΨ(X) + (1 − t)Ψ(Y) − Ψ(Zt) ∈ B+(H), that is ,

Ψ(Zt) ≤ tΨ(X) + (1 − t)Ψ(Y), ∀t ∈ [0, 1], ∀X,Y ∈ U.

This means that Ψ is convex onU and, hence, the proof is complete. �

Using this proposition and Theorem 3.2, we establish some characterizations of the convexity of
mappings defined on open convex sets in B(H) and having images in B(H).
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Theorem 3.4. LetU be an open convex subset in B(H) and let Ψ : U → B(H) be twice differentiable
onU. Then the following assertions are equivalent:

(1) Ψ is convex onU;

(2) ∇Ψ is monotone onU, i.e., (∇Ψ(X) − ∇Ψ(Y))(X − Y) ≥ 0,∀X,Y ∈ U;

(3) ∇2Ψ(X)(V)(V) ≥ 0,∀X ∈ U,∀V ∈ B(H).

Proof. The proof of the implications (1) ⇒ (2) and (2) ⇒ (3) follow the same lines as in the proof of
Theorem 3.2. We have to check (3) ⇒ (1). Assume that ∇2Ψ(X)(V)(V)〉 ≥ 0,∀X ∈ U,∀V ∈ B(H).
Fix any Z in B∗+(H) and associate with Z and Ψ the real-valued function φZ : U → R by φZ(X) :=
〈Z; Ψ(X)〉. Observe that

∇2φZ(X)(V)(V) = 〈Z;∇2Ψ(X)(V)(V)〉,∀X ∈ U,∀V ∈ B(H).

By assertion (3) and the definition of B∗+(H), we get 〈Z;∇2Ψ(X)(V)(V)〉 ≥ 0 and so
〈∇2φZ(X,V); V)〉 ≥ 0,∀X ∈ U,∀V ∈ B(H). Using now Theorem 3.2 for the convex real-valued
function φZ, we get φZis convex on U, for all Z ∈ B∗+(H). This ensures by Proposition 3.3 the
convexity of Ψ onU and, hence, the proof is achieved. �

We use this characterization to study the convexity of some examples of nonlinear mappings defined
on B(H) that we cannot prove using the definition. We start with the following two examples, in which
we prove the convexity of the nonlinear mappings by both the definition and by Theorem 3.4.

Remark 3.5. An inspection of the proof of Theorem 3.4 shows that its conclusion is still valid when
we replace B(H) with Bsa(H) or any closed subspace of B(H) containing B++(H). Consequently, we
can write the following characterization and omit its proof.

Proposition 3.6. Let U be an open convex subset in Bsa(H) and let Ψ : U → B(H) be twice
differentiable onU. Then Ψ is convex onU if, and only if, ∇2Ψ(X)(V)(V) ≥ 0,∀X ∈ U,∀V ∈ Bsa(H).

Example 3.7. Define the following two nonlinear mappings:

(1) Ψ1 : Binv(H)→ B++(H) defined by Ψ1(X) = X−1, where Binv(H) := {X ∈ B++(H) : X−1 exists }.

(2) Ψ2 : B(H)→ B(H) defined by Ψ(X) = X∗AX, where A is a nonnegative operator.

Then, Ψ1 is strictly convex on Binv(H) and Ψ2 is convex on all the space B(H). If, in addition, A is
positive, then Ψ2 is strictly convex on B(H).

Proof. First, we prove the strict convexity of Ψ1 on Binv(H) using the definition. Let X and Y be any
two operators in Binv(H) and let r, s ∈ [0, 1] with r + s = 1. Set R := X−1 ∈ Binv(H), S := Y−1 ∈

Binv(H), and T := (rS + sR)−1 ∈ Binv(H). Observe that

S TR = S (rS + sR)−1R =
(
R−1(rS + sR)S −1

)−1
=

(
rR−1S S −1 + sR−1RS −1

)−1
=

(
rR−1 + sS −1

)−1

and by the same way, we get RTS =
(
rR−1 + sS −1

)−1
. Thus,

rΨ1(X) + sΨ1(Y) − Ψ1(rX + sY)= sX−1 + sY−1 − (rX + sY)−1 = rR + sS −
(
rR−1 + sS −1

)−1
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=
1
2

[
rR + rR + sS + sS −

(
rR−1 + sS −1

)−1
−

(
rR−1 + sS −1

)−1]
=

1
2

[
rRTT−1 + rT−1TR + sS TT−1 + sT−1TS − S TR − RTS

]
=

1
2

[
2rs(RTR + S TS ) − 2rs(RTS + S TR)

]
= rs

[
RTR + S TS − RTS − S TR

]
= rs(R − S )T (R − S ).

Since X and Y are positive, so is T , hence, (R−S )T (R−S ) is positive. Indeed, for any f ∈ H , we have

〈(R − S )T (R − S ) f , f 〉 = 〈T (R − S ) f , (R − S )∗ f 〉 = 〈T (R − S ) f , (R − S ) f 〉 > 0.

Therefore,

rΨ1(X) + sΨ1(Y) − Ψ1(rX + sY) > 0, ∀r, s ∈ [0, 1] with r + s = 1, ∀X,Y ∈ Binv(H).

This means that Ψ1 is strictly convex on Binv(H).
The convexity of Ψ2 using the definition has been proved in Example 3.2 in [7]. Now, we turn to the
application of Theorem 3.4 to prove the convexity of Ψ1 and Ψ2. We need to compute the second
order derivative of both mappings Ψ1 and Ψ2. We begin with the first directional derivative. Simple
computations give for any V ∈ B(H):

∇Ψ1(X)(V) = −X−1VX−1,∀X ∈ Binv(H) and ∇Ψ2(X)(V) = X∗AV + V∗AX,∀X ∈ B(H).

We notice that for any V ∈ B(H) and any X ∈ Binv(H) we get X + tV ∈ Binv, for t small enough, so
Ψ1(X + tV) is well-defined. We can write

∇2Ψ1(X)(V)(V) = lim
t→0

1
t

[
∇Ψ1(X + tV)(V) − ∇Ψ1(X)(V)

]
= − lim

t→0

1
t

[
(X + tV)−1V(X + tV)−1 − X−1VX−1

]
.

Note that

(X + tV)−1V(X + tV)−1 − X−1VX−1 = X−1VX−1
[
XV−1X − (X + tV)V−1(X + tV)

]
(X + tV)−1V(X + tV)−1

= X−1VX−1
[
− 2tX − t2V

]
(X + tV)−1V(X + tV)−1

= −tX−1VX−1
[
2X + tV

]
(X + tV)−1V(X + tV)−1.

Thus, for any V ∈ B(H) and any X ∈ Binv(H),

∇2Ψ1(X)(V)(V) = lim
t→0

X−1VX−1
[
(2X + tV

]
(X + tV)−1V(X + tV)−1

= X−1VX−1
[
2X

]
X−1VX−1

= 2X−1VX−1VX−1.

For the second nonlinear mapping Ψ2, we have for any X,V ∈ B(H),

∇2Ψ2(X)(V)(V) = lim
t→0

1
t

[
∇Ψ2(X + tV)(V) − ∇Ψ2(X)(V)

]
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= lim
t→0

1
t

[
(X + tV)∗AV + V∗A(X + tV) − X∗AV − V∗AX

]
= lim

t→0

1
t

[
2tV∗AV

]
= 2V∗AV.

Therefore, we obtain for any V ∈ B(H),

∇2Ψ1(X)(V)(V) = 2X−1VX−1VX−1,∀X ∈ Binv(H) and ∇2Ψ2(X)(V)(V) = 2V∗AV,∀X ∈ B(H).

Obviously, we have ∇2Ψ1(X)(V)(V) > 0, ∀X ∈ Binv(H) and ∀V ∈ Bsa(H), and so by Proposition 3.6,
the nonlinear mapping Ψ1 is strictly convex on Binv(H). Also, we have ∇2Ψ2(X)(V)(V) > 0 ∀X,V ∈
B(H), whenever A is positive. This ensures by Theorem 3.4 the strict convexity of Ψ2 on B(H). When
A is nonnegative, we get ∇2Ψ2(X)(V)(V) ≥ 0 ∀X,V ∈ B(H), which gives the convexity of Ψ2 onB(H).

Now, by using our characterizations of the convexity in Theorem 3.4 and Proposition 3.6, we are
going to study the convexity of some well-known nonlinear mappings on B(H). Let us start with the
power mapping defined by Ψn : X 7→ Ψn(X) = Xn, n ≥ 1. To do that, we need to compute the second
directional derivative of Ψn. First, we recall a very important result on two noncommutative binomial
theorems established in Walter Wyss [28].

Theorem 3.8. Let E be an associative algebra, not necessarily commutative, with identity 1. For any
X and Y in E, we have

(X + Y)n =

n∑
k=0

(
n
k

)
{(X + δY)k · 1}Yn−k, where δY(X) = YX − XY. (3.6)

Set Dn(Y, X) := (X + δY)n · 1 − Xn. Obviously, we have D0(Y, X) = D1(Y, X) = 0. It has been shown
in [28] that Dn satisfies the iteration formula for any n ≥ 1.

Dn+1(Y, X) = δY(Xn) + (X + δY)Dn(Y, X). (3.7)

Using this important result, we compute the first and second directional derivatives of the nonlinear
mapping Ψn.

Proposition 3.9. Let E be an associative algebra, not necessarily commutative, with identity 1. Then

(i) ∇Ψn(X)(V) =
n−1∑
k=0

XkVXn−k−1;

(ii) ∇2Ψn(X)(V)(V) =
n−1∑
k=1

k−1∑
j=0

[
Xn−1−kVX jVXk−1− j + X jVXk−1− jVXn−1−k].

Proof. (i) By definition of the first order directional derivative, we have

∇Ψn(X)(V) = lim
t→0

1
t

[
Ψn(X + tV) − Ψn(X)

]
= lim

t→0

1
t

[
(X + tV)n − Xn

]
.
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For (X + tV)n, we can write by using Theorem 3.8

(X + tV)n = {(X + δtV)n · 1} + n{(X + δtV)n−1 · 1}tV +

n−2∑
k=0

(
n
k

)
{(X + δtV)k · 1}(tV)n−k.

Set E(t) := t−1
n−2∑
k=0

(
n
k

)
{(X + δtV)k · 1}(tV)n−k, so we get

(X + tV)n = {(X + δtV)n · 1} + nt{(X + δtV)n−1 · 1}V + tE(t),

and so

(X + tV)n − Xn

t
=
{(X + δtV)n · 1} − Xn

t
+ n{(X + δtV)n−1 · 1}V + E(t)

=
Dn(tV, X)

t
+ n{(X + tδV)n−1 · 1}V + E(t). (3.8)

Taking t ↓ 0 gives

∇Ψn(X)(V) = lim
t→0

(X + tV)n − Xn

t
= lim

t→0

Dn(tV, X)
t

+ nXn−1V + lim
t→0

E(t).

First, we show that lim
t→0

E(t) = 0. We have, by definition,

E(t) = t−1
n−2∑
k=0

(
n
k

)
{(X + δtV)k · 1}(tV)n−k

=

n−2∑
k=0

(
n
k

)
{(X + δtV)k · 1}tn−k−1(V)n−k

=

(
n
0

)
tn−1(V)n +

(
n
1

)
{(X + δtV) · 1}tn−2(V)n−1 + ... +

(
n

n − 2

)
{(X + δtV)n−1 · 1}t(V)2

= t
[
tn−2(V)n + n{(X + δtV) · 1}tn−3(V)n−1 + ... +

n(n − 1)
2

{(X + δtV)n−1 · 1}(V)2
]
.

This ensures that E(t) goes to zero as t → 0. On the other hand, we compute the limit lim
t→0

Dn(tV, X)
t

.

First, we prove by induction that Dn(tV, X) = t
n−1∑
k=0

(X+δtV)kδV(Xn−1−k). Using the iteration formula (3.7),

we obtain

Dn(tV, X) = tδV(Xn−1) + (X + tδV)Dn−1(tV, X)
= tδV(Xn−1) + (X + tδV)[tδV(Xn−2) + (X + tδV)Dn−2(tV, X)]
= tδV(Xn−1) + t(X + tδV)δV(Xn−2) + (X + tδV)2Dn−2(tV, X)
= tδV(Xn−1) + t(X + tδV)δV(Xn−2) + (X + tδV)2[tδV(Xn−3) + (X + tδV)Dn−3(tV, X)]
= tδV(Xn−1) + t(X + tδV)δV(Xn−2) + t(X + tδV)2δV(Xn−3) + (X + tδV)3Dn−3(tV, X)
= tδV(Xn−1) + t(X + tδV)δV(Xn−2) + ... + (X + tδV)n−2D2(tV, X)
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= tδV(Xn−1) + t(X + tδV)δV(Xn−2) + ... + t(X + tδV)n−2δV(X)

= t
[
δV(Xn−1) + (X + tδV)δV(Xn−2) + ... + (X + tδV)n−2δV(X)

]
= t

n−1∑
k=0

(X + tδV)kδV(Xn−1−k).

This implies

lim
t→0

Dn(tV, X)
t

= lim
t→0

n−1∑
k=0

(X + tδV)kδV(Xn−1−k) =

n−1∑
k=0

XkδV(Xn−1−k) =

n−1∑
k=0

[XkVXn−1−k − Xn−1].

Therefore,

∇Ψn(X)(V) =

n−1∑
k=0

[XkVXn−1−k − Xn−1] + nXn−1V

=

n−1∑
k=0

[XkVXn−1−k − Xn−1V] + nXn−1V

=

n−1∑
k=0

XkVXn−1−k − nXn−1V + nXn−1V

=

n−1∑
k=0

XkVXn−1−k.

(ii) By definition of the second order directional derivative of Ψn at X in the directions (V,V), we have

∇2Ψn(X)(V)(V) = lim
t→0

1
t

[
∇Ψn(X + tV)(V) − ∇Ψn(X)(V)

]
.

First, note that

∇Ψn(X)(V) =

n−1∑
k=0

XkVXn−k−1

= VXn−1 + Xn−1V +

n−2∑
k=1

XkVXn−k−1.

So,

∇Ψn(X + tV)(V) − ∇Ψn(X)(V) = V(X + tV)n−1 − VXn−1 + (X + tV)n−1V − Xn−1V

+

n−2∑
k=1

[
(X + tV)kV(X + tV)n−k−1 − XkVXn−1−k

]
= V

[
(X + tV)n−1 − Xn−1

]
+ V

[
(X + tV)n−1V − Xn−1V]

+

n−2∑
k=1

[
(X + tV)kV(X + tV)n−k−1 − (X + tV)kVXn−k−1
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+ (X + tV)kVXn−k−1 − XkVXn−1−k
]

= V
[
(X + tV)n−1 − Xn−1

]
+ V

[
(X + tV)n−1V − Xn−1V]

+

n−2∑
k=1

(X + tV)kV
[
(X + tV)n−k−1 − Xn−k−1]

+

n−2∑
k=1

[
(X + tV)k − Xk

]
VXn−k−1.

Hence,

lim
t→0

t−1
[
∇Ψn(X + tV)(V) − ∇Ψn(X)(V)

]
= V∇Ψn−1(X)(V) + ∇Ψn−1(X)(V)V

+

n−2∑
k=1

XkV∇Ψn−1−k(X)(V) +

n−2∑
k=1

∇Ψk(X)(V)VXn−1−k

= V∇Ψn−1(X)(V) + ∇Ψn−1(X)(V)V

+

n−2∑
k=1

Xk−1−kV∇Ψk(X)(V) +

n−2∑
k=1

∇Ψk(X)(V)VXn−1−k

=

n−1∑
k=1

[
Xk−1−kV∇Ψk(X)(V) + ∇Ψk(X)(V)VXn−1−k

]
=

n−1∑
k=1

k−1∑
j=0

[
Xn−1−kVX jVXk−1− j + X jVXk−1− jVXn−1−k].

�

Using this result and our characterization of the convexity in Proposition 3.6, we are going to study
the convexity of the following particular cases:

Case n=2. For this case, we have

∇2Ψ2(X)(V)(V) = 2V2, ∀V ∈ B(H).

Obviously, we have ∇2Ψ2(X)(V)(V) = 2V2 ≥ 0,∀V ∈ Bsa(H), which ensures the convexity of
Ψ2(X) = X2 on Bsa(H). We notice that 2V2 is not always nonnegative for any V ∈ B(H). This
fact ensures that the Ψ2(X) = X2 is not convex on all the space B(H).

Case n=3. For this case, we have

∇2Ψ3(X)(V)(V) = 2[V2X + X2V + VXV], ∀V ∈ B(H).

Obviously, ∇2Ψ3(X)(V)(V) is not necessarily nonnegative, even for V ∈ Bsa(H) and X ∈ B++(H).
Take, for instance, the finite dimensional case B(H)sa = S2 (the space of 2 × 2 real symmetric

matrices), X =

(
5 2
2 1

)
∈ S2

++ (the set of matrices positive definite in S2), and V =

(
3 2
2 1

)
∈ S2.
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For these two matrices X and V , we have ∇2Ψ3(X)(V)(V) =

(
425.0006 248.4804
244.4000 142.1600

)
, which is

not nonnegative. This conclusion of nonconvexity of Ψ3 on S2
++ can be confirmed using the

definition of convexity by taking X =

(
4.01 2

2 1

)
and Y =

(
4 0
0 8

)
. Both matrices are in S2

++, but

(1
2 X + 1

2Y)3 6≤ 1
2 X3 + 1

2Y3, that is, Ψ3 is not convex on S2
++.

Case n=4. For this case, we have

∇2Ψ4(X)(V)(V) = 2[V2X2 + X2V2 + (XV)2 + (VX)2 + XV2X + VX2V], ∀V ∈ B(H)

As in the case n = 3, we can check for X =

(
4.05 2

2 1

)
∈ S2

++ and V =

(
3 2
2 1

)
∈ S2; that

∇2Ψ4(X)(V)(V) =

(
4125.9 2301.3
2301.3 1278.4

)
6≥ 0 . This ensures by Proposition 3.6 that Ψ4 is not convex

on S 2
++.

According to what we showed previously about the nonlinear mapping Ψn (n ≥ 3) being not convex,
even on B++(H), the question now is to find the convex subsets in B(H) or in Bsa(H)}, on which we
have the convexity of Ψn. To do that, we define the set Ωn in Bsa(H) as follows:

Ωn := {X ∈ Bsa(H) : ∇2Ψn(X)(V)(V) ≥ 0, ∀V ∈ Bsa(H)}. (3.9)

Using Proposition 3.6, we obtain the convexity of Ψn over any open convex subset U in Ωn. So, the
first question is whether Ωn contains at least one open convex subset U. The second question is the
characterization of such open convex sets. For example, we take the case n = 4. We have

Ω4 := {X ∈ Bsa(H) : V2X2 + X2V2 + (XV)2 + (VX)2 + XV2X + VX2V ≥ 0, ∀V ∈ Bsa(H)}. (3.10)

Assume that there exists at least one element in the topological interior of Ω4, that is, there exists some
A ∈ Bsa(H) such that V2A2 + A2V2 + (AV)2 + (VA)2 + AV2A + VA2V > 0, ∀V ∈ Bsa(H). Thus, there
exists some ε > 0 for which A + εB ⊂ Ω4, and then we can conclude that the mapping Ψ4 is convex on
the open convex set U := A + εB. This means that instead of looking at the open convex sets U on
which we have the convexity of Ψn, we look for the solution of the following operator strict inequality:
Find X0 ∈ Bsa(H) such that

V2X2
0 + X2

0V2 + (X0V)2 + (VX0)2 > 0, ∀V ∈ Bsa(H).

Since we always have XV2X ≥ 0 and VX2V ≥ 0, ∀X,V ∈ Bsa(H), then any solution of the above
operator strict inequality belongs to the open interior of Ω4, and then we are done.

Remark 3.10. Using the same reasoning mentioned above, we can prove that the following nonlinear
mappings are not convex over B++(H): X 7→ X−n, n ≥ 2, X 7→ exp(X). For instance, for the
mapping Ψ : X 7→ X−2, we have that the second order directional derivative of Ψ is found to be equal to
∇2Ψ(X)(V)(V) = 2[X−2VX−1VX−1 + X−1VX−2VX−1 + X−1VX−1VX−2], ∀X ∈ B++(H),∀V ∈ Bsa(H).

Take X =

(
40.5 20
20 10

)
∈ S2

++ and V =

(
0.3 0.2
0.2 0.1

)
∈ S2. Simple computations give ∇2Ψ(X)(V)(V) =(

4.800 −9.630
−9.630 19.322

)
, which is not nonnegative.
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Using the previous results, we study of convexity of the following nonlinear mapping. For a given
positive operator B and any three operators A, C, and D in B(H), we define the nonlinear mapping Ψ

as follows:
Ψ(X) := X2 + A∗(X + B)−1A −CXD.

This nonlinear mapping is well-defined on the open convex cone U := {X ∈ Bsa(H) : X + B > 0}.
Obviously, this cone contains all nonnegative operators, that is, B+(H) ⊂ U, and it also contains some
negative and nonpositive operators. Take, for instance, X := −αB ∈ U, (for any α ∈ (0, 1)). It may also
contain some self-adjoint operators, which are not neither nonpositive nor nonnegative. For instance,

take B =

(
1 0
0 1

)
and X =

(
1 0
0 −0.5

)
. Obviously, B is positive, and X is self-adjoint and is not neither

nonnegative nor nonpositive. However, X + B =

(
2 0
0 0.5

)
is obviously positive, and so X ∈ U. We are

going to show the convexity of Ψ over U. Using our previous results on the second order directional
derivative, we can write:

∇2Ψ(X)(V)(V) = 2[V2 + A∗((X + B)−1V(X + B)−1V(X + B)−1)A],

for any X ∈ U and any V ∈ Bsa(H). This ensures that ∇2Ψ(X)(V)(V) > 0,∀X ∈ U,∀V ∈ Bsa(H), and
so by Proposition 3.6, the mapping Ψ is strictly convex onU. Similarly, we get the convexity of Ψ on
the closure ofU, that is, on the set {X ∈ Bsa(H) : X + B ≥ 0}.

We close this section with the study of the convexity of the following nonlinear mapping:

Ψ(X) =

{
X−1 if X > 0;

(−X)−1 if X < 0.

Clearly, the mapping Ψ is well-defined on the open cone K := {X ∈ Bsa(H) : X > 0 or X < 0}, which
is the union of the two disjoint open convex cones B++(H) and B−−(H) . Following our reasoning in
Example 3.7, we obtain that Ψ is twice differentiable on K in all directions V ∈ Bsa(H) and

∇2Ψ(X)(V)(V) =

{
2X−1VX−1VX−1 if X > 0;
2(−X)−1V(−X)−1V(−X)−1 if X < 0.

Obviously, in both cases X ∈ B++(H) and X ∈ B−−(H), the second directional derivatives are positive
for any V ∈ Bsa(H). However, the nonlinear mapping Ψ is not convex on K . This follows from the
nonconvexity of the cone K , so the convexity of the domain of definition of the nonlinear mapping is
necessary to apply our characterization in Proposition 3.6.

4. Convex nondifferentiable mappings defined between bounded linear operator spaces

In this last section, we assume that U is an open convex subset of B(H) and that Ψ : U → B(H)
is not necessarily differentiable, and we assume that it is only directionally differentiable onU for any
direction V ∈ U −U := {V = U1 − U2 : U1,U2 ∈ U}, that is,

Ψ′(X; V) = lim
t↓0

t−1[Ψ(X + tV) − Ψ(X)] exists , ∀X ∈ U, ∀V ∈ U −U.

Using the same arguments and reasoning in the proof of Theorem 3.4, we can state the following result
and we omit its proof.
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Proposition 4.1. Under the above assumptions onU and Ψ, we have Ψ is convex onU if, and only if,
Ψ′(X, X − Y) ≥ Ψ′(Y, X − Y), ∀X,Y ∈ U.

We use this result to prove the convexity of the following nonlinear nondifferentiable mapping:
Ψ : K → B+(H) defined by

Ψ(X) =


X if X > 0;
−X if X < 0;

0 if X = 0,

where K is given by
K := B+(H) ∪ B−(H) ∪ {0}.

Let us compute the directional derivative of Ψ at any X ∈ K . Let V ∈ B(H). At X = 0 and t > 0, we
have Ψ(X + tV) = Ψ(tV) is well-defined only for V ∈ K , and we have

Ψ(X + tV) =


tV if V > 0;
−tV if V < 0;

0 if V = 0.

This gives Ψ′(X; V) = Ψ(V), for X = 0 and ∀V ∈ K . Assume now that X > 0. Then for any V ∈ B(H)
and for t > 0 small enough, we get X + tV > 0. Thus,

t−1[Ψ(X + tV) − Ψ(X)] = t−1[(X + tV) − (X)] = V,

and so Ψ′(X; V) = V , for X > 0 and ∀V ∈ B(H). Similarly, we get, for the negative case, Ψ′(X; V) =

−V , for X < 0 and ∀V ∈ B(H). Obviously, K is not convex, so we consider any open symmetric
convex subset U in K . Since K is symmetric by definition, we have U − U ⊂ K . Hence, we
obtain Ψ′(0; V) exists for any V ∈ U − U. Thus, we conclude Ψ′(X; V) = Ψ(V), for any X ∈ U
and any V ∈ U − U. Therefore, we can use Proposition 4.1 as follows: for any X,Y ∈ U, we have
Ψ′(X, X − Y) = Ψ(X − Y) = Ψ′(Y, X − Y). So, Ψ is convex onU.

5. Conclusions

In conclusion, inspired by the findings presented in [7], where the author explored the convexity
of nonlinear mappings within bounded linear operator spaces, our present work extends and deepens
this investigation. We continue to explore the convexity of nonlinear mappings within these spaces
of bounded linear operator, by establishing a characterization based on the second order directional
derivative. Through the application of our main result, we substantiate the convex and nonconvex
nature of well-known nonlinear mappings. Furthermore, we address the treatment of nondifferentiable
mappings in the final section of our study. This work significantly contributes to advancing our
understanding of the convex properties of nonlinear mappings within the framework of bounded linear
operator spaces.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

AIMS Mathematics Volume 9, Issue 5, 10462–10477.



10476

Acknowledgments

The first author extends his appreciations to Researchers Supporting Project number
(RSPD2024R1001), King Saud University, Riyadh, Saudi Arabia.

Conflict of interest

The authors declare that they have no conflict of interests.

References

1. J. P. Aubin and H. Frankowska, Set valued analysis, Birkhauser, Boston, 1990.

2. H. Bauschke and P. Combettes, Convex analysis and monotone operator theory in Hilbert spaces,
Springer, 2011.

3. J. M. Borwein and Q. J. Zhu, Variational methods in convex analysis, J. Glob. Optim., 35 (2006),
197–213. https://doi.org/10.1007/s10898-005-3835-3.

4. J. M. Borwein, Subgradients of convex operators, Math. Oper. Stat. Ser., 15 (1984), 179–191.
https://doi.org/10.1080/02331938408842921.

5. J. M. Borwein, Continuity and differentiability properties of convex operators, London Maths. Soc.,
s3-44 (1982), 420–444. https://doi.org/10.1112/plms/s3-44.3.420.

6. J. M. Borwein, Convex relations in analysis and optimization, In: S. Schaible and W. T.
Ziemba,(eds.), Generalized Concavity in Optimization and Economics, Academic Press, New
York, 1981.

7. M. Bounkhel, Global minimum of nonlinear mappings and orthogonality in C1-classes, New Zeal.
J. Math., 36 (2007), 147–158.

8. J. Brinkhuis, Z. Q. Luo, and S. Zhang, Matrix convex functions with applications to weighted
centers for semidefinite programming, Technical Report, El 2005-38, Econometric Institute,
Erasmus University Rotterdam, 2005.

9. X. Chen, H. Qi, and P. Tseng, Analysis of nonsmooth symmetric-matrix-valued function with
applications to semidefinite complementarity problems, SIAM J. Optim., 13 (2003), 960–985.
https://doi.org/10.1137/S1052623400380584.

10. M. V. Dolgopolik, DC semidefinite programming and cone constrained DC optimization I: theory,
Comput. Optim. Appl., 82 (2022), 649–671. https://doi.org/10.1007/s10589-022-00374-y.

11. M. V. Dolgopolik, DC semidefinite programming and cone constrained DC optimization II: local
search methods, Comput. Optim. Appl., 85 (2023), 993–1031. https://doi.org/10.1007/s10589-023-
00479-y.

12. M. V. Dolgopolik, Subdifferentials of convex matrix-valued functions, arxiv:2307.15856, 2023.

13. F. Hansen and J. Tomiyama, Differential analysis of matrix convex functions, Linear Algebra Appl.,
420 (2007), 102–116. https://doi.org/10.1016/j.laa.2006.06.018.
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