Research article Special Issues

On rough generalized Marcinkiewicz integrals along surfaces of revolution on product spaces

  • Received: 12 November 2023 Revised: 10 January 2024 Accepted: 12 January 2024 Published: 22 January 2024
  • MSC : 42B20, 42B25, 42B35

  • In this paper, we prove the $ L^p $ boundedness of generalized Marcinkiewicz operators along surfaces of revolution on product spaces under very weak conditions on the the singular kernels. Our results generalize and improve many previously known results.

    Citation: Mohammed Ali, Hussain Al-Qassem. On rough generalized Marcinkiewicz integrals along surfaces of revolution on product spaces[J]. AIMS Mathematics, 2024, 9(2): 4816-4829. doi: 10.3934/math.2024233

    Related Papers:

  • In this paper, we prove the $ L^p $ boundedness of generalized Marcinkiewicz operators along surfaces of revolution on product spaces under very weak conditions on the the singular kernels. Our results generalize and improve many previously known results.



    加载中


    [1] A. Benedek, A. Calderón, R. Panzones, Convolution operators on Banach space valued functions, Proc. Natl. Acad. Sci., 48 (1962), 356–365. https://doi.org/10.1073/pnas.48.3.356 doi: 10.1073/pnas.48.3.356
    [2] Y. Ding, D. Fan, Y. Pan, $L^p$ boundedness of Marcinkiewicz integrals with Hardy space function kernel, Acta Math., 16 (2000), 593–600. https://doi.org/10.1007/s101140000015 doi: 10.1007/s101140000015
    [3] H. Wu, $L^p$ bounds for Marcinkiewicz integrals associated to surfaces of revolution, J. Math. Anal. Appl., 321 (2006), 811–827. https://doi.org/10.1016/j.jmaa.2005.08.087 doi: 10.1016/j.jmaa.2005.08.087
    [4] Y. Ding, D. Fan, Y. Pan, On the $L^p$ boundedness of Marcinkiewicz integrals, Mich. Math. J., 50 (2002), 17–26. https://doi.org/10.1307/mmj/1022636747 doi: 10.1307/mmj/1022636747
    [5] F. Liu, A note on Marcinkiewicz integrals associated to surfaces of revolution, J. Aust. Math. Soc., 104 (2018), 380–402. https://doi.org/10.1017/S1446788717000143 doi: 10.1017/S1446788717000143
    [6] L. Hawawsheh, M. Abudayah, A boundedness result for Marcinkiewicz integral operator, Open Math., 18 (2020), 829–836. https://doi.org/10.1515/math-2020-0046 doi: 10.1515/math-2020-0046
    [7] H. Al-Qassem, L. Cheng, Y. Pan, On rough generalized parametric Marcinkiewicz integrals, J. Math. Inequal., 11 (2017), 763–780. https://doi.org/10.7153/jmi-2017-11-60 doi: 10.7153/jmi-2017-11-60
    [8] M. Ali, O. Al-Mohammed, Boundedness of a class of rough maximal functions, J. Inequal. Appl., 305 (2018). https://doi.org/10.1186/s13660-018-1900-y doi: 10.1186/s13660-018-1900-y
    [9] T. Walsh, On the function of Marcinkiewicz, Studia Math., 44 (1972), 203–217. https://doi.org/10.4064/sm-44-3-203-217 doi: 10.4064/sm-44-3-203-217
    [10] E. Stein, On the function of Littlewood-Paley, Lusin and Marcinkiewicz, T. Am. Math. Soc., 88 (1958), 430–466. https://doi.org/10.1090/S0002-9947-1958-0112932-2 doi: 10.1090/S0002-9947-1958-0112932-2
    [11] E. Stein, Problems in harmonic analysis related to curvature and oscillatory integrals, In: Proceedings of the International Congress of Mathematicians, Berkeley, 1 (1986), 196–221.
    [12] E. Stein, Some geometrical concepts arising in harmonic analysis, Geom. Funct. Anal., 1 (2011), 434–453. https://doi.org/10.1090/pspum/035.1/545235 doi: 10.1090/pspum/035.1/545235
    [13] H. Al-Qassem, A. Al-Salman, L. Cheng, Y. Pan, Marcinkiewicz integrals on product spaces, Stud. Math., 167 (2005), 227–234. https://doi.org/10.4064/sm167-3-4 doi: 10.4064/sm167-3-4
    [14] H. Al-Qassem, Rough Marcinkiewicz integral operators on product spaces, Collec. Math., 36 (2005), 275–297.
    [15] J. Chen, D. Fan, Y. Ying, Rough Marcinkiewicz integrals with $L(\log L)^2$ kernels, Adv. Math., 30 (2001), 179–181.
    [16] D. Fan, Y. Pan, Singular integral operators with rough kernels supported by subvarieties, Am. J. Math., 119 (1997), 799–839.
    [17] W. Kim, S. Wainger, J. Wright, S. Ziesler, Singular integrals and maximal functions associated to surfaces of revolution, Bull. Lond. Math. Soc., 28 (1996), 291–296. https://doi.org/10.1112/blms/28.3.291 doi: 10.1112/blms/28.3.291
    [18] Y. Choi, Marcinkiewicz integrals with rough homogeneous kernel of degree zero in product domains, J. Math. Anal. Appl., 261 (2001), 53–60. https://doi.org/10.1006/jmaa.2001.7465 doi: 10.1006/jmaa.2001.7465
    [19] J. Chen, Y. Ding, D. Fan, $L^p$ boundedness of the rough Marcinkiewicz integral on product domains, Chinese J. Contemp. Math., 21 (2000), 47–54.
    [20] Y. Jiang, S. Lu, A class of singular integral operators with rough kernel on product domains, Hokkaido Math. J., 25 (1995), 1–7. https://doi.org/10.14492/hokmj/1380892533 doi: 10.14492/hokmj/1380892533
    [21] M. Ali, A. Al-Senjlawi, Boundedness of Marcinkiewicz integrals on product spaces and extrapolation, Inter. J. Pure Appl. Math., 97 (2014), 49–66. https://doi.org/10.12732/ijpam.v97i1.6 doi: 10.12732/ijpam.v97i1.6
    [22] H. Al-Qassem, M. Ali, On the functions of Marcinkiewicz integrals along surfaces of revolution on product domains via extrapolation, Symmetry, 15 (2023). https://doi.org/10.3390/sym15101814 doi: 10.3390/sym15101814
    [23] H. Wu, Boundedness of multiple Marcinkiewicz integral operators with rough kernels, J. Korean Math. Soc., 73 (2006), 35–658. https://doi.org/10.4134/JKMS.2006.43.3.635 doi: 10.4134/JKMS.2006.43.3.635
    [24] D. Fan, Y. Pan, D. Yang, A weighted norm inequality for rough singular integrals, Tohoku Math. J., 51 (1999), 141–161. https://doi.org/10.2748/tmj/1178224808 doi: 10.2748/tmj/1178224808
    [25] H. Wu, J. Xu, Rough Marcinkiewicz integrals associated to surfaces of revolution on product domains, Acta Math. Sci., 29 (2009), 294–304. https://doi.org/10.1016/S0252-9602(09)60030-8 doi: 10.1016/S0252-9602(09)60030-8
    [26] M. Ali, H. Al-Qassem, On certain estimates for parabolic Marcinkiewicz integrals related to surfaces of revolution on product spaces and extrapolation, Axioms, 12 (2023). https://doi.org/10.3390/axioms12010035 doi: 10.3390/axioms12010035
    [27] F. Liu, H. Wu, Rough Marcinkiewicz integrals with mixed homogeneity on product spaces, Acta Math. Sci., 29 (2013), 231–244. https://doi.org/10.1007/s10114-013-1675-5 doi: 10.1007/s10114-013-1675-5
    [28] H. Al-Qassem, L. Cheng, Y. Pan, Generalized Littlewood-Paley functions on product spaces, Turk. J. Math., 45 (2021), 319–345. https://doi.org/10.3906/mat-2008-92 doi: 10.3906/mat-2008-92
    [29] M. Ali, H. Al-Qassem, A class of rough generalized Marcinkiewicz integrals on product domains, Symmetry, 15 (2023). https://doi.org/10.3390/sym15040823 doi: 10.3390/sym15040823
    [30] H. Al-Qassem, L. Cheng, Y. Pan, On singular integrals and maximal operators along surfaces of revolution on product domains, J. Math. Inequal., 17 (2023), 739–759. https://doi.org/10.7153/jmi-2023-17-48 doi: 10.7153/jmi-2023-17-48
    [31] S. Yano, Notes on Fourier analysis (XXIX): An extrapolation theorem, J. Math. Soc. Japan, 3 (1951), 296–305. https://doi.org/10.2969/jmsj/00320296 doi: 10.2969/jmsj/00320296
    [32] S. Sato, Estimates for singular integrals and extrapolation, Stud. Math., 192 (2009), 219–233. https://doi.org/10.4064/sm192-3-2 doi: 10.4064/sm192-3-2
    [33] D. Fan, H. Wu, On the generalized Marcinkiewicz integral operators with rough kernels, Canad. Math. Bull., 54 (2011), 100–112. https://doi.org/10.4153/CMB-2010-085-3 doi: 10.4153/CMB-2010-085-3
    [34] J. Duoandikoetxea, J. R. de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math., 84 (1986), 541–561. https://doi.org/10.1007/BF01388746 doi: 10.1007/BF01388746
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(759) PDF downloads(63) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog