Research article Special Issues

Heat and mass transport of nano-encapsulated phase change materials in a complex cavity: An artificial neural network coupled with incompressible smoothed particle hydrodynamics simulations

  • Received: 18 November 2023 Revised: 06 January 2024 Accepted: 15 January 2024 Published: 30 January 2024
  • MSC : 76

  • This work simulates thermo-diffusion and diffusion-thermo on heat, mass transfer, and fluid flow of nano-encapsulated phase change materials (NEPCM) within a complex cavity. It is a novel study in handling the heat/mass transfer inside a highly complicated shape saturated by a partial layer porous medium. In addition, an artificial neural network (ANN) model is used in conjunction with the incompressible smoothed particle hydrodynamics (ISPH) simulation to forecast the mean Nusselt and Sherwood numbers ($ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $). Heat and mass transfer, as well as thermo-diffusion effects, are useful in a variety of applications, including chemical engineering, material processing, and multifunctional heat exchangers. The ISPH method is used to solve the system of governing equations for the heat and mass transfer inside a complex cavity. The scales of pertinent parameters are fusion temperature $ {\theta }_{f} = 0.05-0.95 $, Rayleigh number $ Ra = {10}^{3}-{10}^{6} $, buoyancy ratio parameter $ N = -2-1 $, Darcy number $ Da = {10}^{-2}-{10}^{-5} $, Lewis number $ Le = 1-20 $, Dufour number $ Du = 0-0.25 $, and Soret number $ Sr = 0-0.8 $. Alterations of Rayleigh number are effective in enhancing the intensity of heat and mass transfer and velocity field of NEPCM within a complex cavity. The high complexity of a closed domain reduced the influences of Soret-Dufour numbers on heat and mass transfer especially at the steady state. The fusion temperature works well in adjusting the intensity and location of a heat capacity ratio inside a complex cavity. The presence of a porous layer in a cavity's center decreases the velocity field within a complex cavity at a reduction in Darcy number. The goal values of $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ for each data point are compared to those estimated by the ANN model. It is discovered that the ANN model's $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values correspond completely with the target values. The exact harmony of the ANN model prediction values with the target values demonstrates that the developed ANN model can forecast the $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values precisely.

    Citation: Weaam Alhejaili, Sang-Wook Lee, Cao Quang Hat, Abdelraheem M. Aly. Heat and mass transport of nano-encapsulated phase change materials in a complex cavity: An artificial neural network coupled with incompressible smoothed particle hydrodynamics simulations[J]. AIMS Mathematics, 2024, 9(3): 5609-5632. doi: 10.3934/math.2024271

    Related Papers:

  • This work simulates thermo-diffusion and diffusion-thermo on heat, mass transfer, and fluid flow of nano-encapsulated phase change materials (NEPCM) within a complex cavity. It is a novel study in handling the heat/mass transfer inside a highly complicated shape saturated by a partial layer porous medium. In addition, an artificial neural network (ANN) model is used in conjunction with the incompressible smoothed particle hydrodynamics (ISPH) simulation to forecast the mean Nusselt and Sherwood numbers ($ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $). Heat and mass transfer, as well as thermo-diffusion effects, are useful in a variety of applications, including chemical engineering, material processing, and multifunctional heat exchangers. The ISPH method is used to solve the system of governing equations for the heat and mass transfer inside a complex cavity. The scales of pertinent parameters are fusion temperature $ {\theta }_{f} = 0.05-0.95 $, Rayleigh number $ Ra = {10}^{3}-{10}^{6} $, buoyancy ratio parameter $ N = -2-1 $, Darcy number $ Da = {10}^{-2}-{10}^{-5} $, Lewis number $ Le = 1-20 $, Dufour number $ Du = 0-0.25 $, and Soret number $ Sr = 0-0.8 $. Alterations of Rayleigh number are effective in enhancing the intensity of heat and mass transfer and velocity field of NEPCM within a complex cavity. The high complexity of a closed domain reduced the influences of Soret-Dufour numbers on heat and mass transfer especially at the steady state. The fusion temperature works well in adjusting the intensity and location of a heat capacity ratio inside a complex cavity. The presence of a porous layer in a cavity's center decreases the velocity field within a complex cavity at a reduction in Darcy number. The goal values of $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ for each data point are compared to those estimated by the ANN model. It is discovered that the ANN model's $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values correspond completely with the target values. The exact harmony of the ANN model prediction values with the target values demonstrates that the developed ANN model can forecast the $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values precisely.



    加载中


    [1] K. Yang, M. Venkataraman Zhang X, J. Wiener, G. Zhu, J. Yao, et al., Review: incorporation of organic PCMs into textiles, J. Mater. Sci., 57 (2022), 798–847. https://doi.org/10.1007/s10853-021-06641-3 doi: 10.1007/s10853-021-06641-3
    [2] B. Zalba, J. M. Marı́n, L. F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications, Appl. Thermal Eng., 23 (2003), 251–283. https://doi.org/10.1016/S1359-4311(02)00192-8 doi: 10.1016/S1359-4311(02)00192-8
    [3] L. F. Cabeza, C. Castellón, M. Nogués, M. Medrano, R. Leppers, O. Zubillaga, Use of microencapsulated PCM in concrete walls for energy savings, Energy Build., 39 (2007), 113–119. https://doi.org/10.1016/j.enbuild.2006.03.030 doi: 10.1016/j.enbuild.2006.03.030
    [4] A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, et al., State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization, Renew. Sust. Energy Rev., 14 (2010), 31–55. https://doi.org/10.1016/j.rser.2009.07.035 doi: 10.1016/j.rser.2009.07.035
    [5] L. F. Cabeza, A. Castel, C. Barreneche, A. de Gracia, A. I. Fernández, Materials used as PCM in thermal energy storage in buildings: A review, Renew. Sust. Energy Rev., 15 (2011), 1675–1695. https://doi.org/10.1016/j.rser.2010.11.018 doi: 10.1016/j.rser.2010.11.018
    [6] E. Oró, A. de Gracia, A. Castell, M. M. Farid, L. F. Cabeza, Review on phase change materials (PCMs) for cold thermal energy storage applications, Appl. Energy, 99 (2012), 513–533. https://doi.org/10.1016/j.apenergy.2012.03.058 doi: 10.1016/j.apenergy.2012.03.058
    [7] N. H. Abu-Hamdeh, A. A. Melaibari, T. S. Alquthami, A. Khoshaim, H. F. Oztop, A Karimipour, Efficacy of incorporating PCM into the building envelope on the energy saving and AHU power usage in winter, Sust. Energy Tech. Assess., 43 (2021), 100969. https://doi.org/10.1016/j.seta.2020.100969 doi: 10.1016/j.seta.2020.100969
    [8] A. Arshad, M. Jabbal, Y. Yan, Preparation and characteristics evaluation of mono and hybrid nano-enhanced phase change materials (NePCMs) for thermal management of microelectronics, Energy Convers. Manage., 205 (2020), 112444. https://doi.org/10.1016/j.enconman.2019.112444 doi: 10.1016/j.enconman.2019.112444
    [9] S. M. Hashem Zadeh, S. A. M. Mehryan, M. Sheremet, M. Ghodrat, M. Ghalambaz, Thermo-hydrodynamic and entropy generation analysis of a dilute aqueous suspension enhanced with nano-encapsulated phase change material, Int. J. Mech. Sci., 178 (2020), 105609. https://doi.org/10.1016/j.ijmecsci.2020.105609 doi: 10.1016/j.ijmecsci.2020.105609
    [10] M. Ghalambaz, A. J. Chamkh, D. Wen, Natural convective flow and heat transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a cavity, Int. J. Heat Mass Transfer, 138 (2019), 738–749. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.037 doi: 10.1016/j.ijheatmasstransfer.2019.04.037
    [11] M. Ghalambaz, S. A. M. Mehryan, N. Mashoofi, A. Hajja, A. J. Chamkha, M. Sheremet, et al., Free convective melting-solidification heat transfer of nano-encapsulated phase change particles suspensions inside a coaxial pipe, Adv. Powder Tech., 31 (2020), 4470–4481. https://doi.org/10.1016/j.apt.2020.09.022 doi: 10.1016/j.apt.2020.09.022
    [12] C. J. Ho, Y. C. Liu, T. F. Yang, M. Ghalambaz, W. M. Yan, Convective heat transfer of nano-encapsulated phase change material suspension in a divergent minichannel heatsink. Int. J. Heat Mass Transfer, 165 (2021), 120717. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120717 doi: 10.1016/j.ijheatmasstransfer.2020.120717
    [13] Z. Raizah, A. M. Aly, Double-diffusive convection of a rotating circular cylinder in a porous cavity suspended by nano-encapsulated phase change materials, Case Stud. Therm. Eng., 24 (2021), 100864. https://doi.org/10.1016/j.csite.2021.100864 doi: 10.1016/j.csite.2021.100864
    [14] A. M. Aly, Z. Raizah, A. Al-Hanaya, Double rotations between an inner wavy shape and a hexagonal-shaped cavity suspended by NEPCM using a time-fractional derivative of the ISPH method, Int. Commun. Heat Mass Transfer, 127 (2021), 105533. https://doi.org/10.1016/j.icheatmasstransfer.2021.105533 doi: 10.1016/j.icheatmasstransfer.2021.105533
    [15] A. M. Aly, Z. Raizah, Thermosolutal convection of nano–encapsulated phase change materials within a porous circular cylinder containing crescent with periodic side-wall temperature and concentration: ISPH simulation, Phys. Scr., 96 (2021), 125243. https://doi.org/10.1088/1402-4896/ac3118 doi: 10.1088/1402-4896/ac3118
    [16] S. R. Afshar, S. R. Mishra, A. Sattar Dogonchi, N. Karimi, A. J. Chamkha, H. Abulkhair, Dissection of entropy production for the free convection of NEPCMs-filled porous wavy enclosure subject to volumetric heat source/sink, J. Taiwan Inst. Chem. Eng., 128 (2021), 98–113. https://doi.org/10.1016/j.jtice.2021.09.006 doi: 10.1016/j.jtice.2021.09.006
    [17] S. Basriati, Rahmawati, H. Saleh, Mathematical modeling of unsteady convective flow analysis of water and nano-encapsulated phase change particles in composite enclosure subject to rotation, J. Energy Storage, 72 (2023), 108393. https://doi.org/10.1016/j.est.2023.108393 doi: 10.1016/j.est.2023.108393
    [18] W. Alhejaili, A. M. Aly, Dual rotations of rods on thermosolutal convection in a porous cavity suspended by nanoencapsulated phase change materials, 2023. https://doi.org/10.1142/S0217979224501959
    [19] W. Alhejaili, A. M. Aly, Magneto-bioconvection flow in an annulus between circular cylinders containing oxytactic microorganisms, Int. Commun. Heat Mass Transfer, 146 (2023), 106893. https://doi.org/10.1016/j.icheatmasstransfer.2023.106893 doi: 10.1016/j.icheatmasstransfer.2023.106893
    [20] T. Tayebi, A. Sattar Dogonchi, N. Karimi, H. Ge-JiLe, A. J. Chamkha, Y. Elmasry, Thermo-economic and entropy generation analyses of magnetic natural convective flow in a nanofluid-filled annular enclosure fitted with fins, Sust. Energy Tech. Assess., 46 (2021), 101274. https://doi.org/10.1016/j.seta.2021.101274 doi: 10.1016/j.seta.2021.101274
    [21] S. Eshaghi, F. Izadpanah, A. Sattar Dogonchi, A. J. Chamkha, M. B. Ben Hamida, H. Alhumade, The optimum double diffusive natural convection heat transfer in H-Shaped cavity with a baffle inside and a corrugated wall, Case Stud. Thermal Eng., 28 (2021), 101541. https://doi.org/10.1016/j.csite.2021.101541 doi: 10.1016/j.csite.2021.101541
    [22] A. Sattar Dogonchi, S. R. Mishra, A. J. Chamkha, M. Ghodrat, Y. Elmasry, H. Alhumade, Thermal and entropy analyses on buoyancy-driven flow of nanofluid inside a porous enclosure with two square cylinders: Finite element method, Case Stud. Thermal Eng., 27 (2021), 101298. https://doi.org/10.1016/j.csite.2021.101298 doi: 10.1016/j.csite.2021.101298
    [23] H. E. Huppert, J. S. Turner, Double-diffusive convection, J. Fluid Mech., 106 (1981), 299–329. https://doi.org/10.1017/S0022112081001614 doi: 10.1017/S0022112081001614
    [24] B. Ruddick, A practical indicator of the stability of the water column to double-diffusive activity, Deep Sea Res. Part A Ocean. Res. Papers, 30 (1983), 1105–1107.
    [25] H. E. Huppert, Transitions in double-diffusive convection, Nature, 263 (1976), 20–22.
    [26] B. L. Markham, F. Rosenberger, Diffusive-convective vapor transport across horizontal and inclined rectangular enclosures, J. Cryst. Growth, 67 (1984), 241–254. https://doi.org/10.1016/0022-0248(84)90184-2 doi: 10.1016/0022-0248(84)90184-2
    [27] T. L. Bergman, F. P. Incropera, R. Viskanta, Correlation of mixed layer growth in a double-diffusive, salt-stratified system heated from below, J. Heat Transfer, 108 (1986), 206–211. https://doi.org/10.1115/1.3246888 doi: 10.1115/1.3246888
    [28] T. Nishimura, T. Imoto, H. Miyashita, Occurrence and development of double-diffusive convection during solidification of a binary system, Int. J. Heat Mass Transfer, 37 (1994), 1455–1464. https://doi.org/10.1016/0017-9310(94)90147-3 doi: 10.1016/0017-9310(94)90147-3
    [29] O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, S. Wongwises, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transfer, 57 (2013), 582–594. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037 doi: 10.1016/j.ijheatmasstransfer.2012.10.037
    [30] Y. Wang, Q. Liu, J. Lei, H. Jin, Performance analysis of a parabolic trough solar collector with non-uniform solar flux conditions, Int. J. Heat Mass Transfer, 82 (2015), 236–249. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.055 doi: 10.1016/j.ijheatmasstransfer.2014.11.055
    [31] A. Wahab, A. Hassan, M. Arslan Qasim, H. Muhammad Ali, H. Babar, M. Usman Sajid, Solar energy systems-potential of nanofluids, J. Mol. Liq., 289 (2019), 111049. https://doi.org/10.1016/j.molliq.2019.111049 doi: 10.1016/j.molliq.2019.111049
    [32] G. Huminic, A. Huminic, Application of nanofluids in heat exchangers: A review, Renew. Sust. Energy Rev., 16 (2012), 5625–5638. https://doi.org/10.1016/j.rser.2012.05.023 doi: 10.1016/j.rser.2012.05.023
    [33] M. U. Sajid, H. M. Ali, Recent advances in application of nanofluids in heat transfer devices: A critical review, Renew. Sust. Energy Rev., 103 (2019), 556–592. https://doi.org/10.1016/j.rser.2018.12.057 doi: 10.1016/j.rser.2018.12.057
    [34] D. Sharma, K. M. Pandey, A. Debbarma, G. Choubey, Numerical Investigation of heat transfer enhancement of SiO2-water based nanofluids in Light water nuclear reactor, Mater. Today: Proc., 4 (2017), 10118–10122. https://doi.org/10.1016/j.matpr.2017.06.332 doi: 10.1016/j.matpr.2017.06.332
    [35] J. Buongiorno, L. Hu, 8. Innovative technologies: Two-phase heat transfer in water-based nanofluids for nuclear applications final report, United States, 2009. https://doi.org/10.2172/958216
    [36] S. Husain, M. A. Siddiqui, Experimental and numerical analysis of transient natural convection of water in a high aspect ratio narrow vertical annulus, Prog. Nucl. Energy, 106 (2018), 1–10. https://doi.org/10.1016/j.pnucene.2018.02.013 doi: 10.1016/j.pnucene.2018.02.013
    [37] M. S. Kamel, F. Lezsovits, A. K. Hussein, Experimental studies of flow boiling heat transfer by using nanofluids, J. Therm. Anal. Calorim., 138 (2019), 4019–4043. https://doi.org/10.1007/s10973-019-08333-2 doi: 10.1007/s10973-019-08333-2
    [38] D. Sharma, K. M. Pandey, A. Debbarma, G. Choubey, Numerical Investigation of heat transfer enhancement of SiO2-water based nanofluids in Light water nuclear reactor, Mater. Today: Proc., 4 (2017), 10118–10122. https://doi.org/10.1016/j.matpr.2017.06.332 doi: 10.1016/j.matpr.2017.06.332
    [39] A. Kasaeian, R. Daneshazarian, O. Mahian, L. Kolsi, A. J. Chamkha, S. Wongwises, et al., Nanofluid flow and heat transfer in porous media: A review of the latest developments, Int. J. Heat Mass Transfer, 107 (2017), 778–791. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.074 doi: 10.1016/j.ijheatmasstransfer.2016.11.074
    [40] K. Khanafer, K. Vafai, Applications of nanofluids in porous medium, J. Therm. Anal. Calorim., 135 (2019), 1479–1492. https://doi.org/10.1007/s10973-018-7565-4 doi: 10.1007/s10973-018-7565-4
    [41] F. Selimefendigil, H. F. Öztop, Numerical investigation and reduced order model of mixed convection at a backward facing step with a rotating cylinder subjected to nanofluid, Comput. Fluids, 109 (2015), 27–37. https://doi.org/10.1016/j.compfluid.2014.12.007 doi: 10.1016/j.compfluid.2014.12.007
    [42] C. Maatki, K. Ghachem, L. Kolsi, A. Kadhim Hussein, M. Naceur Borjini, H. Ben Aissia, Inclination effects of magnetic field direction in 3D double-diffusive natural convection, Appl. Math. Comput., 273 (2016), 178–189. https://doi.org/10.1016/j.amc.2015.09.043 doi: 10.1016/j.amc.2015.09.043
    [43] S. A. M. Mehryan, M. Ghalambaz, M. A. Ismael, A. J. Chamkha, Analysis of fluid-solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane, J. Magn. Magnet. Mater., 424 (2017), 161–173. https://doi.org/10.1016/j.jmmm.2016.09.123 doi: 10.1016/j.jmmm.2016.09.123
    [44] F. Selimefendigil, H. F. Öztop, Analysis and predictive modeling of nanofluid-jet impingement cooling of an isothermal surface under the influence of a rotating cylinder, Int. J. Heat Mass Transfer, 121 (2018), 233–245. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.008 doi: 10.1016/j.ijheatmasstransfer.2018.01.008
    [45] A. S. Dogonchi, M. A. Sheremet, D. D. Ganji, I. Pop, Free convection of copper-water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field, J. Therm. Anal. Calorim., 135 (2019), 1171–1184. https://doi.org/10.1007/s10973-018-7396-3 doi: 10.1007/s10973-018-7396-3
    [46] F. Selimefendigil, H. F. Öztop, MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation, Phys. A: Stat. Mech. Appl., 534 (2019), 122144. https://doi.org/10.1016/j.physa.2019.122144 doi: 10.1016/j.physa.2019.122144
    [47] A. J. Chamkha, F. Selimefendigil, MHD mixed convection of nanofluid due to an inner rotating cylinder in a 3D enclosure with a phase change material, Int. J. Numer. Meth. Heat Fluid Flow, 29 (2019), 3559–3583. https://doi.org/10.1108/HFF-07-2018-0364 doi: 10.1108/HFF-07-2018-0364
    [48] S. E. Ahmed, M. A. Mansour, A. M. Alwatban, A. M. Aly, Finite element simulation for MHD ferro-convective flow in an inclined double-lid driven L-shaped enclosure with heated corners, Alex. Eng. J., 59 (2020), 217–226. https://doi.org/10.1016/j.aej.2019.12.026 doi: 10.1016/j.aej.2019.12.026
    [49] A. S. Dogonchi, M. Hashemi-Tilehnoee, M. Waqas, S. Masoud Seyyedi, I. L. Animasaun, D. D. Ganji, The influence of different shapes of nanoparticle on Cu-H2O nanofluids in a partially heated irregular wavy enclosure, Phys. A: Stat. Mech. Appl., 540 (2020), 123034. https://doi.org/10.1016/j.physa.2019.123034 doi: 10.1016/j.physa.2019.123034
    [50] R. Du, P. Gokulavani, M. Muthtamilselvan, F. Al-Amri, B. Abdalla, Influence of the Lorentz force on the ventilation cavity having a centrally placed heated baffle filled with the Cu-Al2O3-H2O hybrid nanofluid, Int. Commun. Heat Mass Transfer, 116 (2020), 104676. https://doi.org/10.1016/j.icheatmasstransfer.2020.104676 doi: 10.1016/j.icheatmasstransfer.2020.104676
    [51] P. Sudarsana Reddy, P. Sreedevi, Entropy generation and heat transfer analysis of magnetic hybrid nanofluid inside a square cavity with thermal radiation, Eur. Phys. J. Plus, 136 (2021), 39. https://doi.org/10.1140/epjp/s13360-020-01025-z doi: 10.1140/epjp/s13360-020-01025-z
    [52] F. Selimefendigil, H. F. Öztop, Analysis of hybrid nanofluid and surface corrugation in the laminar convective flow through an encapsulated PCM filled vertical cylinder and POD-based modeling, Int. J. Heat Mass Transfer, 178 (2021), 121623. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121623 doi: 10.1016/j.ijheatmasstransfer.2021.121623
    [53] G. R. Kefayati, Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using Lattice Boltzmann method, Int. Commun. Heat Mass Transfer, 40 (2013), 67–77. https://doi.org/10.1016/j.icheatmasstransfer.2012.10.024 doi: 10.1016/j.icheatmasstransfer.2012.10.024
    [54] H. T. Xu, T. T. Wang, Z. G. Qu, J. Chen, B. B. Li, Lattice Boltzmann simulation of the double diffusive natural convection and oscillation characteristics in an enclosure filled with porous medium, Int. Commun. Heat Mass Transfer, 81 (2017), 104–115. https://doi.org/10.1016/j.icheatmasstransfer.2016.12.001 doi: 10.1016/j.icheatmasstransfer.2016.12.001
    [55] A. Rahimi, A. Kasaeipoor, E. Hasani Malekshah, M. Palizian, L. Kolsi, Lattice Boltzmann numerical method for natural convection and entropy generation in cavity with refrigerant rigid body filled with DWCNTs-water nanofluid-experimental thermo-physical properties, Therm. Sci. Eng. Prog., 5 (2018), 372–387. https://doi.org/10.1016/j.tsep.2018.01.005 doi: 10.1016/j.tsep.2018.01.005
    [56] A. Purusothaman, E. H. Malekshah, Lattice Boltzmann modeling of MHD free convection of nanofluid in a V-shaped microelectronic module, Therm. Sci. Eng. Prog., 10 (2019), 186–197. https://doi.org/10.1016/j.tsep.2019.01.019 doi: 10.1016/j.tsep.2019.01.019
    [57] K. Szewc, J. Pozorski, A. Tanière, Modeling of natural convection with Smoothed Particle Hydrodynamics: Non-Boussinesq formulation, Int. J. Heat Mass Transfer, 54 (2011), 4807–4816. https://doi.org/10.1016/j.ijheatmasstransfer.2011.06.034 doi: 10.1016/j.ijheatmasstransfer.2011.06.034
    [58] A. M. Aly, A. J. Chamkha, S-W. Lee, A. F. Al-Mudhaf, On mixed convection in an inclined lid-driven cavity with sinusoidal heated walls using the ISPH method, Comput. Therm. Sci. Int. J., 8 (2016), 337–354. https://doi.org/10.1615/ComputThermalScien.2016016527 doi: 10.1615/ComputThermalScien.2016016527
    [59] A. M. Aly, Z. A. S. Raizah, Incompressible smoothed particle hydrodynamics (ISPH) method for natural convection in a nanofluid-filled cavity including rotating solid structures, Int. J. Mech. Sci., 146-147 (2018), 125–140. https://doi.org/10.1016/j.ijmecsci.2018.07.044 doi: 10.1016/j.ijmecsci.2018.07.044
    [60] Z. L. Zhang, K. Walayat, C. Huang, J. Z. Chang, M. B. Liu, A finite particle method with particle shifting technique for modeling particulate flows with thermal convection, Int. J. Heat Mass Transfer, 128 (2019), 1245–1262. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.074 doi: 10.1016/j.ijheatmasstransfer.2018.09.074
    [61] A. M. Aly, Z. A. S. Raizah, Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles, Phys. A: Stat. Mech. Appl., 537 (2020), 122623. https://doi.org/10.1016/j.physa.2019.122623 doi: 10.1016/j.physa.2019.122623
    [62] Z. A. S. Raizah, S. E. Ahmed, A. M. Aly, ISPH simulations of natural convection flow in E-enclosure filled with a nanofluid including homogeneous/heterogeneous porous media and solid particles, Int. J. Heat Mass Transfer, 160 (2020), 120153. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120153 doi: 10.1016/j.ijheatmasstransfer.2020.120153
    [63] A. M. Aly, S. E. Ahmed, Effects of uniform circular motion on natural convection in a cavity filled with a nanofluid using incompressible SPH method, Int. Commun. Heat Mass Transfer, 116 (2020), 104646. https://doi.org/10.1016/j.icheatmasstransfer.2020.104646 doi: 10.1016/j.icheatmasstransfer.2020.104646
    [64] F. Garoosi, A. Shakibaeinia, An improved high-order ISPH method for simulation of free-surface flows and convection heat transfer, Powder Tech., 376 (2020), 668–696. https://doi.org/10.1016/j.powtec.2020.08.074 doi: 10.1016/j.powtec.2020.08.074
    [65] F. Garoosi, A. Shakibaeinia, Numerical simulation of entropy generation due to natural convection heat transfer using Kernel Derivative-Free (KDF) Incompressible Smoothed Particle Hydrodynamics (ISPH) model, Int. J. Heat Mass Transfer, 150 (2020), 119377. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119377 doi: 10.1016/j.ijheatmasstransfer.2020.119377
    [66] A. M. Aly, Z. A. S. Raizah, S. E. Ahmed, ISPH simulations of natural convection from rotating circular cylinders inside a horizontal wavy cavity filled with a nanofluid and saturated by a heterogeneous porous medium, Eur. Phys. J. Spec. Top., 230 (2021), 1173–1183. https://doi.org/10.1140/epjs/s11734-021-00050-y doi: 10.1140/epjs/s11734-021-00050-y
    [67] A. M. Aly, E. M. Mohamed, Motion of circular cylinders during natural convection flow in X-shaped cavity filled with a nanofluid using ISPH method, Int. J. Numer. Meth. Heat Fluid Flow, 31 (2021), 1449–1474. https://doi.org/10.1108/HFF-04-2020-0231 doi: 10.1108/HFF-04-2020-0231
    [68] T. Long, P. Yang, M. Liu, A novel coupling approach of smoothed finite element method with SPH for thermal fluid structure interaction problems, Int. J. Mech. Sci., 174 (2020), 105558. https://doi.org/10.1016/j.ijmecsci.2020.105558 doi: 10.1016/j.ijmecsci.2020.105558
    [69] T. Long, X. Su, Coupling edge-based smoothed finite element method with incompressible smoothed particle hydrodynamics for thermal fluid structure interaction problems, J. Fluids Struct., 118 (2023), 103855. https://doi.org/10.1016/j.jfluidstructs.2023.103855 doi: 10.1016/j.jfluidstructs.2023.103855
    [70] A. M. Salehizadeh, A. R. Shafiei, A coupled ISPH-TLSPH method for simulating fluid-elastic structure interaction problems, J. Mar. Sci. Appl., 21 (2022), 15–36. https://doi.org/10.1007/s11804-022-00260-3 doi: 10.1007/s11804-022-00260-3
    [71] A. M. Aly, S. El-Sapa, Double rotations of cylinders on thermosolutal convection of a wavy porous medium inside a cavity mobilized by a nanofluid and impacted by a magnetic field, Int. J. Numer. Meth. Heat Fluid Flow., 32 (2022), 2383–2405. https://doi.org/10.1108/HFF-05-2021-0365 doi: 10.1108/HFF-05-2021-0365
    [72] M. Ghalambaz, S. A. M. Mehryan, I. Zahmatkesh, A. Chamkha, Free convection heat transfer analysis of a suspension of nano–encapsulated phase change materials (NEPCMs) in an inclined porous cavity, Int. J. Therm. Sci., 157 (2020), 106503. https://doi.org/10.1016/j.ijthermalsci.2020.106503 doi: 10.1016/j.ijthermalsci.2020.106503
    [73] Z. Raizah, A. M. Aly, Double-diffusive convection of a rotating circular cylinder in a porous cavity suspended by nano-encapsulated phase change materials, Case Stud. Therm. Eng., 24 (2021), 100864. https://doi.org/10.1016/j.csite.2021.100864 doi: 10.1016/j.csite.2021.100864
    [74] J. Bonet, S. Kulasegaram, Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations, Int. J. Numer. Meth. Eng., 47 (2000), 1189–1214. https://doi.org/10.1002/(SICI)1097-0207(20000228)47:6%3C1189::AID-NME830%3E3.0.CO;2-I doi: 10.1002/(SICI)1097-0207(20000228)47:6%3C1189::AID-NME830%3E3.0.CO;2-I
    [75] G. De Vahl Davis, Natural convection of air in a square cavity: A bench mark numerical solution, Int. J. Numer.Meth. Fluids, 3 (1983), 249–264. https://doi.org/10.1002/fld.1650030305 doi: 10.1002/fld.1650030305
    [76] P. Nithiarasu, K. N. Seetharamu, T. Sundararajan, Natural convective heat transfer in a fluid saturated variable porosity medium, Int. J. Heat Mass Transfer, 40 (1997), 3955–3967. https://doi.org/10.1016/S0017-9310(97)00008-2 doi: 10.1016/S0017-9310(97)00008-2
    [77] P. Nithiarasu, K. Ravindran, A new semi-implicit time stepping procedure for buoyancy driven flow in a fluid saturated porous medium, Comput. Meth. Appl. Mech. Eng., 165 (1998), 147–154. https://doi.org/10.1016/S0045-7825(98)00036-X doi: 10.1016/S0045-7825(98)00036-X
    [78] A. M. Aly, E. M. Mohamed, M. F. El-Amin, N. Alsedais, Double-diffusive convection between two different phases in a porous infinite-shaped enclosure suspended by nano encapsulated phase change materials, Case Stud. Therm. Eng., 26 (2021), 101016. https://doi.org/10.1016/j.csite.2021.101016 doi: 10.1016/j.csite.2021.101016
    [79] K. Levenberg, A method for the solution of certain non-linear problems in least squares, Q. Appl. Math., 2 (1944), 164–168.
    [80] D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math., 11 (1963), 431–441. https://doi.org/10.1137/0111030 doi: 10.1137/0111030
    [81] A. B. Çolak, A new study on the prediction of the effects of road gradient and coolant flow on electric vehicle battery power electronics components using machine learning approach, J. Energy Storage, 70 (2023), 108101. https://doi.org/10.1016/j.est.2023.108101 doi: 10.1016/j.est.2023.108101
    [82] A. B. Çolak, O. Yıldız, M. Bayrak, B. S. Tezekici, Experimental study for predicting the specific heat of water based Cu-Al2O3 hybrid nanofluid using artificial neural network and proposing new correlation, Int. J. Energy Res., 44 (2020), 7198–7215. https://doi.org/10.1002/er.5417 doi: 10.1002/er.5417
    [83] T. Güzel, A. B. Çolak, Performance prediction of current-voltage characteristics of Schottky diodes at low temperatures using artificial intelligence, Microelectron. Reliab., 147 (2023), 115040. https://doi.org/10.1016/j.microrel.2023.115040 doi: 10.1016/j.microrel.2023.115040
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(947) PDF downloads(97) Cited by(6)

Article outline

Figures and Tables

Figures(16)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog